Authors affiliated with the MolMik group at time of publication are highlighted in bold. * designates joint first authors.
Preprints
Minhas V, Domenech A, Synefiariodou D, Straume D, Brendel M, Cebrero G, Liu X, Costa C, Baldry M, Sirard JC, Perez C, Gisch N, Hammerschmidt S, Håvarstein LS, Veening JW. Competence remodels the pneumococcal cell wall providing resistance to fratricide and surface exposing key virulence factor. BioRxiv. doi.org/10.1101/2022.08.03.502730
Cacace E, Kim V, Knopp M, Tietgen M, Brauer-Nikonow A, Inecik K, Mateus A, Milanese A, Mårli MT, Mitosch K, Selkrig J, Brochado AR, Kuipers O, Kjos M, Zeller G, Savitski M, Göttig S, Huber W, Typas A. High-throughput profiling of drug interactions in Gram-positive bacteria. Preprint: https://www.biorxiv.org/content/10.1101/2022.12.23.521747v1.
Najaf J, Gjennestad RS, Kissen R, Brembu T, Bartsova Z, Winge P, Bones AM. PAMP-Induced secreted Peptide-Like 6 (PIPL6) functions as an amplifier of plant immune 3 response through RLK7 and WRKY33 modul. Preprint: https://www.biorxiv.org/content/10.1101/2022.11.30.518506v1.
2023
Hauge IH, Sandegren V, Ruud Winther A, Bøe CA, Salehian Z, Håvarstein LS, Kjos M, Straume D (2023) A novel proteinaceous molecule produced by Lysinibacillus sp. OF-1 depends on the Ami oligopeptide transporter to kill Streptococcus pneumoniae. Microbiology. 169(3):001313. https://doi.org/10.1099/mic.0.001313
Gao Y, Kjos M, Arntzen MØ, Bakken LR, Frostegård Å (2023) Denitrification by bradyrhizobia under feast and famine and the role of the bc1 complex in securing electrons for N2O reduction. Appl Environ Microbiol. https://doi.org/10.1128/aem.01745-22. Preprint: https://www.biorxiv.org/content/10.1101/2022.09.29.510233v1.
2022
Disen Barbuti M, Myrbråten I, Morales Angeles D, Kjos M (2022) An updated overview of the cell cycle promesses in Staphylococcus aureus. MicrobiologyOpen. In press. doi.org/10.1002/mbo3.1338
Audshasai T, Coles JA, Panagiotou S, Khandaker S, Scales HE, Kjos M, Baltazar M, Vignau, Brewer JM, Kadioglu A, Yang M. Streptococcus pneumoniae rapidly translocates from the nasopharynx through the cribriform plate to invade and inflame the dura. mBio. doi/10.1128/mbio.01024-22.
Myrbråten I, Stamsås GA, Chan H, Morales Angeles D, Knutsen TM, Salehian Z, Shapaval O, Straume D, Kjos M. (2022) SmdA is a novel cell morphology determinant in Staphylococcus aureus. mBio. doi.org/10.1128/mbio.03404-21. See also commentary: doi.org/10.1128/mbio.00737-22
2021
Oftedal T, Ovchinnikov K, Hestad KA, Porcellato D, Narvhus J, Kranjec C, Kjos M, Diep DB (2021) Ubericin K, a new pore-forming bacteriocin targeting mannose-PTS. Microbiol Spectrum. doi.org/10.1128/Spectrum.00299-21
Gallay C, Sanselicio S, Anderson ME, Soh YM, Liu X, Stamsås GA, Pelliciari S, van Raaphorst R, Dénéréaz J, Kjos M, Murray H, Gruber S, Grossman AD, Veening JW (2021). CcrZ is a spatiotemporal cell cycle regulator that interacts with FtsZ and controls DNA replication by modulating the activity of DnaA. Nat Microbiol. doi.org/10.1038/s41564-021-00949-1. Commentary.
Ovchinnikov K, Kranjec C, Telke A, Kjos M, Thorstensen T, Carlsen H, Scherer S, Diep DB (2021). A strong synergy between the thiopeptide bacteriocin micrococcin P1 and rifampicin against MRSA in a murine skin infection model . Front Immunol. 12: 676534. doi.org/10.3389/fimmu.2021.676534.
