IBM SPSS Web Report - 47 to 30 variables 10 to 5 factors varimax rotation.spv   


Contents
Previous
Next
Help
Controls disabled by the system
 

 
Log
Log - Log - February 4, 2020

FACTOR
  /VARIABLES K1a K1b K1c K1d K1e K2a K2b K2c K2d K2e L2 L3a L3b L3c L3d L3e L3f L6 L7 L8a L8b L8c L8d L8f L8g L8h L8i L8j L8k L8l M1trust M2dTradAut M2eGVH M2fVH M2jPolice M2kTraders M2lTeacher M2mSchAdm M2nRelLead M3aFamil M3bRelatives M3cOwnVil
M3dOutsideV M3eSameEthnic M3fOutsEthn M3gSameChM M3hNotSameChM
  /MISSING LISTWISE
  /ANALYSIS K1a K1b K1c K1d K1e K2a K2b K2c K2d K2e L2 L3a L3b L3c L3d L3e L3f L6 L7 L8a L8b L8c L8d L8f L8g L8h L8i L8j L8k L8l M1trust M2dTradAut M2eGVH M2fVH M2jPolice M2kTraders M2lTeacher M2mSchAdm M2nRelLead M3aFamil M3bRelatives M3cOwnVil
M3dOutsideV M3eSameEthnic M3fOutsEthn M3gSameChM M3hNotSameChM
  /PRINT UNIVARIATE ROTATION
  /PLOT EIGEN
  /CRITERIA MINEIGEN(1) ITERATE(25)
  /EXTRACTION PC
  /CRITERIA ITERATE(25)
  /ROTATION VARIMAX
  /METHOD=COVARIANCE.

Factor Analysis
Factor Analysis - Active Dataset - February 4, 2020


[DataSet1] G:\Arkiv\1 MLTSC\04 MLTSC papers and report\Berge2009 Trust games\SPSS files\MLTSC HHQwithTrustData new master 20130823.sav

