Hopp til hovedinnhold
  1. Hjem
  • Kontakt oss
  • Bibliotek
  • NMBU-student
  • English site
  • Logg inn
  • Studier
  • Forskning
  • Om NMBU
Meny
Finn ansatte     Nynorsk versjon English version
Boris Zimmermann
  • Forsker
    • Fakultet for realfag og teknologi
    • Institutt for fysikk
boris.zimmermann@nmbu.no
Picture of Boris Zimmermann

Rediger min side

Boris Zimmermann is a researcher in Biospectroscopy and Data Modeling Group at RealTek/NMBU. He has research expertise in organic and physical chemistry, spectroscopy and data analysis, as well as in conducting biospectroscopy studies involving biotechnology, biology, ecology and medical research . Currently, his main activity has been development and optimization of experimental and data analysis methodologies for characterisation, identification and classification of biological samples, as well as process monitoring in biotechnology.

Biospectroscopy and Data Modeling Group

ORCID: orcid.org/0000-0001-5046-520X
Scopus Author ID: 56382056900
ResearcherID: N-8297-2014

 

  • Publikasjoner
    Liste med publikasjoner fra min forskning. (Cristin)

    Full list:

    Scopus Author ID: 56382056900
    ResearcherID: N-8297-2014

    Selected publications:

