Forfattere tilknyttet BIAS-gruppen på utgivelsestidspunktet fremheves med fet skrift.

Sist oppdatert: 13. mars, 2018


Arnulf, J.K., Larsen, K.R., Martinsen, Ø.L., Egeland, T. (2018). The failing measurement of attitudes: How semantic determinants of individual survey responses come to replace measures of attitude strengthBehavior Research Methods, 50: 2345–2365. doi: 10.3758/s13428-017-0999-y

Dørum, G., Ingold, S., Hanson, E., Ballantyne, J., Snipen, L., Haas, C. (2018). Predicting the origin of stains from next generation sequencing mRNA dataForensic Science International: Genetics, 34: 37–48. doi: 10.1016/j.fsigen.2018.01.001

Felten, J., Vahala, J., Love, J., Gorzsás, A., Rüggeberg, M., Delhomme, N., Leśniewska, J., Kangasjärvi, J., Hvidsten, T.R., Mellerowicz, E.J., Sundberg, B. (2018). Ethylene signaling induces gelatinous layers with typical features of tension wood in hybrid aspenNew Phytologist, 218: 999–1014. doi: 10.1111/nph.15078

Gillard, G., Harvey, T.N., Gjuvsland, A., Jin, Y., Thomassen, M., Lien, S., Leaver, M., Torgersen, J.S., Hvidsten, T.R., Vik, J.O., Sandve, S.R. (2018). Life‐stage‐associated remodelling of lipid metabolism regulation in Atlantic salmonMolecular Ecology, 27:1200–1213. doi: 10.1111/mec.14533

Hanssen, E.N., Liland, K.H., Gill, P., Snipen, L. (2018). Optimizing body fluid recognition from microbial taxonomic profilesForensic Science International: Genetics, 37: 13–20. doi: 10.1016/j.fsigen.2018.07.012   

Obudulu, O., Mähler, N., Skotare, T., Bygdel, J.l., Abreu, I.N., Ahnlund, M., Gandla, M.L., Petterle, A., Moritz, T., Hvidsten, T.R., Jönsson, L., Wingsle, G., Trygg, J., Tuominen, H. (2018). A multi-omics approach reveals function of Secretory Carrier-Associated Membrane Proteins in wood formation of Populus treesBMC Genomics, 19(11). doi: 10.1186/s12864-017-4411-1

Ravi, A., Avershina, E., Angell, I.L., Ludvigsen, J., Manohar, P., Padmanaban, S., Nachimuthu, R., Snipen, L., Rudi, K. (2018). Comparison of reduced metagenome and 16S rRNA gene sequencing for determination of genetic diversity and mother-child overlap of the gut associated microbiotaJournal of Microbiological Methods, 149: 44–52. doi: 10.1016/j.mimet.2018.02.016 

Rimal, R., Almøy, T., Sæbø, S. (2018). A tool for simulating multi-response linear model dataChemometrics and Intelligent Laboratory Systems, 176: 1–10. doi: 10.1016/j.chemolab.2018.02.009

Rudi, K., Angell, I.L., Pope, P.B., Vik, J.O., Sandve, S.R., Snipen, L.-G. (2018). Stable core gut microbiota across the freshwater-to-saltwater transition for farmed Atlantic salmonApplied and Environmental Microbiology, 84(2). doi: 10.1128/AEM.01974-17

Tylewicz, S., Petterle, A., Marttila, S., Miskolczi, P., Azeez, A., Singh, R.K., Immanen, J., Mähler, N.Hvidsten, T.R., Eklund, D.M., Bowman, J.L., Helariutta, Y., Bhalerao, R.P. (2018). Photoperiodic control of seasonal growth is mediated by ABA acting on cell-cell communicationScience, 360: 212–215. doi: 10.1126/science.aan8576


Bohlin, J., Eldholm, V., Pettersson, J.H.O., Brynhildsrud, O., Snipen, L. (2017). The nucleotide composition of microbial genomes indicates differential patterns of selection on core and accessory genomes. BMC Genomics, 18(1): 151. doi: 10.1186/s12864-017-3543-7

Brantsæter, M., Tahamtani, F.M., Nordgreen, J., Sandberg, E., Hansen, T.B., Rodenburg, T.B., Moe, R.O., Janczak, A.M. (2017).  Access to litter during rearing and environmental enrichment during production reduce fearfulness in adult laying hens. Applied Animal Behaviour Science, 189: 49–56. doi: 10.1016/j.applanim.2017.01.008

