Vincent Eijsink

Vincent Eijsink

Professor

  • Faggruppe dekan

I am originally from the Netherlands, have worked at NMBU since 1993 and am currently Professor of Biochemistry (since 1997). I lead a research group called the "Protein Engineering and Proteomics" (PEP)  group and am a member of the Norwegian Academy of Science and Letters. My research group works with enzymes, proteins, microbiomes, microbiology, bioprocesses and industrial biotechnology. We work with both very basic and more applied issues.

For information about our research and our projects, do not click on the "Forskning & prosjekt" link but click HERE.

Click HERE (Pubmed) or HERE (Google Scholar) to view my publications.

I am currently a member of the University Board at NMBU and the Faculty Board at the Faculty of Chemistry, Biotechnology and Food Science.

 

    • Biotechnology
    • Biochemistry
    • Microbiology
    • Enzymology
  • Liste med publikasjoner fra min forskning. (Cristin)

    To get an overview over all disseminations, press the  Cristin link, above (usually not updated for the current year). To see our scientific publications, see PubMed or Google scholar.

    For information about our research and our projects do not click "Forskning & prosjekt" but look  HERE.

  • I contribute to courses in Experimental Biochemistry (KJB201), Protein Chemistry (KJB310), Proteomics (KJB320) and Applied Biocatalysis and Biorefining (BIO335)

  • Together with Gustav Vaaje-Kolstad, I lead a large research group with several members who have their own projects. Our research is primarily funded by the Research Council of Norway, the EU (Horizon & ERC) & the Novo Nordisk Foundation. We participate in several major initiatives and research centers, such as SFI-industrial biotechnology, FME-Bio4Fuels, SFI-Foods of Norway, and teh national infrastructure platforms NorBioLab (biorefining and enzymology) og NAPI (proteomics).

    For more information about the group, our research and our projects, please visit the group website, HERE.

    These publications give an impression of what we have been working with:

    Cost and benefits of processivity in enzymatic degradation of recalcitrant polysaccharides. S.J. Horn, P. Sikorski, J.B. Cederkvist, G. Vaaje-Kolstad, M. Sørlie, B. Synstad, G. Vriend, K.M. Vårum, V.G.H. Eijsink; Proc. Natl. Acad. Sci. USA 103 (2006) 18089-18094.

    An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides; G Vaaje-Kolstad, B Westereng, SJ Horn, Z Liu, H Zhai, M Sørlie, VGH Eijsink. Science, 330 (2010) 219-222.

    Optimization of steam explosion of wheat straw for enzymatic hydrolysis and ethanol fermentation. SJ Horn, QD Nguyen, B Westereng, VGH Eijsink; Biomass & Bioenergy 35 (2011) 4879-4886.

    Metagenomics of the Svalbard reindeer rumen microbiome reveals abundance of polysaccharide utilization loci. PB Pope, AK Mackenzie, AC McHardy, I Gregor, MA Sundset, W Smith, M Morrison, VGH Eijsink; PLoS One 2012;7(6):e38571.

    The chitinolytic machinery of Serratia marcescens - a model system for enzymatic degradation of recalcitrant polysaccharides; Vaaje-Kolstad G, Horn SJ, Sørlie M, Eijsink VGH; FEBS J., 280 (2013) 3028-3049.

    Discovery of LPMO activity on hemicelluloses shows the importance of oxidative processes in plant cell wall degradation; JW Agger, T Isaksen, A Várnai, SV Melgosa, WGT Willats, R Ludwig, SJ Horn, VGH Eijsink, B Westereng; Proc. Natl. Acad. Sci. USA 111 (2014) 6287-6292.

    Structural and functional characterization of a conserved pair of bacterial cellulose-oxidizing lytic polysaccharide monooxygenases; Z Forsberg, AK Mackenzie, M Sørlie, ÅK Røhr, R Helland, AS Arvai, G Vaaje-Kolstad, VGH Eijsink; Proc. Natl. Acad. Sci. USA, 111 (2014) 8446-8451.

    The effect of storage conditions on microbial community composition and biomethane potential in a biogas starter culture; LH Hagen, V Vivekanand, PB Pope, VGH Eijsink, SJ Horn; Applied Microbiology and Biotechnology 99 (2015) 5749-5761.

