
I am originally from the Netherlands and have worked at NMBU since 1993. Since 1997, I have been appointed as Professor of Biochemistry. I lead a research group called the "Protein Engineering and Proteomics" (PEP) group and am a member of the Norwegian Academy of Science and Letters. The research group that I lead works with enzymes, proteins, microbiomes, microbiology, bioprocesses and industrial biotechnology. Our ambition is to combine groundbreaking fundamental research with more applied projects. Several group members run their own projects and we currently have two ERC projects.
For information about my research and our projects, take a look at the PEP group's website or see below under "Misc and CV".
You can see my publications in Pubmed or Google Scholar or NVA.
I am currently a member of the University Board at NMBU (2025-2029).
Areas of Work
- Biotechnology
- Biochemistry
- Microbiology
- Enzymology
Publications
Academic profile and publications
See Pubmed or Google Scholar or NVA for my publications.
A selection of my (recent) publications is provided under "Misc and CV".
My publications
Teaching
I contribute to the following courses: Applied and Experimental Biochemistry (KJB201), Protein Chemistry (KJB310), Proteomics (KJB320), Applied Biocatalysis and Biorefining (BIO335). I also contribute to the education of MSc and PhD students.
Research and projects
Research projects
Research projects with a website outside NMBU
Misc and CV
Together with Gustav Vaaje-Kolstad I lead a large research group including several senior members that have and lead their own projects. Our research is primarily funded by the Research Council of Norway EU (including two ERC projects) and the Novo Nordisk Foundation. We participate in several larger national research projects and centers, including SFI-industriell bioteknologi and the national infrastructures NorBioLab (biorefining and enzymology), SUPRA.NO (biorefining and enzymology), and NAPI (proteomics).
For more information about our group, our research and our projects, please visit the PEP group website. Our two current ERC projects are entitled Unravelling the secrets of Cu–based catalysts for C-H activation (CuBE) and Nitric oxide-driven anaerobic oxidation of lignocellulose (NOD-AOL).
This is a list of projects that I lead or play a major role in:
o SFI–IB - Senter for Forskningsdrevet Innovasjon innen Industriell Bioteknologi (NFR)
o Cube – Unravelling the secrets of Cu-based catalysts for C-H activation (ERC-Synergy)
o ChitoVal - Integrated biorefining of chitin-rich biomass (NFR)
o Mycocircle - Upcycling mushroom waste to replace animal derived chemicals (EU)
o Enzyclic - Unlocking the potential of enzymatic recycling of plastics
o Keranor - Efficient bioconversion of poultry feather into highly digestible protein products for fish and animal feed
o Napi – National network of advanced proteomics infrastructure
o SUPRA.NO - Sustainable processes advancement from Norwegian research: an integral bio-, thermo-, electro- chemical effortThese selected publications give an impression of what I have been working with lately:
A single-domain expansin-like protein from Gloeophyllum trabeum able to cleave xylan. Delgado Santamaría I, Østby H, Eijsink VGH, Várnai A. Proc Natl Acad Sci U S A 123 (2026) e2528599123. doi: 10.1073/pnas.2528599123.
Redox robustness drives LPMO evolution. Ayuso-Fernández I, Emrich-Mills TZ, Golten O, Forsberg Z, Hall KR, Nagy LG, Sørlie M, Røhr AK, Eijsink VGH. Proc Natl Acad Sci U S A 123 (2026) e2521617123. https://doi.org/10.1073/pnas.2521617123
Functional Characterization of Multidomain LPMOs from Marine Vibrio Species Reveals Modulation of Enzyme Activity by Domain-Domain Interactions. Zhou Y, Kommedal EG, Forsberg Z, Vaaje-Kolstad G, Suginta W, Eijsink VGH. Biochemistry 65 (2026) 90-103. doi: 10.1021/acs.biochem.5c00529.