Bråthen, L.S., Sødring, M., Paulsen J.E., Snipen, L. G., Rudi, K. (2017). Cecal microbiota association with tumor load in a colorectal cancer mouse model. Microbial Ecology in Health and Disease, 28(1): 1352433. doi: 10.1080/16512235.2017.1352433

Christensen, K., Liland, K.H., Kvaal, K., Risvik, E., Biancolillo, A., Scholderer, J., Nørskov, S., Næs, T. (2017). Mining online community data: the nature of ideas in online communities. Food Quality and Preference, 62: 246–256. doi: 10.1016/j.foodqual.2017.06.001

Dørum, G., Kaur, N. and Gysi, M. (2017). Pedigree-based relationship inference from complex DNA mixtures. International Journal of Legal Medicine, 131(3): 629–641. doi: 10.1007/s0041

Egeland, T., Pinto, N., Amorim, A. (2017). Exact likelihood ratio calculations for pairwise cases. Forensic Science International: Genetics, 29: 218–224. doi: 10.1016/j.fsigen.2017.04.018

Fonneløp, A.E., Ramse, M., Egeland, T., Gill, P. (2017). The implications of shedder status and background DNA on direct and secondary transfer in an attack scenario. Forensic Science International: Genetics, 29: 48–60. doi: 10.1016/j.fsigen.2017.03.019

Gangsei, L.E., Almøy, T., Sæbø, S. (2017). Theoretical evaluation of prediction error in linear regression with a bivariate response variable containing missing data. Communications in Statistics - Theory and Methods, 46(20): 9921–9929. doi: 10.1080/03610926.2016.1222434

García-Magariños, M., Egeland, T. (2017). Kinship. I Amorim, A. & Budowle, B. (Red.) Handbook of Forensic Genetics: Biodiversity and Heredity in Civil and Criminal Investigation, s. 81–100. London: World Scientific Publishing Europe Ltd. doi: 10.1142/9781786340788_0005

Gonçalves, J., Conde-Sousa, E., Egeland, T., Amorim, A., Pinto, N. (2017). Key individuals for discerning pedigrees belonging to the same autosomal kinship class. Forensic Science International: Genetics, 29: 71–79. doi: 10.1016/j.fsigen.2017.03.018

Hanssen, E.N., Avershina, E., Rudi, K., Gill, P., Snipen, L. (2017). Body fluid prediction from microbial patterns for forensic application. Forensic Science International: Genetics, 30: 10–17. doi: 10.1016/j.fsigen.2017.05.009

Hanssen, E.N., Lyle, R., Egeland, T., Gill, P. (2017). Degradation in forensic trace DNA samples explored by massively parallel sequencing. Forensic Science International: Genetics, 27: 160–166. doi: 10.1016/j.fsigen.2017.01.002

Hansson, O., Egeland, T., Gill, P. (2017). Characterization of degradation and heterozygote balance by simulation of the forensic DNA analysis process. International Journal of Legal Medicine, 131(2): 303–317. doi: 10.1007/s00414-016-1453-x

Hetland, A., Haugaa, K.H., Vistnes, M., Liland, K.H., Olseng, M., Jacobsen, M.B., Edvardsen, T. (2017). A retrospective analysis of cardiovascular outcomes in patients treated with ASV. Scandinavian Cardiovascular Journal, 51(2): 106–113. doi: 10.1080/14017431.2016.1262546

Jokipii-Lukkari, S., Sundell, D., Nilsson, O., Hvidsten, T.R., Street, N.R., Tuominen, H. (2017). NorWood: a gene expression resource for evo-devo studies of conifer wood development. New Phytologist, 216: 482–494. doi: 10.1111/nph.14458

Kling, D., Egeland, T., Piñero, M.H., Vigeland, M.D. (2017). Evaluating the statistical power of DNA-based identification, exemplified by ‘The missing grandchildren of Argentina’. Forensic Science International: Genetics, 31: 57–66. doi: 10.1016/j.fsigen.2017.08.006