    Extracellular electron transfer systems fuel oxidative cellulose degradation; D Kracher, S Scheiblbrandner, AKG Felice, E Breslmayr, M Preims, K Ludwicka, D Haltrich, VGH Eijsink, R Ludwig; Science 352 (2016) 1098-1101.

    Structural diversity of lytic polysaccharide monooxygenases; G Vaaje-Kolstad, Z Forsberg, JSM Loose, B Bissaro, VGH Eijsink. Curr. Opin. Struct. Biol. 44 (2017) 67-76.

    Development of minimal enzyme cocktails for hydrolysis of sulfite-pulped lignocellulosic biomass. P Chylenski, Z Forsberg, J Ståhlberg, M Lersch, O Bengtsson, S Sæbø, SJ Horn, VGH Eijsink. J Biotechnol. 246 (2017) 16-23.

    Development of enzyme cocktails for complete saccharification of chitin using mono-component enzymes from Serratia marcescens; S Mekasha, IR Byman, C Lynch, H Toupalová, L Anděra, T Næs, G Vaaje-Kolstad, VGH Eijsink. Process Biochem. 56 (2017) 132-138.

    Oxidative cleavage of polysaccharides by monocopper enzymes depends on H2O2.B Bissaro, ÅK Røhr, G Müller, P Chylenski, M Skaugen, Z Forsberg, SJ Horn, G Vaaje-Kolstad, VGH Eijsink. Nature Chem Biol. 13(2017) 1123-1128.

    Structure and function of a CE4 deacetylase isolated from a marine environment. TR Tuveng, U Rothweiler, G Udatha, G Vaaje-Kolstad, A Smalås, VGH Eijsink. PLoS One, 2017, 12:e0187544.

    Structural determinants of bacterial lytic polysaccharide monooxygenase functionality; Z Forsberg, B Bissaro, J Gullesen, B Dalhus, G Vaaje-Kolstad VGH Eijsink; J Biol Chem 293 (2018) 1397-1412.

    The impact of hydrogen peroxide supply on LPMO activity and overall saccharification efficiency of a commercial cellulase cocktail.Müller G, Chylenski P, Bissaro B, Eijsink VGH, Horn SJ. Biotechnol Biofuels. 2018 Jul 24;11:209. doi: 10.1186/s13068-018-1199-4. eCollection 2018.

    Oxidoreductases and reactive oxygen species in conversion of lignocellulosic biomass; Bastien Bissaro, Anikó Várnai, Åsmund K. Røhr and Vincent G.H. Eijsink. Microbiol Molec Biol Rev, 2018 Sep 26;82(4). pii: e00029-18. doi: 10.1128/MMBR.00029-18.

    pH-Dependent Relationship between Catalytic Activity and Hydrogen Peroxide Production Shown via Characterization of a Lytic Polysaccharide Monooxygenase from Gloeophyllum trabeum. Hegnar OA, Petrovic DM, Bissaro B, Alfredsen G, Várnai A, Eijsink VGH. Appl Environ Microbiol. 85 (2019) e02612-18. Epub: 2018 Dec 21. pii: AEM.02612-18. doi: 10.1128/AEM.02612-18.

    Antifungal activity of well-defined chito-oligosaccharide preparations against medically relevant yeasts. Ganan M, Lorentzen SB, Agger JW, Heyward CA, Bakke O, Knutsen SH, Aam BB, Eijsink VGH, Gaustad P, Sørlie M. PLoS One. 14 (2019) e0210208. doi: 10.1371/journal.pone.0210208

    Production, Characterization, and Application of an Alginate Lyase, AMOR_PL7A, from Hot Vents in the Arctic Mid-Ocean Ridge. Vuoristo KS, Fredriksen L, Oftebro M, Arntzen MØ, Aarstad OA, Stokke R, Steen IH, Hansen LD, Schüller RB, Aachmann FL, Horn SJ, Eijsink VGH. J Agric Food Chem. 67 (2019) 2936-2945.

    Polysaccharide degradation by lytic polysaccharide monooxygenases. Forsberg Z, Sørlie M, Petrović D, Courtade G, Aachmann FL, Vaaje-Kolstad G, Bissaro B, Røhr ÅK, Eijsink VG. Curr Opin Struct Biol. 59 (2019) 54-64. E-pub: Apr 1;59:54-64. doi: 10.1016/j.sbi.2019.02.015.