Proteolytic and non-proteolytic mechanisms of keratin degradation in Onygena corvina revealed by a proteogenomic approach. Pavale S, Isembart C, Shapaval V, Tuveng TR, La Rosa SL, Eijsink VGH. Appl Environ Microbiol. 2025 Dec 23;91(12):e0172725. doi: 10.1128/aem.01727-25
Discovery of a Copper-Binding Carbohydrate-Binding Module Regulating the Activity of Lytic Polysaccharide Monooxygenases. Forsberg Z, Stepnov AA, Golten O, Lopez-Tavera E, Røhr ÅK, Ayuso-Fernández I, Eijsink VGH. J Am Chem Soc. 2025 Dec 10;147(49):45104-45118. doi: 10.1021/jacs.5c14016
Structure-Function Analysis of an Understudied Type of LPMO with Unique Redox Properties and Substrate Specificity. Hall KR, Elisa Rønnekleiv S, Gautieri A, Lilleås H, Skaali R, Rieder L, Nikoline Englund A, Landsem E, Emrich-Mills TZ, Ayuso-Fernández I, Kjendseth Røhr Å, Sørlie M, Eijsink VGH. ACS Catalysis 2025 Jun 6;15(12):10601-10617. doi: 10.1021/acscatal.5c03003
An inverse relationship between fitness and secretion efficiency in a gram-positive bacterium. Wiull K, Kjos M, Eijsink VGH, Mathiesen G. PNAS Nexus. 2025 Apr 28;4(5):pgaf131. doi: 10.1093/pnasnexus/pgaf131.
CRISPR/Cas9 mediated genomic insertion of functional genes into Lactiplantibacillus plantarum WCFS1. Wiull K, Haugen LK, Eijsink VGH, Mathiesen G. Microbiology Spectrum 13 (2025) e0202524.
A modular enzyme with combined hemicellulose-removing and LPMO activity increases cellulose accessibility in softwood. Forsberg Z, Tuveng TR, Eijsink VGH. FEBS J. 292 (2025) 75-93.
Oxidation of cellulose fibers using LPMOs with varying allomorphic substrate preferences, oxidative regioselectivities, and domain structures. Støpamo FG, Sulaeva I, Budischowsky D, Rahikainen J, Marjamaa K, Potthast A, Kruus K, Eijsink VGH, Várnai A. Carbohydr Polym. 330 (2024) 121816.
Mutational dissection of a hole hopping route in a lytic polysaccharide monooxygenase (LPMO). Ayuso-Fernández I, Emrich-Mills TZ, Haak J, Golten O, Hall KR, Schwaiger L, Moe TS, Stepnov AA, Ludwig R, Cutsail Iii GE, Sørlie M, Kjendseth Røhr Å, Eijsink VGH. Nature Commun 15 (2024) 3975.
Revisiting the activity of two poly(vinyl chloride)- and polyethylene-degrading enzymes. Stepnov AA, Lopez-Tavera E, Klauer R, Lincoln CL, Chowreddy RR, Beckham GT, Eijsink VGH, Solomon K, Blenner M, Vaaje-Kolstad G. Nature Commun 15 (2024) 8501.
Electrochemical monitoring of heterogeneous peroxygenase reactions unravels LPMO kinetics. Schwaiger L, Csarman F, Chang H, Golten O, Eijsink VGH, Ludwig R. ACS Catalysis 14 (2024) 1205-1219.
Antigen surface display in two novel whole genome sequenced food grade strains, Lactiplantibacillus pentosus KW1 and KW2. Wiull K, Hagen LH, Rončević J, Westereng B, Boysen P, Eijsink VGH, Mathiesen G. Microbial Cell Fact. 23 (2024) 19.
H2O2 feeding enables LPMO-assisted cellulose saccharification during simultaneous fermentative production of lactic acid. Hansen LD, Eijsink VGH, Horn SJ, Várnai A. Biotechnol Bioeng. 120 (2023) 726-736.
Lytic polysaccharide monooxygenases: enzymes for controlled and site-specific Fenton-like chemistry. Bissaro B, Eijsink VGH. Essays Biochem. 67 (2023) 575-584.