Straume, D., Piechowiak, K.W., Kjos M, Håvarstein LS (2021) Class A PBPs: it is time to rethink traditional paradigms. Mol Microbiol. doi: https://doi.org/10.1111/mmi.14714
Ruud-Winther A., Kjos M., Herigstad M. L., Håvarstein L.S., Straume D. (2021) EloR interacts with the lytic transglycosylase MltG at midcell in Streptococcus pneumoniae R6. J Bacteriol. doi: 10.1128/JB.00691-20 Preprint available at: https://www.biorxiv.org/content/10.1101/2020.12.18.423453v1
Kranjec C*, Morales-Angeles D*, Mårli MT, Fernandez L, Garcia P, Kjos M*, Diep DB* (2021) Staphylococcal Biofilms: Challenges and novel therapeutic perspectives. Antibiotics. 10(2):131. https://doi.org/10.3390/antibiotics10020131
2020
Stamsås G.A.*, Restelli M.*, Ducret, A., Freton C., Garcia P.S.,, Håvarstein L.S., Straume D., Grangeasse C.*, Kjos M.* (2020) A CozE homolog contributes to cell size homeostasis of Streptococcus pneumoniae. mBio, 11(5):e02461-20. doi: 10.1128/mBio.02461-20.
Alcorlo M., Straume D., Lutkenhaus J., Håvarstein L.S., Hermoso J.A (2020). Structural characterization of the essential cell division protien FtsE and its interaction with FtsX in Streptococcus pneumoniae. mBio, 11(5):e01488-20. doi: 10.1128/mBio.01488-20
Fergestad, M.*, Stamsås, G.A.*, Morales-Angeles, D., Salehian, Z., Wasteson, Y., Kjos, M. (2020) PBP2A provides variable levels of protection towards different β-lactams in Staphylococcus aureus RN4220. Microbiol Open. 9:e1057. https://doi.org/10.1002/mbo3.1057
Straume, D.*, Piechowiak, K.W.*, Olsen, S., Stamsås, G.A., Berg, K.H., Kjos, M., Heggenhougen, M.V., Alcorlo, M., Hermoso, J., Håvarstein, L.S. Class A PBPs have a distinct and unique role in the construction of the pneumococcal cell wall. Proc Natl Acad Sci U S A. 117 (11) 6129-6138. doi.org/10.1073/pnas.1917820117.
2019
Kjos, M. (2019). Construction of fluorescent pneumococci for in vivo imaging and labelling of the chromosome. In Iovino, F. (ed.) Streptococcus pneumoniae. Methods and Protocols, pp. 41–51. New York: Humana Press. doi: 10.1007/978-1-4939-9199-0_4
Kjos, M. (2019). Transcriptional knockdown in pneumococci using CRISPR interference. In Iovino, F. (ed.) Streptococcus pneumoniae. Methods and Protocols, pp. 89–98. doi: 10.1007/978-1-4939-9199-0_8
Myrbråten, I., Will, K., Straume, D., Salehian, Z., Håvarstein, L.S., Mathiesen, G., Kjos, M. (2019). CRISPR interference for rapid knockdown of essential cell cycle genes in Lactobacillus plantarum. mSphere, 4(2): e00007–19.
