

Europe Beyond Coal

An Economic and Climate Impact Assessment

Christoph Böhringer and Knut Einar Rosendahl Presentation at Norens project meeting June 8 2020

Introduction

- WP2: Policy and regulation on European and Norwegian levels
 - Original plan: Two deliverables
 - One policy science article by Cicero (Bang et al.)
 - One economics article by NMBU (Rosendahl) & Univ Oldenburg (Böhringer)
 - Now: Three deliverables
 - 1. One policy science article with some economics (Bang & Rosendahl)
 - 2. One economics article (Böhringer & Rosendahl)
 - One economics article with some policy science (Böhringer, Rosendahl and Bang)
 - Common topic: Coal phaseout in European countries

Introduction

- Paper #1: Policy science article with some economics
 - Interviews in London and Berlin fall 2019
 - First full draft finished before summer vacation
 - Presentation at ECPR conference (pol.science) in August

Introduction

- Paper #2: Economics article
 - Focus of this presentation
 - Combination of theoretical and numerical analysis
 - Second full draft soon finished
 - Presentation at EAERE conference (env.econ.) in late June
- Paper #3: Economics article with some policy science
 - Build on paper #1&2 (use same numerical model as for paper #2)
 - Will be written in the fall

M B U

- Some background
 - Most European countries have decided to phase out coal in power generation
 - Most important country: Germany
 - Coal power generation already regulated by the EU ETS...
 - Why then force out coal power generation instead of leaving it to the ETS?
 - Can risk the waterbed effect: Emissions are relocated instead of reduced?
 - Germany: Will cancel emission allowances along with coal phaseout
 - New mechanism: Market Stability Reserve → Cancel emission allowances

N B U

- Theoretical analysis very brief overview
 - Consider simple model with:
 - Three regions with common ETS
 - Three electricity technologies (Coal, Gas, CO2-free)
 - Two end-users of electricity (Industry, Other)
 - Examine effects of coal phaseout in one or two regions
 - With or without cancellation of allowances
 - Focus on welfare effects (economic welfare + value of emission reductions)
 - Welfare costs of phasing out coal depend e.g. on:
 - Price tag on emissions
 - Terms-of-trade effects in the ETS market (importer/exporter of allowances)

N M B U

- Numerical analysis brief model description
 - Computable general equilibrium (CGE) model for the European economy
 - 12 EU regions + 5 Non-EU regions
 - Norway included in "Rest of Europe and Turkey"
 - 13 sectors in each region
 - Electricity sector divided into 8 technologies
 - Bilateral trade in electricity price responsive
 - The model is forward projected to 2030 based on EU data (JRC data)
 - Benchmark scenario (BMK) consistent with EU's current GHG target for 2030

M B U

- Numerical analysis policy scenarios for 2030
 - Reference scenario (REF): 10% emission reduction vis-à-vis BMK
 - Based on European Green Deal and current discussion in the EU
 - EU ETS price 2030: 47 Euro per ton CO2
 - Phaseout scenarios along three dimensions:
 - Extent of phaseout (25%, 50%, 75%, 100%)
 - Regional coverage (one or several countries phase out coal)
 - Cancellation of allowances (none, unilateral or centralized)

		Cancellation of allowances		
		None	Unilateral	Centralized via MSR
Regional	Unilateral	UNI	UNI-UC	UNI-MSR
coverage	Coalition	COA	COA-UC	COA-MSR

N B U

- Unilateral coal phaseout in Germany
 - Without cancellation of emission allowances:
 - ETS price drops from 47 to 31 Euro per ton
 - Relocation of emissions to other countries (espec. Poland), other sectors and within the electricity sector
 - Coal power in Germany is replaced by mostly renewables and gas power
 - With 100% cancellation of emission allowances:
 - ETS price increases from 47 to 49 Euro per ton
 - Little relocation of emissions

M B U

- Unilateral coal phaseout in Germany welfare impacts
 - Excl. climate benefits
 - Small phaseout has negative costs
 - Net importer of allowances
 - Full phaseout costs4 billion Euro in 2030
 - Most other countries lose
 - Costs are doubled if
 canceling allowances alone (but unchanged if via the MSR)

N M J

- Unilateral coal phaseout in Germany cancel allowances?
 - Depends on Germany's"price tag" on emissions
 - If price tag exceeds40 Euro per ton, thencancellation is better
 - If price tag exceeds
 65 Euro per ton, then
 coal phaseout with
 cancellation is better
 than no phaseout

M H

- Unilateral coal phaseout in different EU regions
 - − Higher share of coalpower → Higher costs
 - Required price tag on emissions highest for countries with high share of coal power
 - Required price tag on emissions much higher with unilateral cancellation

N M J

- Multilateral coal phaseout by coalition of EU regions
 - Coalition: All EU members except Poland, Romania, Bulgaria
 - Without cancellation of emission allowances:
 - ETS price drops from 47 to 16 Euro per ton
 - Relocation of emissions mostly within the coalition (more gas power)
 - Several coal phaseout countries increase their total emissions
 - With 100% cancellation of emission allowances:
 - ETS price increases from 47 to 50 Euro per ton
 - Little relocation of emissions

An Economic and Climate Impact Assessment

- Multilateral coal phaseout by coalition of EU regions
 - Most countries lose
 when other countries
 also phase out coal
 - Main reason: Lower
 export revenues from
 export of emission
 allowances as the
 ETS price drops
 - Exception: Italy

Scandinavia benefits from higher electricity export to Germany

M B U

- An Economic and Climate Impact Assessment

- Multilateral coal phaseout by coalition cancel allowances?
 - Depends on coalition's"price tag" on emissions
 - If price tag exceeds2 Euro per ton, thencancellation is better
 - If price tag exceeds
 60 Euro per ton, then
 coal phaseout with

cancellation is better than no phaseout

MSR less beneficial for coalition than with unilateral phaseout

N M B U

- What remains
 - Some sensitivity analysis
 - Especially wrt. price responsiveness of electricity supply
- Some conclusions
 - Welfare impacts of coal phaseout depend on
 - Whether and how emissions allowances are canceled
 - · What other regions do
 - With cancellation, welfare impacts further depend on
 - · Price tag on emissions
 - Who pays for the cancellation

THANKS FOR THE ATTENTION!