Visible light-exposed lignin facilitates cellulose solubilization by lytic polysaccharide monooxygenases. Kommedal EG, Angeltveit CF, Klau LJ, Ayuso-Fernández I, Arstad B, Antonsen SG, Stenstrøm Y, Ekeberg D, Gírio F, Carvalheiro F, Horn SJ, Aachmann FL, Eijsink VGH. Nature Commun.14 (2023) 1063.
Revisiting the AA14 family of lytic polysaccharide monooxygenases and their catalytic activity. Tuveng TR, Østby H, Tamburrini KC, Bissaro B, Hegnar OA, Stepnov AA, Várnai A, Berrin JG, Eijsink VGH. FEBS Lett. 597 (2023) 2086-2102.
The "life-span" of lytic polysaccharide monooxygenases (LPMOs) correlates to the number of turnovers in the reductant peroxidase reaction. Kuusk S, Eijsink VGH, Väljamäe P. J Biol Chem. 299 (2023) 105094.
A conserved second sphere residue tunes copper site reactivity in lytic polysaccharide monooxygenases. Hall KR, Joseph C, Ayuso-Fernández I, Tamhankar A, Rieder L, Skaali R, Golten O, Neese F, Røhr ÅK, Jannuzzi SAV, DeBeer S, Eijsink VGH, Sørlie M. J Am Chem Soc. 145 (2023) 18888-18903. doi: 10.1021/jacs.3c05342.
Impact of copper saturation on lytic polysaccharide monooxygenase performance; Østby H, Tuveng TR, Stepnov AA, Vaaje-Kolstad G, Forsberg Z, Eijsink VGH; ACS Sust Chem Engng. 11 (2023) 15566–15576.
Natural photoredox catalysts promote light-driven lytic polysaccharide monooxygenase reactions and enzymatic turnover of biomass. Kommedal EG, Sæther F, Hahn T, Eijsink VGH. Proc Natl Acad Sci USA 119 (2022) e2204510119.
Unraveling the roles of the reductant and free copper ions in LPMO kinetics. Anton A Stepnov, Zarah Forsberg, Morten Sørlie, Giang-Son Nguyen, Alexander Wentzel, Åsmund K Røhr, Vincent G H Eijsink; Biotech for Biofuels 2021 Jan 21;14(1):28. doi: 10.1186/s13068-021-01879-0.
Genomic and proteomic study of Andreprevotia ripae isolated from an anthill reveals an extensive repertoire of chitinolytic enzymes; SB Lorentzen, MØ Arntzen, T Hahn, TR Tuveng, M Sørlie, S Zibek, G Vaaje-Kolstad, VGH Eijsink; J Proteome Res, 2021 Aug 6;20(8):4041-4052. doi: 10.1021/acs.jproteome.1c00358.
Quantifying oxidation of cellulose-associated glucuronoxylan by two lytic polysaccharide monooxygenases from Neurospora crassa; Olav A. Hegnar, Heidi Østby, Dejan M. Petrović, Lisbeth Olsson, Anikó Várnai, Vincent G.H. Eijsink; Appl Environm Microbiol, 2021, 87:e0165221. doi: 10.1128/AEM.01652-21
Fast and specific peroxygenase reactions catalyzed by fungal mono-copper enzymes. Rieder L, Stepnov AA, Sørlie M, Eijsink VGH. Biochemistry. 2021 Nov 30;60(47):3633-3643. doi: 10.1021/acs.biochem.1c00407.
Alginate degradation: insights obtained through characterization of a thermophilic exolytic alginate lyase; Arntzen MØ, Pedersen B, Klau LJ, Stokke R, Oftebro M, Antonsen SG, Fredriksen L, Sletta H, Aarstad OA, Aachmann FL, Horn SJ, Eijsink VGH. Appl Environ Microbiol. 2021 Feb 26;87(6):e02399-20.