Factor Analysis
Factor Analysis - Descriptive Statistics - February 4, 2020
Descriptive StatisticsDescriptive Statistics, table, 1 levels of column headers and 1 levels of row headers, table with 4 columns and 49 rows
  Mean Std. Deviation Analysis N
K1a Lending money to family members ,44 ,498 221
K1b Lending money to relatives ,49 ,501 221
K1c Lending money to people in your own village ,39 ,489 221
K1d Lending money to people outside the village ,15 ,357 221
K1e Lending money to people from the same mosque/ church ,15 ,362 221
K2a Lending tools like axes, hoes etc. to family members ,72 ,448 221
K2b Lending tools like axes, hoes etc. to relatives outside the household ,77 ,419 221
K2c Lending tools like axes, hoes etc. to people in your own village ,65 ,478 221
K2d Lending tools like axes, hoes etc. to people outside the village ,24 ,431 221
K2e Lending tools like axes, hoes etc. to people from the same mosque/ church ,27 ,446 221
L2 Participated in cooperative agricultural work ,40 ,491 221
L3.a. Participated last 12 months in cooperative work of preparing a garden ,21 ,407 221
L3.b. Participated last12 months in cooperative work of planting ,07 ,252 221
L3.c. Participated last 12 months in cooperative work of irrigating ,02 ,134 221
L3.d. Participated last 12 months in cooperative work of weeding ,17 ,374 221
L3.e. Participated last 12 months in cooperative work of harvesting ,20 ,400 221
L3.f. Participated last 12 months in cooperative work of other agriculture work ,15 ,357 221
L6 Participation in other exchange work than agriculture ,52 ,501 221
L7 Participated in public works without payment during the last year ,79 ,407 221
L8.a. Participated in school project over the last 12 months ,49 ,501 221
L8.b. Participated in road project over the last 12 months ,54 ,500 221
L8.c. Participated in bridge project over the last 12 months ,28 ,448 221
L8.d. Participated in church project over the last 12 months ,27 ,446 221
L8.f. Participated in kindergarten project over the last 12 months ,05 ,208 221
L8.g. Participated in health centre project over the last 12 months ,14 ,353 221
L8.h. Participated in irrigation project over the last 12 months ,12 ,328 221
L8.i. Participated in borehole project over the last 12 months ,29 ,452 221
L8.j. Participated in dam project over the last 12 months ,02 ,149 221
L8.k. Participated in graveyard clearing project over the last 12 months ,42 ,494 221
L8.l. Participated in other projects over the last 12 months ,08 ,274 221
M1 Most people can be trusted (1) or you cannot be too careful (0) ,45 ,498 221
M2.d. Trust in Traditional Authorities 3,76 1,159 221
M2.e. Trust in group village headmen 3,67 1,200 221
M2.f. Trust in village headmen 3,68 1,206 221
M2.j. Trust in police 3,63 1,289 221
M2.k. Trust in traders 2,46 1,295 221
M2.l. Trust in teachers 3,81 1,101 221
M2.m.Trust in school administrators 3,69 1,171 221
M2.n. Trust in religious leaders 3,88 1,114 221
M3.a. Trust in family members 4,38 ,954 221
M3.b. Trust in relatives 3,85 1,158 221
M3.c. Trust in people in own village 3,33 1,097 221
M3.d. Trust in people outside the village 2,73 1,110 221
M3.e. Trust in people of same ethnic group 3,16 1,103 221
M3.f. Trust in people outside ethnic group 2,80 1,132 221
M3.g. Trust in people from same church/ mosque 3,59 1,056 221
M3.h. Trust in people not from same church/ mosque 3,00 1,200 221
Factor Analysis
Factor Analysis - Scree Plot - February 4, 2020
Scree Plot Component Number: 47
Eigenvalue: 0,0116 Component Number: 46
Eigenvalue: 0,0142 Component Number: 45
Eigenvalue: 0,0235 Component Number: 44
Eigenvalue: 0,0264 Component Number: 43
Eigenvalue: 0,0283 Component Number: 42
Eigenvalue: 0,0326 Component Number: 41
Eigenvalue: 0,0408 Component Number: 40
Eigenvalue: 0,0458 Component Number: 39
Eigenvalue: 0,0469 Component Number: 38
Eigenvalue: 0,0518 Component Number: 37
Eigenvalue: 0,0575 Component Number: 36
Eigenvalue: 0,0615 Component Number: 35
Eigenvalue: 0,0628 Component Number: 34
Eigenvalue: 0,0682 Component Number: 33
Eigenvalue: 0,0771 Component Number: 32
Eigenvalue: 0,0833 Component Number: 31
Eigenvalue: 0,0862 Component Number: 30
Eigenvalue: 0,0940 Component Number: 29
Eigenvalue: 0,0988 Component Number: 28
Eigenvalue: 0,1191 Component Number: 27
Eigenvalue: 0,1230 Component Number: 26
Eigenvalue: 0,1419 Component Number: 25
Eigenvalue: 0,1503 Component Number: 24
Eigenvalue: 0,1672 Component Number: 23
Eigenvalue: 0,1832 Component Number: 22
Eigenvalue: 0,1945 Component Number: 21
Eigenvalue: 0,2277 Component Number: 20
Eigenvalue: 0,2694 Component Number: 19
Eigenvalue: 0,2797 Component Number: 18
Eigenvalue: 0,3013 Component Number: 17
Eigenvalue: 0,3516 Component Number: 16
Eigenvalue: 0,3605 Component Number: 15
Eigenvalue: 0,3970 Component Number: 14
Eigenvalue: 0,4475 Component Number: 13
Eigenvalue: 0,4726 Component Number: 12
Eigenvalue: 0,5074 Component Number: 11
Eigenvalue: 0,5462 Component Number: 10
Eigenvalue: 0,5807 Component Number: 9
Eigenvalue: 0,7240 Component Number: 8
Eigenvalue: 0,8262 Component Number: 7
Eigenvalue: 0,9234 Component Number: 6
Eigenvalue: 1,0235 Component Number: 5
Eigenvalue: 1,1656 Component Number: 4
Eigenvalue: 1,4413 Component Number: 3
Eigenvalue: 1,6670 Component Number: 2
Eigenvalue: 2,1533 Component Number: 1
Eigenvalue: 9,6703 Component Number: 46
Eigenvalue: 0,0142 Component Number: 45
Eigenvalue: 0,0235 Component Number: 44
Eigenvalue: 0,0264 Component Number: 43
Eigenvalue: 0,0283 Component Number: 42
Eigenvalue: 0,0326 Component Number: 41
Eigenvalue: 0,0408 Component Number: 40
Eigenvalue: 0,0458 Component Number: 39
Eigenvalue: 0,0469 Component Number: 38
Eigenvalue: 0,0518 Component Number: 37
Eigenvalue: 0,0575 Component Number: 36
Eigenvalue: 0,0615 Component Number: 35
Eigenvalue: 0,0628 Component Number: 34
Eigenvalue: 0,0682 Component Number: 33
Eigenvalue: 0,0771 Component Number: 32
Eigenvalue: 0,0833 Component Number: 31
Eigenvalue: 0,0862 Component Number: 30
Eigenvalue: 0,0940 Component Number: 29
Eigenvalue: 0,0988 Component Number: 28
Eigenvalue: 0,1191 Component Number: 27
Eigenvalue: 0,1230 Component Number: 26
Eigenvalue: 0,1419 Component Number: 25
Eigenvalue: 0,1503 Component Number: 24
Eigenvalue: 0,1672 Component Number: 23
Eigenvalue: 0,1832 Component Number: 22
Eigenvalue: 0,1945 Component Number: 21
Eigenvalue: 0,2277 Component Number: 20
Eigenvalue: 0,2694 Component Number: 19
Eigenvalue: 0,2797 Component Number: 18
Eigenvalue: 0,3013 Component Number: 17
Eigenvalue: 0,3516 Component Number: 16
Eigenvalue: 0,3605 Component Number: 15
Eigenvalue: 0,3970 Component Number: 14
Eigenvalue: 0,4475 Component Number: 13
Eigenvalue: 0,4726 Component Number: 12
Eigenvalue: 0,5074 Component Number: 11
Eigenvalue: 0,5462 Component Number: 10
Eigenvalue: 0,5807 Component Number: 9
Eigenvalue: 0,7240 Component Number: 8
Eigenvalue: 0,8262 Component Number: 7
Eigenvalue: 0,9234 Component Number: 6
Eigenvalue: 1,0235 Component Number: 5
Eigenvalue: 1,1656 Component Number: 4
Eigenvalue: 1,4413 Component Number: 3
Eigenvalue: 1,6670 Component Number: 2
Eigenvalue: 2,1533 Component Number: 1
Eigenvalue: 9,6703 0 2 4 6 8 10 10 8 6 4 2 0 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 47 45 43 41 39 37 35 33 31 29 27 25 23 21 19 17 15 13 11 9 7 5 3 1