Liland, K.H., Vinje, H., Snipen, L. (2017). microclass: an R-package for 16S taxonomy classification. BMC Bioinformatics, 18(1): 172. doi: 10.1186/s12859-017-1583-2

Mähler, N., Wang, J., Terebieniec, B.K., Ingvarsson, P.K., Street, N.R., Hvidsten, T.R. (2017). Gene co-expression network connectivity is an important determinant of selective constraint. PLoS Genetics, 13(4): e1006402. doi: 10.1371/journal.pgen.1006402

McLeod, A., Mosleth, E.F., Rud, I., Branco Dos Santos, F., Snipen, L., Liland, K.H., Axelsson, L. (2017). Effects of glucose availability in Lactobacillus sakei; metabolic change and regulation of the proteome and transcriptome. PLoS ONE, 12(11). doi: 10.1371/journal.pone.0187542

Robertson, F.M., Gundappa, M.K., Grammes, F., Hvidsten, T.R., Redmond, A.K., Lien, S.,  Martin, S.A.M., Holland, P.W.H., Sandve, S.R., Macqueen, D.J. (2017). Lineage-specific rediploidization is a mechanism to explain time-lags between genome duplication and evolutionary diversification. Genome Biology, 18: 111. doi: 10.1186/s13059-017-1241-z

Steppeler, C., Sødring, M., Egelandsdal, B., Kirkhus, B., Oostindjer, M., Alvseike, O., Gangsei, L.E., Hovland, E-M., Pierre, F., Paulsen, J.E. (2017). Effects of dietary beef, pork, chicken and salmon on intestinal carcinogenesis in A/J Min/+ mice. PloS ONE, 12(4): e0176001. doi: 10.1371/journal.pone.0176001

Sundaram, A., Tengs, T., Grimholt, U. (2017). Issues with RNA-seq analysis in non-model organisms: a salmonid example. Developmental & Comparative Immunology, 75: 38–47. doi: 10.1016/j.dci.2017.02.006

Sundell, D., Street, N.R., Kumar, M., Mellerowicz, E.J., Kucukoglu, M., Johnsson, C., Kumar, V., Mannapperuma, C., Delhomme, N., Nilsson, O., Tuominen, H., Pesquet, E., Fischer, U., Niittyla, T., Sundberg, B., Hvidsten, T.R. (2017). AspWood: high-spatial-resolution transcriptome profiles reveal uncharacterized modularity of wood formation in Populus tremula. Plant Cell, 29(7): 1585–1604. doi: 10.1105/tpc.17.00153

Tengs, T., Rimstad, E. (2017). Emerging pathogens in the fish farming industry and sequencing-based pathogen discovery. Developmental & Comparative Immunology, 75: 109–119. doi: 10.1016/j.dci.2017.01.025

Tillmar, A.O., Kling, D., Butler, J.M., Parson, W., Prinz, M., Schneider, P.M., Egeland, T., Gusmão, L. (2017). DNA Commission of the International Society for Forensic Genetics (ISFG): guidelines on the use of X-STRs in kinship analysis. Forensic Science International: Genetics, 29: 269–275. doi: 10.1016/j.fsigen.2017.05.005

Wessel, Ø., Braaen, S., Alarcon, M., Haatveit, H., Roos, N., Markussen, T., Tengs, T., Dahle, M.K., Rimstad, E. (2017). Infection with purified Piscine orthoreovirus demonstrates a causal relationship with heart and skeletal muscle inflammation in Atlantic salmon. PLoS One. 12(8): e0183781. doi: 10.1371/journal.pone.0183781


Biancolillo, A., Liland, K.H., Måge, I., Næs, T., Bro, R. (2016). Variable selection in multi-block regression. Chemometrics and Intelligent Laboratory Systems, 156: 89–101. doi: 10.1016/j.chemolab.2016.05.016

Borge, G.I.A., Sandberg, E., Øyaas, J., Abrahamsen, R.K. (2016). Variation of terpenes in milk and cultured cream from Norwegian alpine rangeland-fed and in-door fed cows. Food Chemistry, 199: 195–202. doi: 10.1016/j.foodchem.2015.11.098

Dørum, G., Kling, D., Tillmar, A., Vigeland, M.D., Egeland, T. (2016). Mixtures with relatives and linked markers. International Journal of Legal Medicine, 130(3): 621–634. doi: 10.1007/s00414-015-1288-x

, T., Kling, D., Mostad, P. (2016). Relationship Inference with Familias and R – Statistical Methods in Forensic Genetics. London: Academic Press. 

