Course code BIN302

BIN302 Fenotyping for presisjonslandbruk

English course information

Søk etter andre emner

Viser emneinfo for studieåret 2022 - 2023.

Emneansvarlige: Gareth Frank Difford
Medvirkende: Sahameh Shafiee, Morten Lillemo
Studiepoeng: 10
Ansvarlig fakultet: Fakultet for biovitenskap
Frekvens: Årlig
Undervises på språk: EN
(NO=norsk, EN=Engelsk)
Begrensning antall plasser:
20
Undervises i periode:
Høstparallellen
Første gang: Studieår 2021-2022
Fortrinnsrett: Forebeholdt masterstudenter med relevant bakgrunn innen plantevitenskap, husdyrvitenskap, biologi eller Data Science. Masterstudenter vil bli prioritert, deretter Phd student hvis ledige plasser.
Undervises hvor?: Campus Ås
Emnets innhold:

Rask teknologisk utvikling gir både forskere og bønder nye digitale verktøy. Koblet med automatisering gir dette en mulighet til raskt og effektivt anskaffe et stort antall fenotyper som kreves for presisjonslandbruk og avl. Ferdigheter for å bearbeide disse forskjellige datatypene er nødvendig i både forskning og industri for å trekke ut de mest nyttige fenotypene som mulig.

Emnet vil gi studentene ferdigheter til å analysere og tolke de forskjellige datastrømmene som bilde, video, dronebilder, sensorer i tidsserier og vibrasjonsspektroskopi på dyr og planter til nyttige fenotyper. Videre gir dette emnet studentene teoretiske og praktiske ferdigheter i maskinlæring for unike kombinasjoner av forskjellige datatyper for å produsere nye fenotyper, samt metodesammenligning og valideringsanalyser for å bestemme verdien av nylig beregnede fenotyper. Alt datalabarbeid vil bli utført ved hjelp av enten R- eller Python-programvare.

Spesielle praktiske utflukter er planlagt for å demonstrere automatiserte fenotypingsplattformer som drift av droner for feltmålinger av avlinger, industribesøk for å se online transportbåndmålinger samt en virtuell omvisning av robotmelkesystemer.

Det overordnede målet med emnet er å utvikle studentenes praktiske ferdigheter i å bearbeide data, programmering og analyse mot de nye feltene for presisjonsfenotyping ved å beregne eller modellere nye fenotyper som best tjener en mer bærekraftig planteforedling og husdyravl.

Læringsutbytte:

Kunnskap: Studentene skal tilegne seg en teoretisk forståelse av datainnsamling fra ulike digitale teknologier og kunne vurdere verdien av nye fenotyper fra ulike digitale teknologier.

Ferdigheter: Studentene vil utvide sine dataanalyseferdigheter til å inkludere bilde, video, vibrasjonsspektra og sensorer i tidsserier. Studentene vil lære statistiske analyseferdigheter for formelle metodesammenligninger og valideringsstudier og få ferdigheter i å kombinere ulike datatyper med maskinlæring.

Kompetanse. Studentene vil være i stand til å optimalisere og generere nye fenotypiske målinger for presisjonslandbruk og avl.

Læringsaktiviteter:
  • Ukentlige forelesninger vil dekke teorien bak kursmodulene: bildeanalyse, vibrasjonsspektroskopi, sensorer i tidsserier, maskinlæring og metodesammenligninger
  • Ukentlig datalab vil ha fokusert databearbeiding og analyse i R eller Python med oppgaver etterpå
  • Avsluttende skriftlig rapport om studentens valg av gitt datasett mot generering av en ny fenotype
  • Muntlig eksamen i emneinnhold og studentens rapport
  • Utferd for å betjene droner for målinger i felt, virtuelle turer til nye fenotypingsplattformer og utferdig for å se online metoder for matmåling
Læringsstøtte:
Underviserer vil være tilgjengelig i forlesning og lab/øvelser.
Pensum:
Utdelt litteratur
Forutsatte forkunnskaper:

Grunnleggende programmering i R eller Python.

Grunnleggende statistikk, og minst en av følgende: STAT200, STAT210, DAT121

Anbefalte forkunnskaper:
Kvantitative genetikk innen i plante-, dyr- og akvakultur (som HFA200, AQB270/AQB250/AQX250, BIO248, HFX315) er anbefalt, men ikke et krav.
Obligatorisk aktivitet:
Dataøvelser og ukentlige oppgaver. Avsluttende skriftlig rapport.
Vurderingsordning:
Avsluttende skriftlig rapport (50%) og muntlig eksamen (50%). Karakterregel: A-F
Sensor:
Ekstern sensor vil delta i sensureringen av emnet
Normert arbeidsmengde:
250 timer.
Opptakskrav:
Emnet er forbeholdt master og PhD studenter med grunnleggende kunnskap innen området presisjonslandbrukg og plante/dyrefenotyping.
Undervisningstid:
2 timer forelesning per uke. 2 timer øvinger per uke.
Eksamensdetaljer: Samlet vurdering: Bokstavkarakterer