{"copyright":"(C) Copyright IBM Corp. 2011","grammar":[{"elements":[{"data":{"$ref":"dSource"},"style":{"outline":{"r":0,"b":0,"g":0},"fill":{"r":0,"b":157,"g":100},"stroke":{"width":1.3333334}},"position":[{"field":{"$ref":"fVariable1"}},{"field":{"$ref":"fVariable"}}],"type":"line"},{"data":{"$ref":"dSource"},"style":{"symbol":"circle","outline":{"r":0,"b":157,"g":100},"size":6.6666665,"fill":{"a":0.0,"r":0,"b":0,"g":0}},"position":[{"field":{"$ref":"fVariable1"}},{"field":{"$ref":"fVariable"}}],"type":"point"}],"coordinates":{"style":{"outline":{"r":0,"b":157,"g":100},"fill":{"r":255,"b":255,"g":255}},"dimensions":[{"scale":{"padding":{"left":"5%","right":"5%"},"spans":[{"tickDelta":2.0}]},"axis":[{"tickStyle":{"fill":{"r":0,"b":157,"g":100},"font":{"size":"8pt","weight":"normal","family":"sans-serif"}},"lineStyle":{"fill":{"r":0,"b":157,"g":100},"stroke":{"width":0.6666667}},"titleStyle":{"padding":6.0,"fill":{"r":0,"b":157,"g":100},"font":{"size":"11pt","weight":"bold","family":"sans-serif"}},"title":["Eigenvalue"],"markStyle":{"fill":{"r":0,"b":157,"g":100},"stroke":{"width":1.3333334}}}]},{"scale":{"padding":{"left":"5%","right":"5%"},"spans":[{"tickDelta":1.0}]},"axis":[{"tickStyle":{"fill":{"r":0,"b":157,"g":100},"font":{"size":"8pt","weight":"normal","family":"sans-serif"}},"lineStyle":{"fill":{"r":0,"b":157,"g":100},"stroke":{"width":0.6666667}},"titleStyle":{"padding":6.0,"fill":{"r":0,"b":157,"g":100},"font":{"size":"11pt","weight":"bold","family":"sans-serif"}},"title":["Component Number"],"markStyle":{"fill":{"r":0,"b":157,"g":100},"stroke":{"width":1.3333334}}}]}]}}],"data":[{"id":"dSource","fields":[{"id":"fVariable","label":"Component Number","categories":[]},{"min":0.01164268156971305,"max":9.670268737370698,"id":"fVariable1","label":"Eigenvalue"}],"rows":[[0,9.670268737370698],[1,2.153297637642992],[2,1.666951265060417],[3,1.441268496557172],[4,1.165558819212147],[5,1.023527970753916],[6,0.9233629298237548],[7,0.8261853466431138],[8,0.724010367455887],[9,0.5806746172424283],[10,0.5461824387346055],[11,0.5074297351884859],[12,0.4726215784524337],[13,0.4474970752342117],[14,0.3970394401060312],[15,0.3605374029433688],[16,0.3515820530038962],[17,0.3012742057002933],[18,0.2797088942310774],[19,0.2693669701532067],[20,0.227690795932494],[21,0.1945431387707281],[22,0.1831530185347112],[23,0.1672083269473193],[24,0.1502513318826814],[25,0.1418666650451943],[26,0.1229740901331941],[27,0.1191372402058716],[28,0.09883058308873001],[29,0.09401336174536942],[30,0.08618988591893777],[31,0.08328958600875033],[32,0.07705700828741277],[33,0.06817608171736186],[34,0.06276082158674062],[35,0.0614619772166295],[36,0.05749826780480936],[37,0.05176381243503594],[38,0.04693660578678929],[39,0.04582224648781583],[40,0.0407689273571331],[41,0.03263756836768122],[42,0.02831011942713782],[43,0.02637006492625381],[44,0.02345463835969965],[45,0.01417178750756063],[46,0.01164268156971305]]}],"size":{"width":625.0,"height":500.0},"style":{"outline":{"a":0.0,"r":0,"b":0,"g":0},"fill":{"r":255,"b":255,"g":255}},"titles":[{"backgroundStyle":{"outline":{"a":0.0,"r":0,"b":0,"g":0},"fill":{"a":0.0,"r":0,"b":0,"g":0}},"style":{"padding":3.0,"fill":{"r":0,"b":157,"g":100},"font":{"size":"12pt","weight":"bold","family":"sans-serif"}},"type":"title","content":["Scree Plot"]}],"version":"6.0"}