Molecular mechanism of the chitinolytic peroxygenase reaction. Bissaro B, Streit B, Isaksen I, Eijsink VGH, Beckham GT, DuBois JL, Røhr ÅK. Proc Natl Acad Sci U S A.117 (2020) 1504-1513. Epub: Jan 6. pii: 201904889. doi: 10.1073/pnas.1904889117.
Production and characterization of yeasts grown on media composed of spruce-derived sugars and protein hydrolysates from chicken by-products. D Lapeña; G Kosa; LD Hansen; LT Mydland; V Passoth; SJ Horn; VGH Eijsink; Microbial Cell Factories, 2020, 19:19; DOI: 10.1186/s12934-020-1287-6.
Controlled depolymerization of cellulose by light-driven lytic polysaccharide oxygenases. B Bissaro, E Kommedal, ÅK Røhr, VGH Eijsink, Nature Communications, 2020, 11:890.
Demonstration-scale enzymatic saccharification of sulfite-pulped spruce with addition of hydrogen peroxide for LPMO activation; THF Costa, A Kadić, P Chylenski, A Várnai, O Bengtsson, G Lidén, VGH Eijsink, SJ Horn; Biofuels, Bioproducts & Biorefining, Volume14, Issue4; July/August 2020; Pages 734-745
Kinetic insights into the peroxygenase activity of cellulose-active lytic polysaccharide monooxygenases (LPMOs); R Kont, B Bissaro, VGH Eijsink, P Väljamäe, Nature Communications, 2020 Nov 13;11(1):5786. doi: 10.1038/s41467-020-19561-8.
Production, Characterization, and Application of an Alginate Lyase, AMOR_PL7A, from Hot Vents in the Arctic Mid-Ocean Ridge. Vuoristo KS, Fredriksen L, Oftebro M, Arntzen MØ, Aarstad OA, Stokke R, Steen IH, Hansen LD, Schüller RB, Aachmann FL, Horn SJ, Eijsink VGH. J Agric Food Chem. 67 (2019) 2936-2945.
Inactivated Lactobacillus plantarum Carrying a Surface-Displayed Ag85B-ESAT-6 Fusion Antigen as a Booster Vaccine Against Mycobacterium tuberculosis Infection. Kuczkowska K, Copland A, Øverland L, Mathiesen G, Tran AC, Paul MJ, Eijsink VGH, Reljic R. Front Immunol. 10 (2019) 1588. Jul 9;10:1588. doi: 10.3389/fimmu.2019.01588.
Comparison of eight Lactobacillus species for delivery of surface-displayed mycobacterial antigen. Kuczkowska K, Øverland L, Rocha SDC, Eijsink VGH, Mathiesen G. Vaccine. 37 (2019) 6371-6379. doi: 10.1016/j.vaccine.2019.09.012.
Engineering chitinolytic activity into a cellulose-active lytic polysaccharide monooxygenase provides insights into substrate specificity. Jensen MS, Klinkenberg G, Bissaro B, Chylenski P, Vaaje-Kolstad G, Kvitvang HF, Nærdal GK, Sletta H, Forsberg Z, Eijsink VGH. J Biol Chem. 294 (2019) 19349-19364. Epub: Oct 27. pii: jbc.RA119.010056. doi: 10.1074/jbc.RA119.010056.
Antibiotic saving effect of combination therapy through synergistic interactions between well-characterized chito-oligosaccharides and commercial antifungals against medically relevant yeasts. Ganan M, Lorentzen SB, Aam BB, Eijsink VGH, Gaustad P, Sørlie M. PLoS One 14 (2019) e0227098. doi: 10.1371/journal.pone.0227098.
Oxidoreductases and reactive oxygen species in conversion of lignocellulosic biomass; Bastien Bissaro, Anikó Várnai, Åsmund K. Røhr and Vincent G.H. Eijsink. Microbiol Molec Biol Rev, 2018 Sep 26;82(4). pii: e00029-18. doi: 10.1128/MMBR.00029-18.