Rued, B.E., Alcorlo, M., Edmonds, K.A., Martínez-Caballero, S., Straume, D., Fu, Y., Bruce, K.E., Wu, H., Håvarstein, L.S., Hermoso, J.A., Winkler, M.E., Giedroc, D.P. (2019). Structure of the large extracellular loop of FtsX and its interaction with the essential peptidoglycan hydrolase PcsB in Streptococcus pneumoniae. mBio, 10(1): e02622–18. doi: 10.1128/mBio.02622-18
Schmidt, F., Kakar, N., Meyer, T.C., Depke, M., Masouris, I., Burchhardt, G., Gómez-Mejia, A., Dhople, V., Håvarstein, L.S., Sun, Z., Moritz, R.L., Völker, U., Koedel, U., Hammerschmidt, S. (2019). In vivo proteomics identifies the competence regulon and AliB oligopeptide transporter as pathogenic factors in pneumococcal meningitis. PLoS Pathog, 15(7): e1007987. doi: 10.1371/journal.ppat.1007987
van Raaphorst, R., Kjos, M., Veening, J.W. (2019). BactMAP: an R package for integrating, analyzing and visualizing bacterial microscopy data. Mol Microbiol, 113:297-308. doi: 10.1111/mmi.14417
Winther, A.R., Kjos, M., Stamsås, G.A., Håvarstein, L.S., Straume, D. (2019). Prevention of EloR/KhpA heterodimerization by introduction of site-specific amino acid substitutions renders the essential elongasome protein PBP2b redundant in Streptococcus pneumoniae. Sci Rep, 9: 3681. doi: 10.1038/s41598-018-38386-6
2018
Lycus, P., Soriano-Laguna, M., Kjos, M., Richardson, D., Gates, A., Milligan, D.A., Frostegård, Å., Bergaust, L., Bakken, L.R. (2018). A bet-hedging strategy of denitrifying bacteria curtails their release of N2O. Proc Natl Acad Sci USA, 115(46):11820–11825. doi: 10.1073/pnas.1805000115
Miller, E.*, Kjos, M.*, Abrudan, M., Roberts, I.S., Veening, J.W., Rozen, D.E. (2018). Crosstalk and eavesdropping among quorum sensing peptide signals that regulate bacteriocin production in Streptococcus pneumoniae. ISME J, 12(10): 2363–2375. doi: 10.1038/s41396-018-0178-x
Morlot, C., Straume, D., Peters, K., Hegnar, O.A., Simon, N., Villard, A.M., Contreras-Martel, C., Leisico, F., Breukink, E., Gravier-Pelletier, C., Le Corre, L., Vollmer, W., Pietrancosta, N., Håvarstein, L.S., Zapun, A. (2018). Structure of the essential peptidoglycan amidotransferase MurT/GatD complex from Streptococcus pneumoniae. Nat Commun, 9(1): 3180. doi: 10.1038/s41467-018-05602-w
Stamsås, G.A.*, Myrbråten, I.*, Straume, D., Salehian, Z., Veening, J.W., Håvarstein, L.S., Kjos, M. (2018). CozEa and CozEb play overlapping and essential roles in controlling cell division in Staphylococcus aureus. Mol Microbiol, 109(5): 615–632. doi: 10.1111/mmi.13999
2017
Liu, X., Gallay, C., Kjos, M., Domenech, A., Slager, J., van Kessel, S., Knoops, K., Sorg, R.A., Zhang, J.R., Veening, J.W. (2017). High-throughput CRISPRi phenotyping in Streptococcus pneumoniae identifies new essential genes involved in cell wall synthesis and competence development. Mol Syst Biol, 13: 931. doi: 10.15252/msb.20167449
Moreno-Gámez, S., Sorg, R.A., Domenech, A., Kjos, M., Weissing, F.J., van Doorn, G.S., Veening, J.W. Quorum-sensing integrates environmental cues, cell density and cell history to control bacterial competence. Nat Comm, 8(1): 854. doi: 10.1038/s41467-017-00903-y
Ovchinnikov, K.V., Kristiansen, P.E., Straume, D., Jensen, M.S., Aleksandrzak-Piekarczyk, T., Nes, I.F., Diep, D.B. (2017). The leaderless bacteriocin enterocin K1 is highly potent against Enterococcus faecium: a study on structure, target spectrum and receptor. Front Microbiol, 8: 774. doi: 10.3389/fmicb.2017.00774
Stamsås, G.A., Straume, D., Ruud, Winther, A., Kjos, M., Frantzen, C.A., Håvarstein, L.S. (2017). Identification of EloR (Spr1851) as a regulator of cell elongation in Streptococcus pneumoniae. Mol Microbiol, 105(6): 954–967. doi: 10.1111/mmi.13748