Egeland, T., Slooten, K. (2016). The likelihood ratio as a random variable for linked markers in kinship analysis. International Journal of Legal Medicine, 130(6): 1445–1456. doi: 10.1007/s00414-016-1416-2

Fonneløp, A.E., Johannessen, H., Egeland, T., Gill, P. (2016). Contamination during criminal investigation: detecting police contamination and secondary DNA transfer from evidence bags. Forensic Science International: Genetics, 23: 121–129. doi: 10.1016/j.fsigen.2016.04.003

Gangsei, L.E., Kongsro, J. (2016). Automatic segmentation of Computed Tomography (CT) images of domestic pig skeleton using a 3D expansion of Dijkstra’s algorithm. Computers and Electronics in Agriculture, 121: 191–194. doi: 10.1016/j.compag.2015.12.002

Gangsei, L.E., Kongsro, J., Olsen, E.V., Røe, M., Alvseike, O., Sæbø, S. (2016). Prediction precision for lean meat percentage in Norwegian pig carcasses using 'Hennessy grading probe 7': evaluation of methods emphasized at exploiting additional information from computed tomography. Acta Agriculturae Scandinavica. Section A Animal Science, 66(1): 17–24. doi: 10.1080/09064702.2016.1174292

Gangsei, L.E., Kongsro, J., Olstad, K., Grindflek, E., Sæbø, S. (2016). Building an in vivo anatomical atlas to close the phenomic gap in animal breeding. Computers and Electronics in Agriculture, 127: 739–743. doi: 10.1016/j.compag.2016.08.003

Hermansen, R.A., Hvidsten, T.R., Sandve, S.R., Liberles, D.A. (2016). Extracting functional trends from whole genome duplication events using comparative genomics. Biological Procedures Online, 18: 11. doi: 10.1186/s12575-016-0041-2

Kaur, N., Bouzga, M.M., Dørum, G., Egeland, T. (2016). Relationship inference based on DNA mixtures. International Journal of Legal Medicine, 130(2): 323–329. doi: 10.1007/s00414-015-1276-1

Lien, S., Koop, B.F., Sandve, S.R., Miller, J.R., Kent, M.P., Nome, T., Hvidsten, T.R., Leong, J.S., Minkley, D.R., Zimin, A., Grammes, F., Grove, H., Gjuvsland, A., Walenz, B., Hermansen, R.A., von Schalburg, K., Rondeau, E.B., Di Genova, A., Samy, J.K.A., Vik, J.O., Vigeland, M.D., Caler, L., Grimholt, U., Jentoft, S., Våge, D.I., de Jong, P., Moen, T., Baranski, M., Palti, Y., Smith, D.R., Yorke, J.A., Nederbragt, A.J., Tooming-Klunderud, A., Jakobsen, K.S., Jiang, X., Fan, D., Hu, Y., Liberles, D.A., Vidal, R., Iturra, P., Jones, S.J.M., Jonassen, I., Maass, A., Omholt, S.W., Davidson, W.S. (2016). The Atlantic salmon genome provides insights into rediploidization. Nature, 533: 200–205. doi: 10.1038/nature17164

Liland, K.H., Kohler, A., Afseth, N.K. (2016). Model-based pre-processing in Raman spectroscopy of biological samples. Journal of Raman Spectroscopy, 47(6): 643–650.​ doi: 10.1002/jrs.4886

, K.H., Næs, T., Indahl, U.G. (2016). ROSA – a fast extension of partial least squares regression for multiblock data analysis. Journal of Chemometrics, 30(11): 651–662. doi: 10.1002/cem.2824

, K.H., Snipen, L. (2016). fixedTimeEvents: an R package for the distribution of distances between discrete events in fixed time. SoftwareX, 5: 227–233. doi: 10.1016/j.softx.2016.09.003

Malmstrøm, M., Matschiner, M., Tørresen, O.K., Star, B., Snipen, L.G., Hansen, T.F., Baalsrud, H.T., Nederbragt, A.J., Hanel, R., Salzburger, W., Stenseth, N.C., Jakobsen, K.S., Jentoft, S. (2016). Evolution of the immune system influences speciation rates in teleost fishes. Nature Genetics, 48: 1204–1210. doi: 10.1038/ng.3645

