Hopp til hovedinnhold
  1. Hjem
  • Kontakt oss
  • Bibliotek
  • NMBU-student
  • English site
  • Logg inn
  • Studier
  • Forskning
  • Om NMBU
Meny
Finn ansatte     Nynorsk versjon English version
Svein Jarle Horn
  • Professor
    • Fakultet for kjemi, bioteknologi og matvitenskap
+4767232488
svein.horn@nmbu.no
Picture of Svein Jarle Horn

Rediger min side

Professor in Bioprocess Technology. Biomass, biorefining, enzyme technology, biogas, fermentation Research group: https://www.nmbu.no/en/faculty/kbm/research/groups/btb

  • Publikasjoner
    Mine publikasjoner i Cristin

    [1] Jetten, M.S.M., Horn, S.J., van Loosdrecht, M.C.M., 1997, Towards a more sustainable municipal wastewater treatment system. Water Science and Technology, 35(9), 171-180.

     

    [2] Moen, E., Horn, S., Ostgaard, K., 1997, Biological degradation of Ascophyllum nodosum. Journal of Applied Phycology, 9(4), 347-357.

     

    [3] Moen, E., Horn, S., Ostgaard, K., 1997, Alginate degradation during anaerobic digestion of Laminaria hyperborea stipes. Journal of Applied Phycology, 9(2), 157-166.

     

    [4] Horn, S.J., Moen, E., Ostgaard, K., 1999, Direct determination of alginate content in brown algae by near infra-red (NIR) spectroscopy. Journal of Applied Phycology, 11(1), 9-13.

     

    [5] Horn, S.J., Aasen, I.M., Ostgaard, K., 2000, Ethanol production from seaweed extract. Journal of Industrial Microbiology & Biotechnology, 25(5), 249-254.

     

    [6] Horn, S.J., Aasen, I.M., Ostgaard, K., 2000, Production of ethanol from mannitol by Zymobacter palmae. Journal of Industrial Microbiology & Biotechnology, 24(1), 51-57.

     

    [7] Horn, S.J., Ostgaard, K., 2001, Alginate lyase activity and acidogenesis during fermentation of Laminaria hyperborea. Journal of Applied Phycology, 13(2), 143-152.

     

    [8] Horn, S.J., Eijsink, V.G.H., 2004, A reliable reducing end assay for chito-oligosaccharides. Carbohydrate Polymers, 56(1), 35-39.

     

    [9] Aspmo, S.I., Horn, S.J., Eijsink, V.G.H., 2005, Enzymatic hydrolysis of Atlantic cod (Gadus morhua L.) viscera. Process Biochemistry, 40(5), 1957-1966.

     

    [10] Hoell, I.A., Klemsdal, S.S., Vaaje-Kolstad, G., Horn, S.J., Eijsink, V.G., 2005, Overexpression and characterization of a novel chitinase from Trichoderma atroviride strain P1. Biochim Biophys Acta, 1748(2), 180-90.

     

    [11] Sikorski, P., Stokke, B.T., Sorbotten, A., Varum, K.M., Horn, S.J., Eijsink, V.G., 2005, Development and application of a model for chitosan hydrolysis by a family 18 chitinase. Biopolymers, 77(5), 273-85.

     

    [12] Sorbotten, A., Horn, S.J., Eijsink, V.G., Varum, K.M., 2005, Degradation of chitosans with chitinase B from Serratia marcescens. Production of chito-oligosaccharides and insight into enzyme processivity. Febs J, 272(2), 538-49.

     

    [13] Aspmo, S.I., Horn, S.J., Eijsink, V.G.H., 2005, Use of hydrolysates from Atlantic cod (Gadus morhua L.) viscera as complex nitrogen source for lactic acid bacteria. FEMS Microbiology Letters, 248(1), 65-68.

     

    [14] Aspmo, S.I., Horn, S.J., Eijsink, V.G.H., 2005, Hydrolysates from Atlantic cod (Gadus morhua L.) viscera as components of microbial growth media. Process Biochemistry, 40(12), 3714-3722.