Stamsås, G.A., Straume, D., Salehian, Z., Håvarstein, L.S. (2017). Evidence that pneumococcal WalK is regulated by StkP through protein-protein interaction. Microbiology,163(3): 383–399. doi: 10.1099/mic.0.000404
Straume, D., Stamsås, G.A., Salehian, Z., Håvarstein, L.S. (2017). Overexpression of the fratricide immunity protein ComM leads to growth inhibition and morphological abnormalities in Streptococcus pneumoniae. Microbiology, 163(1): 9–21. doi: 10.1099/mic.0.000402
Straume, D., Stamsås, G.A., Berg, K.H., Salehian, Z., Håvarstein, L.S. (2017). Identification of pneumococcal proteins that are functionally linked to penicillin-binding protein 2b (PBP2b). Mol Microbiol, 103(1): 99–116. doi: 10.1111/mmi.13543
van Raaphorst, R.*, Kjos, M.*, Veening, J.W. (2017). Chromosome segregation drives division site selection in Streptococcus pneumoniae. Proc Natl Acad Sci USA, 114(29): E5959–E5968. doi: 10.1073/pnas.1620608114
2016
Kjos, M.*, Miller, E.*, Slager, J., Lake, F., Gericke, O., Roberts, I.S., Rozen, D.E., Veening, J.W. (2016). Expression of Streptococcus pneumoniae bacteriocins is induced by antibiotics via regulatory interplay with the competence system. PLoS Pathogens, 12(2): e1005422. doi: 10.1371/journal.ppat.1005422
Oppegård, C., Kjos, M., Veening, J.W., Nissen-Meyer, J., Kristensen, T. (2016). A putative amino acid transporter determines sensitivity to the two-peptide bacteriocin plantaricin JK. MicrobiologyOpen, 5(4): 700–708. doi: 10.1002/mbo3.36
2015
Attaiech, L., Minnen, A., Kjos, M., Gruber, S., Veening, J.W. (2015). The ParB-parS chromosome segregation system modulates natural competence development in Streptococcus pneumoniae. mBio, 6(4): e00662–15. doi: 10.1128/mBio.00662-15
Beilharz, K., van Raaphorst, R., Kjos, M., Veening, J.W. (2015). Red fluorescent proteins for gene expression and protein localization studies in Streptococcus pneumoniae and efficient transformation with DNA assembled via the Gibson assembly method. Appl Environ Microbiol, 81(20): 7244–52. doi: 10.1128/AEM.02033-15
Kjos, M., Aprianto, R., Fernandes, V.E., Andrew, P.W., van Strijp, J.A.G., Nijland, R., Veening, J.W. (2015). Bright fluorescent Streptococcus pneumoniae for live cell imaging of host-pathogen interactions. J Bacteriol, 197: 807–18. doi: 10.1128/JB.02221-14
Nourikyan, J.*, Kjos, M.*, Cluzel, C., Morlot, C., Mercy, C., Noirot-Gros, M.F., Lavergne, J.P., Guiral, S., Veening, J.W., Grangeasse, C. (2015). Autophosphorylation of the bacterial tyrosine kinase CpsD coordinates capsule synthesis and cell division of Streptococcus pneumoniae. PLoS Genetics, 11(9): e1005518. doi: 10.1371/journal.pgen.1005518
Paixão, L., Oliveira, J., Verissímo, A., Vinga, S., Lourenço, E., Ventura, R., Kjos, M., Veening, J.W., Fernandes, V.E., Andrew, P.E., Yesilkaya, H., Neves, A.R. (2015). Host glycan sugar specific pathways in Streptococcus pneumoniae: galactose as a key sugar in colonisation and infection. PLoS One, 10(3): e0121042. doi: 10.1371/journal.pone.0121042
Straume, D., Stamsås, G.A., Håvarstein, L.S. (2015). Natural transformation and genome evolution in Streptococcus pneumoniae. Infect Genet Evol, 33: 371–80. doi: 10.1016/j.meegid.2014.10.020
2014
Bartual, S.G., Straume, D., Stamsås, G.A., Muñoz, I.G., Alfonso, C., Martínez-Ripoll, M., Håvarstein, L.S., Hermoso, J.A. (2014). Structural basis of PcsB-mediated cell separation in Streptococcus pneumoniae. Nat Commun, 5: 3842. doi: 10.1038/ncomms4842
