Course code KJB200

KJB200 Biochemistry

Check for course changes due to the coronavirus outbreak on Canvas and StudentWeb.

Norsk emneinformasjon

Search for other courses here

Showing course contents for the educational year starting in 2020 .

Course responsible: Åsmund Røhr Kjendseth, Åsmund Røhr Kjendseth
ECTS credits: 10
Faculty: Faculty of Chemistry, Biotechnology and Food Science
Teaching language: NO
(NO=norsk, EN=Engelsk)
Limits of class size:
Teaching exam periods:
This course starts in Spring parallel. This course has teaching/evaluation in Spring parallel.
Course frequency: Annually
First time: 2004V
Course contents:

This course provides a broad introduction to biochemistry. The key to biochemistry is to understand how living organisms convert energy and mass (metabolism) and how this is regulated.

In course weeks 1-6, students will get an introduction to the central concepts of energy, structure and function and storage of biological information. By giving a thorough introduction to the different structures and properties of the building blocks and how building blocks are turned into proteins, fats, carbohydrates and DNA, the basis for understanding metabolism at a molecular level is laid. The focus is then directed towards cellular metabolism by highlighting the flow of energy in biological processes and their regulation. The last important topic is how the information stored in DNA is used to control metabolism, and how changes in DNA allow organisms to adapt to varying conditions.

Emphasis is placed on students being able to understand how biochemical processes are linked to the cycles of nature, especially those that affect the climate and stability of ecosystems, and that they should be able to draw parallels to challenges related to achieving the UN's sustainability goals.

In course weeks 1-6, parts of the teaching will be activity-based. The activity-based teaching will be focused on problem solving and the use of digital aids that can increase understanding about biochemical issues (for example visualization of biomolecules).

In course week 7-12, the teaching is carried out as project-based group work. Everyone will work on a total of 3 projects, each lasting two weeks. Each project must be completed and evaluated before the next project starts. The students are divided into smaller groups and will work together to solve the project tasks.

Course Week 13 is used to repeat the most important topics from course weeks 1-6 as well as summarize the project assignments.

Learning outcome:


After completing the course, the student should have an understanding of:

  • General principles on how energy and mass are converted in biochemical reactions
  • How central biomolecules such as proteins, carbohydrates, fats and DNA are built up and what functions and chemical properties they have
  • What enzymes are and how they catalyze biochemical reactions
  • How central biomolecules are metabolized in the body (metabolism/ cellular respiration)
  • How biochemical reactions are regulated and what homeostasis is
  • How biological membranes are constructed and how signals and molecules are transmitted across such barriers.
  • How information is stored as DNA and how organisms use this information.


After completing the course, the studente should have the ability to recognize biomolecules and understand energy transfer and genetic information storage. Students should have basic knowledge of how to use basic bioinformatic tools and to visualize molecules. The students should also be able to reflect and critically think within these topics, and be able to use the information to work with broad biochemistry related projects.

General competence:

After completing KJB200, students will have a general, biomolecular expertise and a general knowledge of metabolism and genetic information storage. This will make students ready for further courses in, for example, biochemistry, molecular biology, nutrition and natural chemistry.

Learning activities:
Lectures/ activities and individual study.
Teaching support:
CANVAS. Questions can be addressed to teachers. E-mail can be sent to course responsible.
- Cox & Nelson: Lehninger principles of biochemistry (7th edition).
General chemistry equivalent to KJM100.Organic chemistry equivalent to KJM110.
Recommended prerequisites:
  • Organic chemistry equivalent to KJM210.
  • Cell biology equivalent to BIO100.
Mandatory activity:

Short weekly tests the first 6 weeks.

Altogether 3 projects the next 6 weeks.


Continous assessment. It is required that all weekly exams in course weeks 1-6 are passed. The project assignments in course week 7-12 are assessed with the three grades "failed", "passed" and "excellent", and each is awarded a single grade. Student evaluation will be used to evaluate the project assignments. It is required that the student has been awarded the grade "pass" or better on all project assignments before the final examination.

The final grade is awarded on the basis of a digital exam (3.5 hours). The score from the digital exam is multiplied by the factor 1.1 before grading for those students who have been awarded "excellent" marks on 2 or 3 of the project assignments.

Nominal workload:
  • Lectures/activities: 36 hours
  • Project oriented activities: 36 hours
  • Individual study: 228 hours
Entrance requirements:
Special requirements in Science
Reduction of credits:
5 credits against KJB100
Type of course:

Week 1-6

6 hours of lectures and activities per week.

Week 7-12:

6 hours of project oriented activities per week

Week 13

6 hours of lectures and activities

An external examiner approves the examination questions and marks a minimum of 25 selected exam papers.
Allowed examination aids: A1 No calculator, no other aids
Examination details: Continuous exam: A - E / F