     

    [15] Horn, S.J., Aspmo, S.I., Eijsink, V.G.H., 2005, Growth of Lactobacillus plantarum in media containing hydrolysates of fish viscera. Journal of Applied Microbiology, 99(5), 1082-1089

     

    [16] Vaaje-Kolstad, G., Horn, S.J., van Aalten, D.M.F.,  Synstad, B., Eijsink, V.G.H., 2005, The non-catalytic chitin-binding protein CBP21 from Serratia marcescens is essential for chitin degradation. Journal of Biological Chemistry, 280 (31), 28492-28497.

     

    [17] Horn, S.J., Sørlie, M., Vaaje-Kolstad, G., Norberg, A.L., Synstad, B., Vårum, K.M., Eijsink, V.G.H., 2006, Comparative studies of chitinases A, B and C from Serratia marcescens. Biocatalysis and Biotransformation, 24 (1/2), 39-53.

     

    [18] Horn, S.J., Sørbotten, A., Synstad, B., Sikorski, P., Sørlie, M., Vårum, K.M., Eijsink, V.G.H., 2006, Endo/exo mechanism and processivity of three family 18 chitinases that make up the chitinolytic machinery of Serratia marcescens. Febs Journal, 273, 491-503.

     

    [19] Sikorski, P., Sørbotten, A., Horn, S.J., Eijsink, V.G.H., Vårum, K.M, 2006, Serratia marcescens chitinases with “tunnel-shaped” substrate-binding grooves show endo-activity and different degrees of processivity during enzymatic  hydrolysis of chitosan,  Biochemistry, 45, 9566-9574.

     

    [20] Horn, S.J., Sikorski, P, Cederkvist, J.B., Vaaje-Kolstad, G., Sørlie, M., Synstad, B., Vriend, G., Vårum, K.M., Eijsink, V.G.H., 2006, Costs and benefits of processivity in enzymatic degradation of recalcitrant polysaccharides. PNAS, 103 (48), 18089-18094.

     

    [21] Horn, S.J., Aspmo, S.I., Eijsink, V.G.H., 2007, Evaluation of different cod viscera fractions and their seasonal variation used in a growth medium for lactic acid bacteria. Enzyme and Microbial Technology, 40, 1328-1334.

     

    [22] Krokeide, I.M., Synstad, B., Gåseidnes, S., Horn, S.J., Eijsink, V.G.H., Sørlie, M., 2007, Natural Substrate Assay for Chitinases Using High Performance Liquid Chromatography: A Comparison with Existing Assays. Analytical biochemistry, 363, 128-134.

     

    [23] Synstad, B., Vaaje-Kolstad, G., Cederkvist, F.H.,  Saua, S.F., Horn, S.J, Eijsink, V.G.H., Sørlie, M., 2008, Natural Expression and characterization of endochitinase C from Serratia marcescens BJL200 and its purification by a one-step general chitinase purification method. Bioscience, Biotechnology, and Biochemistry. 72 (3), 715-723.

     

    [24] Treimo, J.R., Eijsink, V.G.H., Horn, S.J., 2008, Enzymatic solubilization of proteins in brewer’s spent grain. J. Agric. Food Chem,.56 (13), 5359-5365.

     

    [25] Eijsink, V.G.H., Vaaje-Kolstad, G., Vårum, K. M.,  Horn, S.J., 2008, Towards new enzymes for biofuels: lessons from chitinase research . Trends in Biotechnology, 26 (5), 228-235.

     

    [26] Treimo, J., Westereng, B., Horn, S.J., Forssell, P., Robertson, J., Faulds, C., Waldron, K., Buchert, J., Eijsink, V.G.H., 2009, Enzymatic solubilization of brewers’ spent grain by combined action of carbohydrases and peptidases. J. Agric. Food Chem., 57, 3316-3324.

     

    [27] Zakariassen, H., Aam, B.B., Horn, S.J., Vårum, K.M., Sørlie, M., Eijsink, V.G.H., 2009, Aromatic residues in the catalytic center of Chitinase A from Serratia marcescens affect processivity, enzyme activity and biomass-converting efficiency. Journal of Biological Chemistry, 284, 10610-10617.

     

    [28] Horn, S.J., Eijsink, V.G.H., 2010, Enzymatic hydrolysis of steam exploded hardwood using short processing times. Bioscience, Biotechnology, and Biochemistry, 74 (6), 1157-1163.