Berg, K.H., Straume, D., Håvarstein, L.S. (2014). The function of the transmembrane and cytoplasmic domains of pneumococcal penicillin-binding proteins 2x and 2b extends beyond that of simple anchoring devices. Microbiology, 160(8): 1585–98. doi: 10.1099/mic.0.078535-0
Fagerlund, A., Granum, P.E., Håvarstein, L.S. (2014). Staphylococcus aureus competence genes: mapping of the SigH, ComK1 and ComK2 regulons by transcriptome sequencing. Mol Microbiol, 94(3): 557–79. doi: 10.1111/mmi.12767
Hassan, M., Kjos, M., Nes, I.F., Diep, D.B., Lotfipour, F. (2014). Antimicrobial peptides from prokaryotes. In Phoenix, D.A., Harris, F., Dennison, S.R., (eds.) Novel Antimicrobial Agents and Strategies, pp. 71–90. Germany: Wiley‐VCH Verlag GmbH & Co. doi: 10.1002/9783527676132.ch5
Kjos, M.*, Oppegård, C.*, Diep, D.B., Nes, I.F., Veening, J.W., Nissen-Meyer, J., Kristiansen, T. (2014). Sensitivity to the two-peptide bacteriocin lactococcin G is dependent on an enzyme involved in cell-wall synthesis. Mol Microbiol, 92(6): 1177–87. doi: 10.1111/mmi.12632
Kjos, M., Veening, J.W. (2014). Tracking of chromosome dynamics in live Streptococcus pneumoniae reveals that transcription promotes chromosome segregation. Mol Microbiol, 91(6): 1088–1105. doi: 10.1111/mmi.12517
Slager, J., Kjos, M., Attaiech, L., Veening, J.W. (2014). Antibiotic-induced increase of origin proximal gene copy number triggers bacterial competence. Cell, 157(2): 395–406. doi: 10.1016/j.cell.2014.01.068
2013
Berg, K.H., Stamsås, G.A., Straume, D., Håvarstein, L.S. (2013). Effects of low PBP2b levels on cell morphology and peptidoglycan composition in Streptococcus pneumoniae R6. J Bacteriol, 195(19): 4342–54. doi: 10.1128/JB.00184-13
Pinho, M.G., Kjos, M., Veening, J.W. (2013). How to get (a)round: mechanisms controlling growth and division of coccoid bacteria. Nat Rev Microbiol, 11: 601–14. doi: 10.1038/nrmicro3088
Stamsås, G.A., Håvarstein, L.S., Straume, D. (2013). CHiC, a new tandem affinity tag for the protein purification toolbox. J Microbiol Methods, 92(1): 59–63. doi: 10.1016/j.mimet.2012.11.003
2012
Berg, K.H., Biørnstad, T.J., Johnsborg, O., Håvarstein, L.S. (2012). Properties and biological role of streptococcal fratricins. Appl Environ Microbiol, 78(10): 3515–22. doi: 10.1128/AEM.00098-12
Berg, K.H., Ohnstad, H.S., Håvarstein, L.S. (2012). LytF, a novel competence-regulated murein hydrolase in the genus Streptococcus. J Bacteriol, 194(3): 627–35. doi: 10.1128/JB.06273-11
Biørnstad, T.J., Ohnstad, H.S., Håvarstein, L.S. (2012). Deletion of the murein hydrolase CbpD reduces transformation efficiency in Streptococcus thermophilus. Microbiology, 158(4): 877–85. doi: 10.1099/mic.0.056150-0
Eberhardt, A., Hoyland, C.N., Vollmer, D., Bisle, S., Cleverley, R.M., Johnsborg, O., Håvarstein, L.S., Lewis, R.J., Vollmer, W. (2012). Attachment of capsular polysaccharide to the cell wall in Streptococcus pneumoniae. Microb Drug Resist, 18(3): 240–55. doi: 10.1089/mdr.2011.0232
Hassan, M., Kjos, M., Nes, I.F., Diep, D.B., Lotfipour, F. (2012). Natural antimicrobial peptides from bacteria: characteristics and potential applications to fight against antibiotic resistance. J Appl Microbiol, 113(4): 723–36. doi: 10.1111/j.1365-2672.2012.05338.x
Wei, H., Håvarstein, L.S. (2012). Fratricide is essential for efficient gene transfer between pneumococci in biofilms. Appl Environ Microbiol, 78(16): 5897–905. doi: 10.1128/AEM.01343-12
2011
Berg, K.H., Biørnstad, T.J., Straume, D., Håvarstein, L.S. (2011). Peptide-regulated gene depletion system developed for use in Streptococcus pneumoniae. J Bacteriol, 193(19): 5207–15. doi: 10.1128/JB.05170-11