    1. Slaný O., Klempová T., Shapaval V., Zimmermann B., Kohler A., Čertík M. (2020) Biotransformation of Animal Fat-By Products into ARA-Enriched Fermented Bioproducts by Solid-State Fermentation of Mortierella alpina. Journal of Fungi 6: 236.
    2. Dzurendova S., Zimmermann B., Tafintseva V., Kohler A., Horn S.J., Shapaval V. (2020) Metal and Phosphate Ions Show Remarkable Influence on the Biomass Production and Lipid Accumulation in Oleaginous Mucor circinelloides. Journal of Fungi 6: 260.
    3. Dzurendova S., Zimmermann B., Tafintseva V., Kohler A., Ekeberg D., Shapaval V. (2020) The influence of phosphorus availability and the nature of nitrogen on the biomass production and accumulation of lipids in oleaginous Mucoromycota fungi. Applied Microbiology and Biotechnology 104: 8065.
    4. Kohler A., Heitmann Solheim J., Tafintseva V., Zimmermann B., Shapaval V. (2020) Model-Based Pre-Processing in Vibrational Spectroscopy. Comprehensive Chemometrics, Second Edition 83.
    5. Dzurendova S., Zimmermann B., Kohler A., Tafintseva V., Slany O., Certik M., Shapaval V. (2020) Microcultivation and FTIR spectroscopy-based screening revealed a nutrient-induced co-production of high-value metabolites in oleaginous Mucoromycota fungi. PLoS ONE 15: e0234870.
    6. Diehn S., Zimmermann B., Tafintseva V., Bağcıoğlu M., Kohler A., Ohlson M., Fjellheim S., Kneipp J. (2020) Discrimination of grass pollen of different species by FTIR spectroscopy of individual pollen grains. Analytical and Bioanalytical Chemistry 412: 6459.
    7. Kenđel A., Zimmermann B. (2020) Chemical Analysis of Pollen by FT-Raman and FTIR Spectroscopies. Frontiers in Plant Science 11: 352.
    8. Diehn S., Zimmermann S., Tafintseva V., Seifert S., Bagcioglu M., Ohlson M., Weidner S., Fjellheim S., Kohler A., Kneipp J. (2020) Combining chemical information from grass pollen in multimodal characterization. Frontiers in Plant Science 10: 1788.
    9. Muthreich F., Zimmermann B., Birks H.J.B., Vila‐Viçosa C.M., Seddon A.W.R. (2020) Chemical variations in Quercus pollen as a tool for taxonomic identification: Implications for long‐term ecological and biogeographical research. Journal of Biogeography 47: 1298.
    10. Seddon A.W.R., Festi D., Robson T.M., Zimmermann B. (2019) Fossil pollen and spores as a tool for reconstructing ancient solar-ultraviolet irradiance received by plants: an assessment of prospects and challenges using proxy-system modelling. Photochemical and Photobiological Sciences 18: 275.
    11. Innes S.N., Arve L.E., Zimmermann B., Nybakken L., Melby T.I., Solhaug K.A., Olsen J.E., Torre S. (2019) Elevated air humidity increases UV mediated leaf and DNA damage in pea (Pisum sativum) due to reduced flavonoid content and antioxidant power. Photochemical and Photobiological Sciences 18: 387.
    12. Kosa G., Zimmermann B., Kohler A., Ekeberg D., Afseth N.K., Mounier J., Shapaval V. (2018) High-throughput screening of Mucoromycota fungi for production of low- and high value lipids. Biotechnology for Biofuels 11:66.
    13. Guoa S., Kohler A., Zimmermann B., Heinke R., Stöckel S., Rösch P., Popp J., Bocklitz T. (2018) EMSC based model transfer for Raman spectroscopy in biological applications. Analytical Chemistry 90: 9787.
    14. Diehn S., Zimmermann B., Bağcıoğlu M., Seifert S., Kohler A., Ohlson M., Fjellheim S., Weidner S., Kneipp J. (2018) Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) shows adaptation of grass pollen composition. Scientific Reports 8: 16591.
    15. Kosa G., Vuoristo K., Horn S.J., Zimmermann B., Afseth N.K., Kohler A., Shapaval V. (2018) Assessment of the scalability of a microtiter plate system for screening of oleaginous microorganisms. Applied Microbiology and Biotechnology 102: 4915.
    16. Zimmermann B. (2018) Chemical characterization and identification of Pinaceae pollen by infrared microspectroscopy. Planta 247: 171.
    17. Blümel R., Lukacs R., Zimmermann B., Bağcıoğlu M., Kohler A. (2018) Observation of Mie ripples in the synchrotron FTIR spectra of spheroidal pollen grains. Journal of the Optical Society of America A 35: 1769.
    18. Zimmermann B. (2017) Chemical characterization and identification of Pinaceae pollen by infrared microspectroscopy. Planta in press. DOI: 10.1007/s00425-017-2774-9
    19. Kosa G., Kohler A., Tafintseva V., Zimmermann B., Forfang K., Afseth N.K., Tzimorotas D., Vuoristo K.S., Horn S.J., Mounier J., Shapaval V. (2017) Microtiter plate cultivation of oleaginous fungi and monitoring of lipogenesis by high-throughput FTIR spectroscopy. Microbial Cell Factories 16: 101.
    20. Forfang, K., Zimmermann B., Kosa, G. Kohler A., Shapaval V. (2017) FTIR spectroscopy for evaluation and monitoring of lipid extraction efficiency for oleaginous fungi. PLOS One, 12: e0170611.
    21. Bağcıoğlu M., Kohler A., Seifert S., Kneipp J., Zimmermann B. (2017) Monitoring of plant-environment interactions by high throughput FTIR spectroscopy of pollen. Methods in Ecology and Evolution 8: 870-880.
    22. Zimmermann B., Tafintseva V., Bağcıoğlu M., Høegh Berdahl M., Kohler A. (2016) Analysis of allergenic pollen by FTIR microspectroscopy. Analytical Chemistry 88: 803-811.
    23. Bağcıoğlu M., Zimmermann B., Kohler A. (2015) A multiscale vibrational spectroscopic approach for identification and biochemical characterization of pollen. PLOS One 10: e0137899.
    24. Zimmermann B., Bağcıoğlu M., Sandt C., Kohler A. (2015) Vibrational microspectroscopy enables chemical characterization of single pollen grains as well as comparative analysis of plant species based on pollen ultrastructure. Planta 242: 1237-1250.
    25. Zimmermann B., Tkalčec Z., Mešić A., Kohler A. (2015) Characterizing aeroallergens by infrared spectroscopy of fungal spores and pollen. PLOS One 10: e0124240.
    26. Lukacs R., Blümel R., Zimmermann B., Bağcıoğlu M., Kohler A. (2015) Recovery of absorbance spectra of micrometer-sized biological and inanimate particles. Analyst 140: 3273-3284.
    27. Zimmermann B., Gembarovska D., Baranović G. (2015) Experimental and theoretical study of the cation binding properties of macrocyclic dehydrodibenzopyrido[15]annulenes. Spectrochim. Acta A 137: 730-739.
    28. Plodinec M., Gajović A., Iveković D., Tomašić N., Zimmermann B., Macan J., Haramina T., Su D.S., Willinger M. (2014) Study of thermal stability of (3-aminopropyl)trimethoxy silane-grafted titanate nanotubes for application as nanofillers in polimers. Nanotechnology; 25: 435601.
    29. Zimmermann B., Kohler A. (2014) Infrared spectroscopy of pollen identifies plant species and genus as well as environmental conditions. PLOS One 9: e95417.
    30. Zimmermann B., Kohler A. (2013) Optimizing Savitzky-Golay parameters for improving spectral resolution and quantification in infrared spectroscopy. Appl. Spectrosc. 67: 892-902.
    31. Zimmermann B., Baranović G. (2011) Thermal analysis of paracetamol polymorphs by FT-IR spectroscopies. J. Pharm. Biomed. Anal. 54: 295-302.
    32. Zimmermann B. (2010) Characterization of pollen by vibrational spectroscopy. Appl. Spectrosc. 64: 1364-1373.
    33. Zimmermann B., Vrsaljko D. (2010) IR spectroscopy based thermal analysis of polymers. Polym. Test. 29: 849-856.
    34. Gredičak M., Matanović I., Zimmermann B., Jerić I. (2010) Bergman cyclization of acyclic amino acid-derived enediynes leads to the formation of 2, 3-dihydro-benzo[f]isoindoles. J. Org. Chem. 75: 6219-6228.
  • Forskning & prosjekt