     

    [29] Vaaje-Kolstad, G., Westereng, B., Horn, S.J., Liu, Z., Zhai, H., Sørlie, M., and Eijsink, V.G.H., 2010, An Oxidative Enzyme Boosting the Enzymatic Conversion of Recalcitrant Polysaccharides. Science, 330 (6001), 219-222.

     

    [30] Horn, S.J., Nguyen, Q.D., Westereng, B., Nilsen, P., Eijsink, V.G.H., 2011, Screening of steam explosion of wheat straw for enzymatic hydrolysis and ethanol fermentation, Biomass and Bioenergy, 35 (12), 4879-4886.

     

    [31] Blomqvist, J., South, E., Tiukova, L., Haddad, Momeni, M.H., Hansson, H., Ståhlberg, J., Horn, S.J., Schnürer, J., Passoth, V., 2011, Fermentation of lignocellulosic hydrolysate by the alternative industrial ethanol yeast Dekkera bruxellensis, Letters in Applied Microbiology, 53 (1), 73-78.

     

    [32] Horn, S.J., Estevez. M.M., Nielsen, H.K., Linjordet, R., Eijsink, V.G.H., 2011, Biogas production and saccharification of Salix pretreated at different steam explosion conditions, Bioresource Technology, 102 (17), 7932-7936.

     

    [33] Forsberg, Z., Vaaje-Kolstad, G., Westereng, B., Bunæs, A.C., Stenstrøm, Y., MacKenzie, A., Sørlie, M., Horn, S.J., Eijsink, V.G.H., 2011, Cleavage of cellulose by a CBM33 protein, Protein Science, 20 (9), 1479-1483.

     

    [34] Westereng, B, Ishida, T, Vaaje-Kolstad, G, Wu, M., Eijsink, V.G.H., Igarashi, K, Samejima, M., Stålberg, J., Horn, S.J., Sandgren , M. 2011, The putative endoglucanase PcGH61D from Phanerochaete chrysosporium is a metal-dependent oxidative enzyme that cleaves cellulose, PLoS ONE, 6(11): e27807.

     

    [35] Vivekanand, V., Eijsink, V.G.H., Horn, S.J., 2012, Biogas production from the brown seaweed Saccharina latissima: thermal pretreatment and co-digestion with wheat straw, Journal of Applied Phycology, 24 (5), 1295-1301.

     

    [36] Schütt, F., Westereng, B., Horn, S.J., Puls, J., Saake, B., 2012, Steam refining as an alternative to steam explosion, Bioresource Technology, 111, 476-481.

     

    [37] Horn, S.J., Sørlie, M., Vårum, K.M., Väljamäe, P., Eijsink, V.G.H., 2012, Measuring processivity, Methods in Enzymology, 510, 69-96.

     

    [38] Horn, S.J., Vaaje-Kolstad, G., Westereng, B., Eijsink, V.G.H., 2012, Novel enzymes for the degradation of cellulose, Biotechnology for Biofuels, 5, 45.

     

    [39] Vivekanand,V., Ryden,P., Horn, S.J., Tapp, H.S., Wellnerd, N., Eijsink, V.G.H., Waldron, K.W., 2012, Impact of steam explosion on biogas production from rape straw in relation to changes in chemical composition, Bioresource Technology, 123, 608-615.

     

    [40] Payne, C.M., Baban, J., Horn, S.J., Backe, P.H., Arvai, A.S., Dalhus, B., Bjørås, M., Eijsink, V.G.H., Sørlie,  M., Beckham, G.T., Vaaje-Kolstad, G., 2012, Hallmarks of processivity in glycoside hydrolases from crystallographic and computational studies of the Serratia marcescens chitinases, Journal of Biological Chemistry, 287, 36322-36330.

     

    [41] Westereng, B., Agger, J.W., Horn, S.J., Vaaje-Kolstad, G., Aachmann, F.L., Stenstrøm, Y.H., Eijsink, V.G.H., 2013, Efficient separation of oxidized cello-oligosaccharides generated by cellulose degrading lytic polysaccharide monooxygenases, Journal of Chromatography A, 1271, 144-152.

     

    [42] Pope, P.B., Vivekanand, V., Eijsink, V.G.H., Horn, S.J., 2013, Microbial Community Structure in a Biogas Digester Utilizing the Marine Energy Crop Saccharina latissima, 3 Biotech, 3, 407-414.