Obudulu, O., Bygdell, J., Sundberg, B., Moritz, T., Hvidsten, T.R., Trygg, J., Wingsle, G. Quantitative proteomics reveals protein profiles underlying major transitions in aspen wood development. (2016). BMC Genomics, 17: 119. doi: 10.1186/s12864-016-2458-z

Presciuttini, S., Egeland, T. (2016). About the number of contributors to a forensic sample. Forensic Science International: Genetics, 25: e18–e19. doi: 10.1016/j.fsigen.2016.08.005

Slooten, K., Egeland, T. (2016). Exclusion probabilities and likelihood ratios with applications to mixtures. International Journal of Legal Medicine, 130(1): 39–57. doi: 10.1007/s00414-015-1217-z

Sun, M., Jobling, M.A., Taliun, D., Pramstaller, P.P., Egeland, T., Sheehan, N.A. (2016). On the use of dense SNP marker data for the identification of distant relative pairs. Theoretical Population Biology, 107: 14–25. doi: 10.1016/j.tpb.2015.10.002

Tahamtani, F.M., Brantsæter, M., Nordgreen, J., Sandberg, E., Hansen, T.B., Nødtvedt, A.C.W., Rodenburg, T.B., Moe, R.O., Janczak, A.M. (2016). Effects of litter provision during early rearing and environmental enrichment during the production phase on feather pecking and feather damage in laying hens. Poultry Science, 95(12): 2747–2756. doi: 10.3382/ps/pew265

Thingnes, S.L., Gaustad, A.H., Kjos, N.P., Sandberg, E., Framstad, T. (2016). The effect of different dietary energy levels during rearing and mid-gestation on sow lifetime performance and longevity. Acta Agriculturae Scandinavica. Section A Animal Science, 65(3-4): 148–157. doi: 10.1080/09064702.2016.1143962


Brynhildsrud, O., Snipen, L-G., Bohlin, J. (2015). CNOGpro: detection and quantification of CNVs in prokaryotic whole-genome sequencing data. Bioinformatics, 31(11): 1708–1715. doi: 10.1093/bioinformatics/btv070

Delhomme N., Mähler, N., Schiffthaler, B., Sundell, D., Mannapperuma, C., Hvidsten, T.R., Street, N.R. (2015). Guidelines for RNA-Seq data analysis. EpiGeneSys Protocol, 1–24.

Delhomme, N., Sundström, G., Zamani, N., Lantz, H., Lin, Y-C., Hvidsten, T.R., Höppner, M.P., Jern, P., Van de Peer, Y., Lundeberg, J., Grabherr, M.G., Street, N.R. (2015). Serendipitous meta-transcriptomics: the fungal community of Norway spruce (Picea abies). PLoS ONE, 10(9): e0139080. doi: 10.1371/journal.pone.0139080

Dørum, G., Bouzga, M.M. (2015). Urns and forensics. CHANCE, 28(1): 4–11.

Flote, V.G., Frydenberg, H., Ursin, G., Iversen, A., Fagerland, M.W., Ellison, P.T., Wist, E.A., Egeland, T., Wilsgaard, T., McTiernan, A., Furberg, A-S., Thune, I. (2015). High-density lipoprotein-cholesterol, daily estradiol and progesterone, and mammographic density phenotypes in premenopausal women. Cancer Prevention Research, 8(6): 535–544. doi: 10.1158/1940-6207.CAPR-14-0267

Fonneløp, A.E., Egeland, T., Gill, P. (2015). Secondary and subsequent DNA transfer during criminal investigation. Forensic Science International: Genetics, 17: 155–162. doi: 10.1016/j.fsigen.2015.05.009

García-Magariños, M., Egeland, T., López-de-Ullibarri, I., Hjort, N.L., & Salas, A. (2015). A parametric approach to kinship hypothesis testing using identity-by-descent parameters. Statistical Applications in Genetics and Molecular Biology, 14(5): 465–479. doi: 10.1515/sagmb-2014-0080

Gill, P., Haned, H., Bleka, O., Hansson, O., Dørum, G., Egeland, T. (2015). Genotyping and interpretation of STR-DNA: low-template, mixtures and database matches – twenty years of research and development. Forensic Science International: Genetics, 18: 100–117. doi: 10.1016/j.fsigen.2015.03.014