    Prosjekter

    PHOTONFOOD - Flexible Mid-Infrared Photonic Solution for Rapid Farm-to-Fork Sensing of Food Contaminants
    The PHOTONFOOD project will develop a portable solution for detecting microbial and chemical contamination in food.

    LipoFungi
    Bioconversion of low-cost fat materials into high-value PUFA-Carotenoid-rich biomass (LipoFungi).

    Forskningsprosjekter med nettside utenfor NMBU

    Pollen Chemistry as the Next Generation Tool in Palaeoecological Research – Theory, Methods and Applications
    Plant Phenotyping by Vibrational Spectroscopy of Pollen
    Phenotyping of flora of Svalbard by vibrational spectroscopy of pollen and seeds
    Combined FTIR and Raman analysis of pollen composition for studying plant adaptation to environmental changes

    Forskningsområder

    Tema: 

    • Miljø
    • Planter
    • Teknologi
  • Annet & CV

    Projects:

    FP7-PIEF 2012
    Photo
    .

    Pollen - Plant Phenotyping by Vibrational Spectroscopy of Pollen

    FP7-PEOPLE-2012-IEF - Marie-Curie Action: "Intra-European fellowships for career development" Nº. 328289

    Plant traits, in the form of observable morphological, biochemical and physiological features, relate directly to the functional and reproductive success of plants in their environments. For that reason, plant phenotyping is the cornerstone of botany and all plant related studies: from agronomy and forestry to ecology and global climate research. The project proposes to develop and standardise vibrational spectroscopy in combination with pattern recognition tools for pollen identification and biochemical characterization and to relate this phenotypic data to phylogenetic, biogeographical, and climate data. With this new method at hand a comparative study of several hundred plant species can be performed and the obtained data can be stored in a specially designed web-based spectral database. Exploring this unique spectral database with respect to biochemical variation among the range of species, climate and biogeography will lead to a novel understanding of the role of pollen in sexual reproduction of seed plants. The data will improve comprehension of plant-environment interactions, including long-term evolutionary adaptations as well as effects of short-term climate variations. The methodological advances and the established pollen spectral database will be further utilised in plant phenotyping, including studies of environmental and climate change. The proposed research will cover several hundred plant species, predominantly from the northern hemisphere, including the most important agricultural, forestry, floristry and allergenic plants.

