Matthew Peter Kent

Matthew Peter Kent

Førsteamanuensis

  • Genombiologi

I am excited by the use of new technologies to answer questions in Genomics. Over the last 15 years, steadily improving sequencing platforms have transformed our ability to reconstruct complex genomes, detect genetic variation, and annotate genomes with functional information; information that is essential to understand the links between DNA and biology. Today, I am especially interested in long-read nanopore sequencing, high-throughput genotyping, functional genomic assays and CRISPR for establishing links between gene and function. However molecular genomic technologies are highly dynamic and the instrumentation and applications are constantly being refined and improved making it exciting to watch for the “next big thing”. Currently I am involved in several large projects looking at developing genomics resources in six commercial fish species (AQUA-FAANG), exploring the research potential of CRISPR in livestock species (GENEinnovate) and describing structural variants (CAUSATIVE), identifying mechanisms for sealice resistance (LiceRESIST).

  • Liste med publikasjoner fra min forskning. (Cristin)

    1. Watson KB, Lehnert SJ, Bentzen P, Kess T, Einfeldt A, Duffy S, Perriman B, Lien S, Kent MP, Bradbury IR. Environmentally associated chromosomal structural variation influences fine-scale population structure of Atlantic Salmon (Salmo salar). Mol Ecol. 2021 Dec 4. doi: 10.1111/mec.16307. Epub ahead of print. PMID: 34862998.
    2. Kent, MP., Moser, M., Boman, IA., Lindtveit, K., Árnyasi, M., Sundsaasen, KK., Våge, DI. (2021). Insertion of an endogenous Jaagsiekte Sheep Retrovirus element into the BCO2-gene abolishes its function and leads to yellow discoloration of adipose tissue in Norwegian Spælsau (Ovis aries). BMC Genomics, 22(1), 1-8. https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-021-07826-5
    3. Saha A, Kent MP, Hauser L, Drinan DP, Nielsen EE, Westgaard J-I, et al. (2021) Hierarchical genetic structure in an evolving species complex: Insights from genome wide ddRAD data in Sebastes mentella. PLoS ONE 16(5): e0251976. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0251976
    4. Sinclair-Waters, M., Nome, T., Wang, J., Lien, S., Kent, MP., Sægrov, H., Florø-Larsen, B., Bolstad, GH., Primmer, CR., Barson, NJ. (2021). Dissecting the loci underlying maturation timing in Atlantic salmon using haplotype and multi-SNP based association methods. BioRxiv. doi: https://doi.org/10.1101/2021.05.28.446127.
    5. Johansen, T., Besnier, F., Quintela, M., Jorde, PE., Glover, KA., Westgaard, J-I., Dahle, G., Lien, S., Kent, MP. (2020). Genomic analysis reveals neutral and adaptive patterns that challenge the current management regime for East Atlantic cod Gadus morhua L. Evol Appl. 2020;13:2673–2688. https://doi.org/10.1111/eva.13070.
    6. Bertolotti, AC., Layer, RM., Gundappa, MK., Gallagher, MD., Pehlivanoglu, E., Nome, T., Robledo, D., Kent, MP., Røsæg, LL., Holen, MM., Mulugeta, TD., Ashton, TJ., Hindar, K., Sægrov, H., Florø-Larsen, B., Erkinaro, J., Primmer, CR., Bernatchez, L., Martin, SAM., Johnston, IA., Sandve, SR., Lien, S., Macqueen, DJ. (2020). The structural variation landscape in 492 Atlantic salmon genomes. Nat Commun 11, 5176 (2020). https://doi.org/10.1038/s41467-020-18972-x.
    7. Kirubakaran, TG., Andersen, Ø., Moser, M., Árnyasi, M., McGinnity, P., Lien, S., Kent, MP. (2020) A Nanopore Based Chromosome-Level Assembly Representing Atlantic Cod from the Celtic Sea, G3 Genes|Genomes|Genetics, 10(9), 2903–2910. https://doi.org/10.1534/g3.120.401423.
    8. Wenne, R., Bernaś, R., Kijewska, A. Poćwierz-Kotus, A., Strand, J., Petereit, C., Plauška, K., Sics, I., Árnyasi, M., Kent, MP. (2020). SNP genotyping reveals substructuring in weakly differentiated populations of Atlantic cod (Gadus morhua) from diverse environments in the Baltic Sea. Sci Rep 10, 9738. https://doi.org/10.1038/s41598-020-66518-4.
    9. Bernaś R, Poćwierz-Kotus A, Árnyasi M, Kent MP, Lien S, Wenne R. (2020). Genetic Differentiation in Hatchery and Stocked Populations of Sea Trout in the Southern Baltic: Selection Evidence at SNP Loci. Genes. 11(2):184. https://doi.org/10.3390/genes11020184.
    10. Bekkevold, D., Höjesjö, J., Nielsen, EE., Aldvén, D., Als, TD., Sodeland, M., Kent, MP., Lien, S., Hansen, MM. (2020). Northern European Salmo trutta (L.) populations are genetically divergent across geographical regions and environmental gradients. Evolutionary Applications, 13:400–416. https://doi.org/10.1111/eva.12877.
    11. Kirubakaran, T.G., Andersen, Ø., De Rosa, M.C., Andersstuen, T., Hallan, K., Kent, MP., Lien, S. (2019). Characterization of a male specific region containing a candidate sex determining gene in Atlantic cod. Scientific Reports 9, 116. https://doi.org/10.1038/s41598-018-36748-8.
    12. Joshi R, Árnyasi M, Lien S, Gjøen HM, Alvarez AT and Kent MP. (2018). Development and Validation of 58K SNP-Array and High-Density Linkage Map in Nile Tilapia (O. niloticus). Frontiers in Genetics. 9:472. https://doi.org/10.3389/fgene.2018.00472 .
    13. Zuevaa, KJ., Lumme, J., Veselov, AE., Kent, MP., Primmer, CR. (2018). Genomic signatures of parasite-driven natural selection in north European Atlantic salmon (Salmo salar). Marine Genomics, 39, 26-38 (https://doi.org/10.1016/j.margen.2018.01.001)
    14. Sinclair-Waters, M., Bentzen, P., Morris, CJ., Ruzzante, DE., Kent, MP., Lien, S., Bradbury, IR. (2018). Genomic tools for management and conservation of Atlantic Cod in a coastal marine protected area. Canadian Journal of Fisheries and Aquatic Sciences. https://doi.org/10.1139/cjfas-2017-0254.
    15. Knutsen, TM., Olsen, HG., Tafintseva, V., Svendsen, M., Kohler, A., Kent, MP., Lien, S. (2018). Unravelling genetic variation underlying de novo-synthesis of bovine milk fatty acids. Scientific Reports (8)1, 2179. https://doi.org/10.1038/s41598-018-20476-0
  • Forskningsprosjekter med nettside utenfor NMBU