     

    [43] Vivekanand, V., Olsen, E.F., Eijsink, V.G.H., Horn, S.J., 2013, Effect of different steam explosion conditions on methane potential and enzymatic saccharification of birch, Bioresource Technology, 127, 343-349.

     

    [44] Wu, M., Beckham, G.T., Larsson, A.M., Ishida, T., Kim, S., Crowley, M.F., Payne, C.M., Horn, S.J., Westereng, B., Ståhlberg, J., Eijsink, V.G.H., Sandgren, M., 2013, Structural and computational characterization of the lytic polysaccharide monooxygenase GH61D from the basidiomycota fungus Phanerochaete chrysosporium, Journal of Biological Chemistry, 288, 12828-12839.

     

    [45] Vaaje-Kolstad, G., Horn, S.J., Sørlie, M., Eijsink, V.G.H., 2013,The chitinolytic machinery of Serratia marcescens – a model system for enzymatic degradation of recalcitrant polysaccharides, FEBS Journal, 280, 3028-3049.

     

    [46] Risberg, K., Suna, L., Levén, L., Horn, S.J., Schnürer, A., 2013, Biogas production from wheat straw and manure – impact of pretreatment and process operating parameters. Bioresource Technology,149, 232-237.

     

    [47] Tiukova, I., de Barros Pita, W., Sundell, D., Haddad momeni, M., Horn, S.J., Ståhlberg, J., de Morais Jr., M.A., Passoth, V., 2014, Adaptation of Dekkera bruxellensis to lignocellulose-based substrate. Biotechnol Appl Biochem, 61 (1), 51-57.

     

    [48] Agger, J. W., Eijsink, V.G.H., Horn, S.J., 2014, On the determination of water content in biomass. Bioenerg. Res., 7, 442-449.

     

    [49] Isaksen, T., Westereng, B., Aachmann, F.L., Agger, J.W., Ludwig, R., Haltrich, D., Eijsink, V.G.H., Horn, S.J., 2014, A C4-oxidizing lytic polysaccharide monooxygenase cleaving both cellulose and cello-oligosaccharides, 289, 2632-2642.

     

    [50] Ryden, P., Gautier, A., Wellner, N., Tapp, H.S., Horn, S.J., Eijsink, V.G.H., Waldron, K.W., 2014, Changes in the composition of the main polysaccharide groups of oil seed rape straw following steam explosion and saccharification. Biomass and Bioenergy, 61, 121-130.

     

    [51] Vivekanand, V., Olsen, E.F., Eijsink, V.G.H., Horn, S.J., 2014, Methane potential and enzymatic saccharification of steam exploded bagasse. BioResources, 9(1), 1311-1324.

     

    [52] Agger, J.W., Isaksen, T., Várnai, A., Vidal-Melgosa, S., Willats, W.G.T., Ludwig, R., Horn, S.J., Eijsink, V.G.H., Westereng, B., 2014, Discovery of LPMO activity on hemicelluloses shows the importance of oxidative processes in plant cell wall degradation. PNAS, 111(17), 6287-6292.

     

    [53] Estevez. M.M., Linjordet, R., Horn, S.J., Morken, J., 2014, Improving nutrient fixation and dry matter content of an ammonium-rich anaerobic digestion effluent by struvite formation and clay adsorption. Water Science and Technology, 70(2):337-344.

     

    [54] Bauer, A., Lizasoain, J., Theuretzbacher, F., Agger, J.W., Rincón, M., Menardo, S., Saylor, M.K., Enguidanos, R., Nilsen, P.J., Gronauer, A., Horn, S.J., 2014, Steam explosion pretreatment for enhancing biogas production of late harvested hay. Bioresource Technology, 166, 403-410.

     

    [55] Hagen, L.H., Vivekanand, V., Linjordet, R., Pope, P.B., Eijsink, V.G.H., Horn, S.J., 2014, Microbial community structure and dynamics during co-digestion of whey and cow manure in CSTR systems. Bioresource Technology, 171: 350-359.

     

    [56] Solli, L., Håvelsrud, O.E., Horn, S.J., Rike, A.G., 2014, Metagenomic characterization of the microbial communities in parallel biogas reactors co-digesting fish ensilage and manure. Biotechnology for Biofuels, 7, 146.

