Planta publication

Chemical characterization and identification of Pinaceae pollen by infrared microspectroscopy
B. Zimmermann

Infrared microspectroscopy (µFTIR) of Pinaceae pollen can provide valuable information on plant phenology, ecophysiology and paleoecology, but measurements are challenging, resulting in unreproducible spectra. The comparative analysis of µFTIR spectra belonging to morphologically different Pinaceae pollen, namely bisaccate Pinus and monosaccate Tsuga pollen, was conducted. The study shows that the main cause of spectral variability is non-radial symmetry of bisaccate pollen grains, while additional variation is caused by Mie scattering. Averaging over relatively small number of single pollen grain spectra (approx. 5–10) results with reproducible data on pollen chemical composition. The practical applicability of the µFTIR spectral averaging method has been demonstrated by the partial least-squares regression-based differentiation of the two closely related Pinus species with morphologically indistinguishable pollen: Pinus mugo (mountain pine) and Pinus sylvestris (Scots pine). The study has demonstrated that the µFTIR approach can be used for identification, differentiation and chemical characterization of pollen with complex morphology. The methodology enables analysis of fresh pollen, as well as fossil pollen from sediment core samples, and can be used in botany, ecology and paleoecology for study of biotic and abiotic effects on plants.

Published 15. September 2017 - 13:41 - Updated 15. September 2017 - 13:46