Biørnstad, T.J., Håvarstein, L.S. (2011). ClpC acts as a negative regulator of competence in Streptococcus thermophilus. Microbiology, 157(6): 1676–84. doi: 10.1099/mic.0.046425-0
Kjos, M., Borrero, J., Opsata, M., Birri, D.J., Holo, H., Cintas, L.M., Snipen, L., Hernandez, P.E., Nes, I.F., Diep, D.B. (2011). Target recognition, resistance, immunity and genome mining of class II bacteriocins from Gram-positive bacteria. Microbiology, 157: 3256–67. doi: 10.1099/mic.0.052571-0
Kjos, M., Nes, I.F., Diep, D.B. (2011). Mechanisms of resistance to bacteriocins targeting the mannose phosphotransferase system. Appl Environ Microbiol, 77(10): 3335–42. doi: 10.1128/AEM.02602-10
Nes, I.F., Kjos, M., Diep, D.B. (2011). Antimicrobial components of lactic acid bacteria. In Lahtinen, S., Ouwehand, A.C., Salminen, S., von Wright, A. (eds.) Lactic acid bacteria: microbiological and functional aspects (4th ed.), pp. 286–311. Boca Raton: CRC Press. doi: 10.1201/b11503
2010
Blomqvist, T., Steinmoen, H., Håvarstein, L.S. (2010). A food-grade site-directed mutagenesis system for Streptococcus thermophilus LMG 18311. Lett Appl Microbiol, 50(3): 314–9. doi: 10.1111/j.1472-765X.2009.02794.x
Eldholm, V., Johnsborg, O., Straume, D., Ohnstad, H.S., Berg, K.H., Hermoso, J.A., Håvarstein, L.S. (2010). Pneumococcal CbpD is a murein hydrolase that requires a dual cell envelope binding specificity to kill target cells during fratricide. Mol Microbiol, 76(4): 905–17. doi: 10.1111/j.1365-2958.2010.07143.x
Eldholm, V., Gutt, B., Johnsborg, O., Brückner, R., Maurer, P., Hakenbeck, R., Mascher, T., Håvarstein, L.S. (2010). Pneumococcal CbpD is a murein hydrolase that requires a dual cell envelope binding specificity to kill target cells during fratricide. J Bacteriol, 192(7): 1761–73. doi: 10.1128/JB.01489-09
Håvarstein, L.S. (2010). Increasing competence in the genus Streptococcus. Mol Microbiol, 78(3): 541–4. doi: 10.1111/j.1365-2958.2010.07380.x
Kjos, M., Salehian, Z., Nes, I.F., Diep, D.B. (2010). An extracellular loop of the mannose phosphotransferase system component IIC is responsible for specific targeting by class IIa bacteriocins. J Bacteriol, 192(22): 5906–13. doi: 10.1128/JB.00777-10
Kjos, M., Snipen, L.S., Salehian, Z., Nes, I.F., Diep, D.B. (2010). The Abi proteins and their involvement in bacteriocin self-immunity. J Bacteriol, 192(8): 2068–76. doi: 10.1128/JB.01553-09
2009
Diep, D.B., Straume, D., Kjos, M., Torres, C., Nes, I.F. (2009). An overview of the mosaic bacteriocin pln loci from Lactobacillus plantarum. Peptides, 30 (8): 1562–74. doi: 10.1016/j.peptides.2009.05.014
Eldholm, V., Johnsborg, O., Haugen, K., Ohnstad, H.S., Håvarstein, L.S. (2009). Fratricide in Streptococcus pneumoniae: contributions and role of the cell wall hydrolases CbpD, LytA and LytC. Microbiology, 155(7): 2223–34. doi: 10.1099/mic.0.026328-0
Johnsborg, O., Håvarstein, L.S. (2009). Pneumococcal LytR, a protein from the LytR-CpsA-Psr family, is essential for normal septum formation in Streptococcus pneumoniae. J Bacteriol, 191(18): 5859–64. doi: 10.1128/JB.00724-09
Kjos, M., Nes, I.F., Diep, D.B. (2009). Class II one-peptide bacteriocins target a phylogenetically defined subgroup of mannose phosphotransferase systems on sensitive cells. Microbiology, 155(9): 2949–61. doi: 10.1099/mic.0.030015-0
Straume, D., Johansen, R.F., Bjørås, M., Nes, I.F., Diep, D.B. DNA binding kinetics of two response regulators, PlnC and PlnD, from the bacteriocin regulon of Lactobacillus plantarum C11. BMC Biochem, 10:17. doi: 10.1186/1471-2091-10-17