     

    [57] Hagen, L.H., Vivekanand, V., Pope, P.B., Eijsink, V.G.H., Horn, S.J., 2015, The effect of storage conditions on microbial community composition and biomethane potential in a biogas starter culture. Applied Microbiology and Biotechnology, 99(13):5749-5761.

     

    [58] Theuretzbacher, F., Blomqvist, J., Lizasoain, J., Klietz, L., Potthast, A., Horn, S.J., Nilsen, P.J., Gronauer, A., Passoth, V., Bauer, A., 2015, The effect of a combined biological and thermo-mechanical pretreatment of wheat straw on energy yields in coupled ethanol and methane generation. Bioresource Technology, 194, 7-13.

     

    [59] Müller, G., Várnai, A., Johansen, K.S., Eijsink, V.G.H., Horn, S.J., 2015, Harnessing the potential of LPMO-containing cellulase cocktails poses new demands on processing conditions. Biotechnology for Biofuels, 8,187.

     

    [60] Solli, L., Horn, S.J., Schnürer, A., 2015, Population dynamics of acetate oxidizing bacteria and methanogens during anaerobic digestion of fish waste. Biomass and Bioenergy, under review.

     

    [60] Sharma, S., Horn, S.J., 2016, Enzymatic saccharification of brown seaweed for production of fermentable sugars. Bioresource Technology, 213, 155-161.

     

    [61] Zamanzadeh, M., Hagen, L.H., Svensson, K., Linjordet, R., Horn, S.J., 2016, Anaerobic digestion of food waste - effect of recirculation and temperature on performance and microbiology. Water Research, 96, 246–254.

     

    [62] Frank, J. A., Arntzen, M. Ø., Sun, L., Hagen, L. H., McHardy, A. C., Horn, S. J., Eijsink, V.G.H,  Schnürer, A., Pope, P. B., 2016, Novel Syntrophic Populations Dominate an Ammonia-Tolerant Methanogenic Microbiome. mSystems, 1(5), e00092-16.

     

    [63] Müller, G., Kalyani, D.C., Horn, S.J., 2017, LPMOs in cellulase mixtures affect fermentation strategies for lactic acid production from lignocellulosic biomass. Biotechnology and Bioengineering, 114: 552–559.

     

    [64] Hagen, L. H., Frank, J. A., Zamanzadeh, M., Eijsink, V. G., Pope, P. B., Horn, S. J., & Arntzen, M. Ø., 2017. Quantitative metaproteomics highlight the metabolic contributions of uncultured phylotypes in a thermophilic anaerobic digester. Applied and Environmental Microbiology, Applied and Environmental Microbiology, 83:e01955-16.

     

    [65] Svensson, K, Kjørlaug, O, Horn, SJ, Agger, JW, 2017, Comparison of approaches for organic matter determination in relation to expression of bio-methane potentials. Biomass and Bioenergy, 100: 31-38.

     

    [66] Chylenski, P., Forsberg, Z., Ståhlberg, J., Várnai, A., Lersch, M., Bengtsson, O. Sæbø, S., Horn, S.J., Eijsink, V.G.H. (2017). Development of minimal enzyme cocktails for hydrolysis of sulfite-pulped lignocellulosic biomass. Journal of Biotechnology, 246, 16-23.

     

    [67] Kalyani, D.C., Zamanzadeh, M., Müller, G., Horn, SJ, 2017, Biofuel production from birch wood by combining high solid loading simultaneous saccharification and fermentation and anaerobic digestion, Applied Energy, 193: 210-219.

     

    [68] Zhanliang Liu, Laurie M. Gay, Tina Tuveng, Jane Wittrup Agger, Bjorge Westereng, Geir Mathiesen, Svein Horn, Gustav Vaaje-Kolstad, Daan M. F. Van Aalten, and Vincent Eijsink, 2017, Structure and function of a broad-specificity chitin deacetylase from Aspergillus nidulans FGSC A4, Scientific Reports, 7:1746.

     

    [69] Kalyani, D.C., Fakin, T., Horn, SJ, Tschentscher, R., 2017, Valorisation of woody biomass by combining enzymatic saccharification and pyrolysis. Green Chemistry, 19, 3302-3312.