    On the functional characterization of lytic polysaccharide monooxygenases (LPMOs). Eijsink VGH, Petrovic D, Forsberg Z, Mekasha S, Røhr ÅK, Várnai A, Bissaro B, Vaaje-Kolstad G. Biotechnol Biofuels. 2019, 12:58. doi: 10.1186/s13068-019-1392-0.

    Lytic polysaccharide monooxygenases ineEnzymatic processing of lignocellulosic biomass; Piotr Chylenski, Bastien Bissaro, Morten Sørlie, Åsmund K. Røhr, Anikó Várnai, Svein J. Horn, Vincent G.H. Eijsink; ACS Catalysis  9 (2019) 4970-4991 (Review)

    Inactivated Lactobacillus plantarum Carrying a Surface-Displayed Ag85B-ESAT-6 Fusion Antigen as a Booster Vaccine Against Mycobacterium tuberculosis Infection. Kuczkowska K, Copland A, Øverland L, Mathiesen G, Tran AC, Paul MJ, Eijsink VGH, Reljic R. Front Immunol. 10 (2019) 1588. Jul 9;10:1588. doi: 10.3389/fimmu.2019.01588.

    Comparison of eight Lactobacillus species for delivery of surface-displayed mycobacterial antigen. Kuczkowska K, Øverland L, Rocha SDC, Eijsink VGH, Mathiesen G. Vaccine. 37 (2019) 6371-6379. doi: 10.1016/j.vaccine.2019.09.012.

    Engineering chitinolytic activity into a cellulose-active lytic polysaccharide monooxygenase provides insights into substrate specificity. Jensen MS, Klinkenberg G, Bissaro B, Chylenski P, Vaaje-Kolstad G, Kvitvang HF, Nærdal GK, Sletta H, Forsberg Z, Eijsink VGH. J Biol Chem. 294 (2019) 19349-19364. Epub: Oct 27. pii: jbc.RA119.010056. doi: 10.1074/jbc.RA119.010056..

    Antibiotic saving effect of combination therapy through synergistic interactions between well-characterized chito-oligosaccharides and commercial antifungals against medically relevant yeasts. Ganan M, Lorentzen SB, Aam BB, Eijsink VGH, Gaustad P, Sørlie M. PLoS One 14 (2019) e0227098. doi: 10.1371/journal.pone.0227098.

    Molecular mechanism of the chitinolytic peroxygenase reaction. Bissaro B, Streit B, Isaksen I, Eijsink VGH, Beckham GT, DuBois JL, Røhr ÅK. Proc Natl Acad Sci U S A.117 (2020) 1504-1513. Epub: Jan 6. pii: 201904889. doi: 10.1073/pnas.1904889117.

    Production and characterization of yeasts grown on media composed of spruce-derived sugars and protein hydrolysates from chicken by-products. D Lapeña; G Kosa; LD Hansen; LT Mydland; V Passoth; SJ Horn; VGH Eijsink; Microbial Cell Factories, 2020, 19:19; DOI: 10.1186/s12934-020-1287-6.

    Controlled depolymerization of cellulose by light-driven lytic polysaccharide oxygenases. B Bissaro, E Kommedal, ÅK Røhr, VGH Eijsink, Nature Communications, 2020, 11:890.

    Demonstration-scale enzymatic saccharification of sulfite-pulped spruce with addition of hydrogen peroxide for LPMO activation; THF Costa, A Kadić, P Chylenski, A Várnai, O Bengtsson, G Lidén, VGH Eijsink, SJ Horn; Biofuels, Bioproducts & Biorefining, Volume14, Issue4; July/August 2020; Pages 734-745

    Synthesis of glycoconjugates utilizing the regioselectivity of a lytic polysaccharide monooxygenase; B Westereng, SK Kračun, S Leivers S, MØ Arntzen, FL Aachmann, VGH Eijsink; Scientific Reports, (2020) 10:13197.

    Quantitative comparison of the biomass-degrading enzyme repertoires of five filamentous fungi; Arntzen MØ, Bengtsson O, Várnai A, Delogu F, Mathiesen G, Eijsink VGH. Scientific Reports 10(1):20267 (2020). doi: 10.1038/s41598-020-75217-z

    Kinetic insights into the peroxygenase activity of cellulose-active lytic polysaccharide monooxygenases (LPMOs); R Kont, B Bissaro, VGH Eijsink, P Väljamäe, Nature Communications, 2020 Nov 13;11(1):5786. doi: 10.1038/s41467-020-19561-8.

