Course code TEL240

TEL240 Control Engineering and Automation

Norsk emneinformasjon

Search for other courses here

Showing course contents for the educational year 2016 - 2017 .

Course responsible: Pål Johan From
Teachers: Lars Grimstad, Pål Johan From
ECTS credits: 10
Faculty: Faculty of Science and Technology
Teaching language: NO
(NO=norsk, EN=Engelsk)
Teaching exam periods:
This course starts in Spring parallel. This course has teaching/evaluation in Spring parallel.
Course frequency: Annually
First time: Study year 2008-2009
Preferential right:
Machinery-, process- and product development, Industrial Economics (MP), Food Industrial Processes (MIP), Environmental physics and Alternative Energy, Nat. sciences (M-MP, M-IØ, M-MF).
Course contents:

Part 1 - Control engineering:

  • Introduction to control engineering (description of the process that is to be controlled, why control, basic principles of control theory, applications, terminology, use of symbols).
  • Necessary mathematical foundation and system theory for dynamical systems (differential equations, transfer functions).
  • Dynamics (1. and 2. order system, time delay, stability).
  • Feedback control. The PID-controller, choosing the control parameters and understanding the effects of changing these.
  • Feed-forward control.
  • The use of computer programs such as: MATLAB, SIMULINK and gneral programming for controling mechanical systems.
  • Non-linear control theory and Lyapunov stability.
  • Introduction to Laplace.

Part 2 - Automation:

  • Computers and their coupling to physical processes.
  • Brief overview of relevant sensors (measuring elements) and actuators.
  • Sampling of time-continuous measuring signals. AD- and DA-conversion (analogue-digital and vice versa). Analogue and digital (discrete) filtration.
  • Number representation used in computers. Logical functions and Boolean algebra.
  • Sequential, logical control.
  • Time-continuous control.

Laboratory exercises:

  • the use of commercial equipment of the following type: PC with I/O-card (Input/Output) and laboratory software.
Learning outcome:
Students should have acquired knowledge about and skills in applying systems theory to dynamical systems, different models for representation, calculation of time responses and analysis of dynamics. The students should also have knowledge about and skills in applying the most used methods for analysis and design of control systems, including the choice of a controller and choosing control parameters. Furthermore the students should have gained key knowledge about methods and be skilled in the use of computers and automated systems for measuring and controlling physical processes. Students will have gained an understanding of the many reasons for choosing automated processes as an alternative to the use of manual labour force.
Learning activities:
The course consists of lectures, exercises, computer exercises (the use of programs in analysis and design of control systems), simulations and laboratory work.
Teaching support:
The teacher is available for consultation in the lecturing period and supervises the practical exercises, and is otherwise available by e-mail and phone. An external teacher will usually be teaching this course, with technical assistanse from experts which are availlable at the institute.
Jan Tommy Gravdahl og Pål Johan From: Innføring i dynamikk og reguleringsteknikk.
FYS235 - Electronics/FYS230 - Electrical engineering, MATH113 - Linear algebra and linear differential equations, or basic electronics and mathematics at university level (Matrices, Differential equations and complex numbers, The Laplace transformation).
Recommended prerequisites:
TMP220-Mechatronics I: Macine elements and power systems. FYS103 - Measurement Techniques, Optics and Sensors.
Mandatory activity:
Mandatory work: written exercises, laboratory work.
All mandatory excercises and laboratory work must be approved. Final written exam.
Nominal workload:
Lectures, calculation exercises, lab. exercises and homework, approx. 300 hours.
Entrance requirements:
Special requirements in Science
Type of course:
Lectures, 4 hours per week. Laboratory work.
The external and internal examiner jointly prepare the exam questions and the correction manual. The external examiner reviews the internal examiner's examination results by correcting a random sample of candidate¿s exams as a calibration according to the Department's guidelines for examination markings.
Allowed examination aids: No calculator, no other aids
Examination details: One written exam: A - E / Ikke bestått