     

    [70] Kosa, G., Kohler, A., Tafintseva, V., Zimmermann, B., Forfang, K., Afseth, N. K., Tzimorotas, D., Vuoristo, K.S., Horn, S.J., Mounier, J., Shapaval, V., 2017, Microtiter plate cultivation of oleaginous fungi and monitoring of lipogenesis by high-throughput FTIR spectroscopy. Microbial cell factories, 16(1), 101.

     

    [71] Chylenski, P., Petrović, D. M., Müller, G., Dahlström, M., Bengtsson, O., Lersch, M, Siika-aho, M., Horn, SJ., Eijsink, V.G.H, 2017, Enzymatic degradation of sulfite-pulped softwoods and the role of LPMOs, Biotechnology for Biofuels, 10, 177.

     

    [72] Aarum, I., Devle, H., Ekeberg, D., Horn, S. J., Stenstrøm, Y., 2017, The effect of flash pyrolysis temperature on compositional variability of pyrolyzates from birch lignin. Journal of Analytical and Applied Pyrolysis, 127, 211-222.

     

    [73] Ravanal, M. C., Sharma, S., Gimpel, J., Reveco-Urzua, F. E., Øverland, M., Horn, S. J., & Lienqueo, M. E., 2017, The role of alginate lyases in the enzymatic saccharification of brown macroalgae, Macrocystis pyrifera and Saccharina latissima. Algal Research, 26, 287-293.

     

    [74] Bissaro, B., Røhr, Å. K., Müller, G., Chylenski, P., Skaugen, M., Forsberg, Z., Horn, S.J., Vaaje-Kolstad, G., Eijsink, V. G. H. (2017). Oxidative cleavage of polysaccharides by monocopper enzymes depends on H2O2. Nature chemical biology, 13, 1123-1128.

     

    [75] Greses, S., Gaby, J. C., Aguado, D., Ferrer, J., Seco, A., Horn, S. J., 2017, Microbial community characterization during anaerobic digestion of Scenedesmus spp. under mesophilic and thermophilic conditions. Algal Research, 27, 121-130.

     

    [76] Vivekanand, V., Mulat, D. G., Eijsink, V. G., Horn, S. J., 2018, Synergistic effects of anaerobic co-digestion of whey, manure and fish ensilage. Bioresource technology, 249, 35-41.

     

    [77] Zamanzadeh, M., Hagen, L. H., Svensson, K., Linjordet, R., & Horn, S. J., 2017, Biogas production from food waste via co-digestion and digestion-effects on performance and microbial ecology. Scientific Reports, 7(1), 17664.

     

    [78] Gaby, J. C., Zamanzadeh, M., & Horn, S. J., 2017, The effect of temperature and retention time on methane production and microbial community composition in staged anaerobic digesters fed with food waste. Biotechnology for Biofuels, 10, 302.

     

    [79] Svensson, K., Kjørlaug, O., Higgins, M. J., Linjordet, R., & Horn, S. J., 2018, Post-anaerobic digestion thermal hydrolysis of sewage sludge and food waste: Effect on methane yields, dewaterability and solids reduction. Water Research, 132, 158-166

     

     

    [80] Mulat, D.G., Huerta, S.G., Kalyani, D., & Horn, S. J., 2018, Enhancing methane production from lignocellulosic biomass by combined steam-explosion pretreatment and bioaugmentation with cellulolytic bacterium Caldicellulosiruptor bescii. Biotechnology for Biofuels, 11, 19.

     

    [81] Solli, L., Schnürer, A.L., Horn, S.J., 2018, Process performance and population dynamics of ammonium tolerant microorganisms during co-digestion of fish waste and manure. Renewable Energy, 125, 529-536.

     

     

    [82] Mulat, D. G., Dibdiakova, J., & Horn, S. J. (2018). Microbial biogas production from hydrolysis lignin: insight into lignin structural changes. Biotechnology for biofuels, 11(1), 61.

     

    [83] Sharma, S., Neves, L., Funderud, J., Mydland, L. T., Øverland, M., & Horn, S. J. (2018). Seasonal and depth variations in the chemical composition of cultivated Saccharina latissima. Algal Research, 32, 107-112.