    Published papers:

    1. Bağcıoğlu M.*, Zimmermann B., Kohler A. (2015) A multiscale vibrational spectroscopic approach for identification and biochemical characterization of pollen. PLOS One 10: e0137899.
    2. Zimmermann B.*, Bağcıoğlu M., Sandt C., Kohler A. (2015) Vibrational microspectroscopy enables chemical characterization of single pollen grains as well as comparative analysis of plant species based on pollen ultrastructure. Planta 242: 1237-1250.
    3. Zimmermann B.*, Tkalčec Z., Mešić A., Kohler A. (2015) Characterizing aeroallergens by infrared spectroscopy of fungal spores and pollen. PLOS One 10: e0124240.                          
    4. Lukacs R.*, Blümel R., Zimmermann B., Bağcıoğlu M., Kohler A. (2015) Recovery of absorbance spectra of micrometer-sized biological and inanimate particles. Analyst 140: 3273-3284.

     

     

    SSF-AFG 2014
    Photo
    .

    PollenSvalbard - Phenotyping of flora of Svalbard by vibrational spectroscopy of pollen and seeds

    Svalbard Science Forum - 2014 Arctic Field Grant Nº. 246125/E10; RiS 10113

    Due to unique habitat, plant populations of Svalbard present a perfect experimental pool for investigation of reproduction fitness and strategies in the extreme environment. The field study on Svalbard will cover sampling of pollen and seed of graminoids. Biochemical composition of pollen and seeds will be determined by vibrational spectroscopy in order to assess reproductive strategies of Svalbard’s plant populations.

     

     

    .

    PollenFTIR&Raman - Combined FTIR and Raman analysis of pollen composition for studying plant adaptation to environmental changes

    IS-DAAD – Norway-Germany research collaboration project Nº. 233941

    Collaboration: Humboldt University of Berlin and Norwegian University of Life Sciences

    Recent developments in highly sensitive spectrometers have paved the way for Fourier Transform Infrared Spectroscopy (FTIR) and Raman spectroscopy to become prominent low-cost and high-throughput methods for biochemical characterization of pollen samples. Both methods can provide simple, rapid, and comprehensive chemical analysis of pollen. Vibrational spectra of pollen contain specific signals of lipids, proteins, carbohydrates and water, and even some minor biochemical constituents of pollen, such as carotenoids, can be successfully measured by these techniques. In general the two spectroscopies are complementary, with the strong signals in the infrared spectrum of a sample corresponding to weak signals in the Raman and vice versa. Within the proposed research the influence of climate and geography on biochemical content of pollen will be estimated by comparing data of pollen samples collected in Germany and Norway. The research was based on pollen samples from Fagales plant order. These widespread species, such as Alnus (alder), Corylus (hazel), Betula (birch), and Quercus (oak), create huge amounts of wind-dispersed pollen grains that are strong allergens.

NMBU

  • Om NMBU
  • Studier
  • Forskning
  • Samarbeid
  • Sidekart
  • Personvern

Snarveier

  • Finn en ansatt
  • Beredskap / Vakt
  • Visuell profil
  • Bibliotek
  • Nyhetsbrev
  • Ledige stillinger

For studenter

  • Emnesøk
  • Canvas
  • Studenttinget
  • Studentweb
  • Studentliv
  • SiÅs

For forskere

  • Finansiering
  • Utdanning
  • EUs rammeprogram
  • Rådgivning og juss
  • Forske i utlandet

For ansatte

  • Verktøy og tjenester
  • Læringssenteret
  • Interne nettsider
  • Kompetanse
  • Webmail

For media

  • Aktuelt
  • Pressemeldinger PhD
  • Ekspertlister
  • Presserom
  • Offentlig journal
  • Byggeprosjekter

NMBU - Norges miljø- og biovitenskapelige universitet

Kontakt oss

Telefon 67 23 00 00

Faks 67 23 06 91

E-post post@nmbu.no

Mer kontaktinfo

Besøk oss

Campus Ås

Universitetstunet 3

1433 Ås

Kart: Mazemap / (pdf)

 

Følg oss
Facebook
Twitter
Instagram