Helgerud, T., Wold, J.P., Pedersen, M.B., Liland, K.H., Balance, S., Knutsen, S.H., Rukke, E.O., Afseth, N.K. (2015). Towards on-line prediction of dry matter content in whole unpeeled potatoes using near-infrared spectroscopy. Talanta, 143: 138–144. doi: 10.1016/j.talanta.2015.05.037

Kling, D., Dell’Amico, B., & Tillmar, A.O. (2015). FamLinkX – implementation of a general model for likelihood computations for X-chromosomal marker data. Forensic Science International: Genetics, 17: 1–7. doi: 10.1016/j.fsigen.2015.02.007

Leanti La Rosa, S., Snipen, L., Murray, B., Willems, R., Gilmore, M., Diep, D., Nes, I., Brede, D. (2015). A genomic virulence reference map of Enterococcus faecalis reveals an important contribution of phage03-like elements in nosocomial genetic lineages to pathogenicity in Caenorhabditis elegans infection model. ASM Infection and Immunity, 83(5): 2156–2167. doi: 10.1128/IAI.02801-14

Liland, K.H. (2015). 4S Peak Filling – baseline estimation by iterative mean suppressionMethodsX, 2: 135–140. doi: 10.1016/j.mex.2015.02.009

Martin, A.D., Afseth, N.K., Kohler, A., Randby, Å., Eknæs, M., Waldmann, A., Dørum, G., Måge, I., Reksen, O. (2015). The relationship between fatty acid profiles in milk identified by Fourier transform infrared spectroscopy and onset of luteal activity in Norwegian dairy cattle. Journal of Dairy Science, 98(8): 5374–5384. doi: 10.3168/jds.2015-9343

Slooten, K., Egeland, T. (2015). Exclusion probabilities and likelihood ratios with applications to mixtures. International Journal of Legal Medicine, 130(1): 39–57. doi: 10.1007/s00414-015-1217-z

Snipen, L, Liland, K.H. (2015). micropan: an R-package for microbial pan-genomics. BMC Bioinformatics, 16: 79. doi: 10.1186/s12859-015-0517-0

Storrustløkken, L., Devle, H.M., Gangsei, L.E., Næss-Andresen, C.F., Egelandsdal, B., Alvseike, O., Ekeberg, D. (2015). Effects of breed and age at slaughter on degradation of muscle lipids during processing of dry-cured hams. International Journal of Food Science & Technology, 50(8): 1933–1943. doi: 10.1111/ijfs.12845

Sun, M., Jobling, M.A., Taliun, D., Pramstaller, P.P., Egeland, T., Sheehan, N.A. (2015). On the use of dense SNP marker data for the identification of distant relative pairs. Theoretical Population Biology, doi: 10.1515/sagmb-2014-0080

Sundell, D., Mannapperuma, C., Netotea, S., Delhomme, N., Lin, Y-C., Sjödin, A., Van der Peer, Y., Jansson, S., Hvidsten, T.R., Street, N. (2015). The Plant Genome Integrative Explorer Resource: New Phytologist, 208(4): 1149–1156. doi: 10.1111/nph.13557

Sæbø, S., Almøy, T., Brovold, H. (2015). Does academia disfavor contextual and extraverted students?  Uniped, 38(4): 274–283.

Sæbø, S., Almøy, T., Helland, I. (2015). simrel – a versatile tool for linear model data simulation based on the concept of a relevant subspace and relevant predictors. Chemometrics and Intelligent Laboratory Systems, 146: 128–135. doi: 10.1016/j.chemolab.2015.05.012

Thingnes, S.L., Hallenstvedt, E., Sandberg, E., Framstad, T. (2015). The effect of different dietary energy levels during rearing and mid-gestation on gilt performance and culling rate. Livestock Science, 172: 33–42. doi: 10.1016/j.livsci.2014.11.012

Vinje, H., Liland, K.H., Almøy, T., Snipen, L. (2015). Comparing K-mer based methods for improved classification of 16S sequences. BMC Bioinformatics, 16: 205. doi: 10.1186/s12859-015-0647-4


Published 29. oktober 2019 - 10:58 - Updated 24. januar 2020 - 13:55