     

    [84] Dragicevic, I., Eich-Greatorex, S., Sogn, T. A., Horn, S. J., & Krogstad, T. (2018). Use of high metal-containing biogas digestates in cereal production-Mobility of chromium and aluminium. Journal of environmental management, 217, 12-22.

     

    [85] Gergely, (2018) Assessment of the scalability of a microtiter plate system for screening of oleaginous microorganisms. Applied Microbiology and Biotechnology, 102(11), 4915-4925.

     

    [86] Ida Aarum , Hanne Devle, Dag Ekeberg, Svein J. Horn, and Yngve Stenstrøm (2018) Characterization of Pseudo-Lignin from Steam Exploded Birch, ACS Omega, 3 (5), pp 4924–4931.

     

    [87] Sharma, S., Hansen, L. D., Hansen, J. Ø., Mydland, L. T., Horn, S. J., Øverland, M., Eijsink, V.G.H & Vuoristo, K. S. (2018). Microbial protein produced from brown seaweed and spruce wood as a feed ingredient. Journal of agricultural and food chemistry. 66 (31), 8328–8335.

     

    [88] Müller, G., Chylenski, P., Bissaro, B., Eijsink, V.G.H, & Horn, S.J. (2018). The impact of hydrogen peroxide supply on LPMO activity and overall saccharification efficiency of a commercial cellulase cocktail. Biotechnology for Biofuels, 11:209.

     

    [89] Lapeña, D., Vuoristo, K. S., Kosa, G., Horn, S. J., & Eijsink, V. G.H. (2018). A comparative assessment of enzymatic hydrolysis for valorization of different protein-rich industrial by-products. Journal of Agricultural and Food Chemistry. DOI: 10.1021/acs.jafc.8b02444.

  • Undervisning
    MVI280 Unit operations and process technology

     

    BIO335 Applied Biocatalysis and Biorefining

     

     

  • Forskning & prosjekt

    Prosjekter

    The BIOFEED project
    Develops novel salmon feed by integrated bioprocessing of non-food biomass

    Biogas from organic residues and livestock manure as a vehicle fuel
    The transport sector is responsible for about one third of the total emissions of greenhouse gases (GHG) in Norway. Thus one way of reducing the GHG emissions would be to substitute fossil fuels in the transport sector. The overall goal of this project is to maximize biogas yields to improve the role of biogas as a vehicle fuel.

    Sustainable biochar systems for a zero emission society (CAPTURE)
    The main objective of this project is to develop biochar systems as a tool for achieving a zero emission society by applying an interdisciplinary approach for development, assessment and implementation in agriculture and forestry.

    Forskningsprosjekter med nettside utenfor NMBU

    Bio4Fuels

    Forskningsområder

    Tema: 

    • Biovitenskap

    Spesialområder: 

    • Biogas processes
    • Enzymology
    • Fermentation

    Forskningsområder: 

    • Bioteknologi
  • Annet

    Research group

NMBU

  • Om NMBU
  • Studier
  • Forskning
  • Samarbeid
  • Sidekart
  • Personvern

Snarveier

  • Finn en ansatt
  • Beredskap / Vakt
  • Visuell profil
  • Bibliotek
  • Nyhetsbrev
  • Ledige stillinger

For studenter

  • Emnesøk
  • Canvas
  • Studenttinget
  • Studentweb
  • Studentliv
  • SiÅs

For forskere

  • Finansiering
  • Utdanning
  • EUs rammeprogram
  • Rådgivning og juss
  • Forske i utlandet

For ansatte

  • Verktøy og tjenester
  • Læringssenteret
  • Interne nettsider
  • Kompetanse
  • Webmail

For media

  • Aktuelt
  • Pressemeldinger PhD
  • Ekspertlister
  • Presserom
  • Offentlig journal
  • Byggeprosjekter

NMBU - Norges miljø- og biovitenskapelige universitet

Kontakt oss

Telefon 67 23 00 00

Faks 67 23 06 91

E-post post@nmbu.no

Mer kontaktinfo

Besøk oss

Campus Ås

Universitetstunet 3

1433 Ås

Kart: Mazemap / (pdf)

Campus Adamstuen

Ullevålsveien 72

0454 Oslo

Kart (pdf)

Følg oss
Facebook
Twitter
Instagram