    Chemoenzymatic Synthesis of Chito-oligosaccharides with Alternating N-d-Acetylglucosamine and d-Glucosamine. Harmsen RAG, Aam BB, Madhuprakash J, Hamre AG, Goddard-Borger ED, Withers SG, Eijsink VGH, Sørlie M. Biochemistry. 2020 Dec 8;59(48):4581-4590. doi: 10.1021/acs.biochem.0c00839.

    Alginate degradation: insights obtained through characterization of a thermophilic exolytic alginate lyase; Arntzen MØ, Pedersen B, Klau LJ, Stokke R, Oftebro M, Antonsen SG, Fredriksen L, Sletta H, Aarstad OA, Aachmann FL, Horn SJ, Eijsink VGH. Appl Environ Microbiol. 2021 Feb 26;87(6):e02399-20.

    Unraveling the roles of the reductant and free copper ions in LPMO kinetics. Anton A Stepnov, Zarah Forsberg, Morten Sørlie, Giang-Son Nguyen, Alexander Wentzel, Åsmund K Røhr, Vincent G H Eijsink; Biotech for Biofuels 2021 Jan 21;14(1):28. doi: 10.1186/s13068-021-01879-0.

    Sugar oxidoreductases and LPMOs – two sides of the same polysaccharide degradation story?; T Manavalan, AA Stepnov, OA Hegnar, VGH Eijsink; Carbohydrate Research, 2021 Jul;505:108350. doi: 10.1016/j.carres.2021.108350.

    Genomic and proteomic study of Andreprevotia ripae isolated from an anthill reveals an extensive repertoire of chitinolytic enzymes; SB Lorentzen, MØ Arntzen, T Hahn, TR Tuveng, M Sørlie, S Zibek, G Vaaje-Kolstad, VGH Eijsink; J Proteome Res, 2021 Aug 6;20(8):4041-4052. doi: 10.1021/acs.jproteome.1c00358.

    Nitrous oxide respiring bacteria in biogas digestates for reduced agricultural emissions;KR Jonassen, LH Hagen, SHW Vick, MØ Arntzen, VGH Eijsink, Å Frostegård, P Lycus, L Molstad, PB Pope, LR Bakken; ISME J, 2021 Sep 6. doi: 10.1038/s41396-021-01101-x.

    Kinetic characterization of a putatively chitin-active LPMO reveals a preference for soluble substrates and absence of monooxygenase activity. L Rieder, D Petrović, P Väljamäe, VGH Eijsink, M Sørlie; ACS Catalysis, 2021; 11: 11685-11695.

    Quantifying oxidation of cellulose-associated glucuronoxylan by two lytic polysaccharide monooxygenases from Neurospora crassa; Olav A. Hegnar, Heidi Østby, Dejan M. Petrović, Lisbeth Olsson, Anikó Várnai, Vincent G.H. Eijsink; Appl Environm Microbiol, 2021, 87:e0165221. doi: 10.1128/AEM.01652-21

    Fast and specific peroxygenase reactions catalyzed by fungal mono-copper enzymes. Rieder L, Stepnov AA, Sørlie M, Eijsink VGH. Biochemistry. 2021 Nov 30;60(47):3633-3643. doi: 10.1021/acs.biochem.1c00407.

    Characterization of a lytic polysaccharide monooxygenase from Aspergillus fumigatus shows functional variation among family AA11 fungal LPMOs. Støpamo FG, Røhr ÅK, Mekasha S, Petrović DM, Várnai A, Eijsink VGH. J Biol Chem. 2021 Dec;297(6):101421. doi: 10.1016/j.jbc.2021.101421. Epub 2021 Nov 17.

    2-Naphthol impregnation prior to steam explosion promotes LPMO-assisted enzymatic saccharification of spruce and yields high-purity lignin; LD Hansen, M Østensen, B Arstad, R Tschentscher, VGH Eijsink, SJ Horn, A Várnai; ACS Sust Chem Eng 10 (2022) 5233-5242.

    Enhanced in situ H2O2 production explains synergy between an LPMO with a cellulose-binding domain and a single-domain LPMO. Stepnov AA, Eijsink VGH, Forsberg Z, Scientfic Rep, 2022, 12:6129. doi: 10.1038/s41598-022-10096-0