The impact of hydrogen peroxide supply on LPMO activity and overall saccharification efficiency of a commercial cellulase cocktail.Müller G, Chylenski P, Bissaro B, Eijsink VGH, Horn SJ. Biotechnol Biofuels. 2018 Jul 24;11:209. doi: 10.1186/s13068-018-1199-4. eCollection 2018.
Structure and function of a CE4 deacetylase isolated from a marine environment. TR Tuveng, U Rothweiler, G Udatha, G Vaaje-Kolstad, A Smalås, VGH Eijsink. PLoS One, 2017, 12:e0187544.
Development of minimal enzyme cocktails for hydrolysis of sulfite-pulped lignocellulosic biomass. P Chylenski, Z Forsberg, J Ståhlberg, M Lersch, O Bengtsson, S Sæbø, SJ Horn, VGH Eijsink. J Biotechnol. 246 (2017) 16-23.
Development of enzyme cocktails for complete saccharification of chitin using mono-component enzymes from Serratia marcescens; S Mekasha, IR Byman, C Lynch, H Toupalová, L Anděra, T Næs, G Vaaje-Kolstad, VGH Eijsink. Process Biochem. 56 (2017) 132-138.
Oxidative cleavage of polysaccharides by monocopper enzymes depends on H2O2.B Bissaro, ÅK Røhr, G Müller, P Chylenski, M Skaugen, Z Forsberg, SJ Horn, G Vaaje-Kolstad, VGH Eijsink. Nature Chem Biol. 13(2017) 1123-1128.
Extracellular electron transfer systems fuel oxidative cellulose degradation; D Kracher, S Scheiblbrandner, AKG Felice, E Breslmayr, M Preims, K Ludwicka, D Haltrich, VGH Eijsink, R Ludwig; Science 352 (2016) 1098-1101
Structural and functional characterization of a conserved pair of bacterial cellulose-oxidizing lytic polysaccharide monooxygenases; Z Forsberg, AK Mackenzie, M Sørlie, ÅK Røhr, R Helland, AS Arvai, G Vaaje-Kolstad, VGH Eijsink; Proc. Natl. Acad. Sci. USA, 111 (2014) 8446-8451.
Discovery of LPMO activity on hemicelluloses shows the importance of oxidative processes in plant cell wall degradation; JW Agger, T Isaksen, A Várnai, SV Melgosa, WGT Willats, R Ludwig, SJ Horn, VGH Eijsink, B Westereng; Proc. Natl. Acad. Sci. USA 111 (2014) 6287-6292.
The chitinolytic machinery of Serratia marcescens - a model system for enzymatic degradation of recalcitrant polysaccharides; Vaaje-Kolstad G, Horn SJ, Sørlie M, Eijsink VGH; FEBS J., 280 (2013) 3028-3049.
Metagenomics of the Svalbard reindeer rumen microbiome reveals abundance of polysaccharide utilization loci. PB Pope, AK Mackenzie, AC McHardy, I Gregor, MA Sundset, W Smith, M Morrison, VGH Eijsink; PLoS One 2012;7(6):e38571.
An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides; G Vaaje-Kolstad, B Westereng, SJ Horn, Z Liu, H Zhai, M Sørlie, VGH Eijsink. Science, 330 (2010) 219-222.
Cost and benefits of processivity in enzymatic degradation of recalcitrant polysaccharides. S.J. Horn, P. Sikorski, J.B. Cederkvist, G. Vaaje-Kolstad, M. Sørlie, B. Synstad, G. Vriend, K.M. Vårum, V.G.H. Eijsink; Proc. Natl. Acad. Sci. USA 103 (2006) 18089-18094.
The non-catalytic chitin-binding protein CBP21 from Serratia marcescens is essential for chitin degradation. G. Vaaje-Kolstad, S.J. Horn, D.M.F. van Aalten, B. Synstad, V.G.H. Eijsink; J Biol Chem. 280 (2005) 28492-28497.