Factor Analysis
Factor Analysis - Component Matrix - February 4, 2020
Component MatrixaComponent Matrix, table, 0 levels of column headers and 0 levels of row headers, table with 1 columns and 3 rows
 
a. 10 components extracted.
Factor Analysis
Factor Analysis - Rotated Component Matrix - February 4, 2020
Rotated Component MatrixaRotated Component Matrix, table, 3 levels of column headers and 1 levels of row headers, table with 21 columns and 53 rows
  Raw Rescaled
Component Component
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
K1a Lending money to family members ,296 -,039 -,074 ,038 -,076 ,036 -,103 ,064 -,017 -,018 ,594 -,079 -,149 ,077 -,152 ,072 -,207 ,128 -,035 -,037
K1b Lending money to relatives ,322 -,022 -,110 ,039 -,082 ,040 -,047 ,046 -,027 -,019 ,642 -,044 -,221 ,077 -,164 ,080 -,094 ,092 -,054 -,038
K1c Lending money to people in your own village ,322 -,011 -,104 ,035 ,002 ,071 -,054 ,006 ,002 ,000 ,658 -,022 -,213 ,072 ,005 ,146 -,111 ,012 ,005 -,001
K1d Lending money to people outside the village ,183 ,029 ,010 -,009 -,005 -,002 ,017 -,011 ,033 -,001 ,513 ,080 ,029 -,026 -,014 -,006 ,047 -,030 ,092 -,003
K1e Lending money to people from the same mosque/ church ,161 -,029 ,004 ,019 -,007 ,023 -,028 ,031 ,034 -,044 ,446 -,081 ,011 ,052 -,019 ,064 -,076 ,086 ,095 -,122
K2a Lending tools like axes, hoes etc. to family members ,224 -,045 ,020 -,037 -,041 -,033 -,089 ,046 ,003 -,038 ,500 -,101 ,044 -,083 -,092 -,074 -,199 ,102 ,007 -,086
K2b Lending tools like axes, hoes etc. to relatives outside the household ,191 -,007 ,002 -,060 ,026 -,057 -,018 ,002 -,030 -,020 ,455 -,016 ,004 -,143 ,063 -,135 -,043 ,005 -,071 -,048
K2c Lending tools like axes, hoes etc. to people in your own village ,249 -,022 ,085 -,013 ,010 -,074 ,017 -,031 ,032 -,078 ,522 -,045 ,177 -,026 ,020 -,156 ,035 -,065 ,067 -,164
K2d Lending tools like axes, hoes etc. to people outside the village ,148 ,001 ,123 ,036 ,031 -,034 ,034 -,080 ,064 -,063 ,344 ,002 ,285 ,084 ,071 -,079 ,079 -,185 ,149 -,146
K2e Lending tools like axes, hoes etc. to people from the same mosque/ church ,142 -,004 ,190 ,047 ,032 -,043 -,008 -,038 ,033 -,144 ,320 -,009 ,425 ,105 ,071 -,097 -,018 -,085 ,073 -,322
L2 Participated in cooperative agricultural work ,310 ,021 -,055 -,001 ,023 -,003 ,019 -,024 -,032 ,049 ,632 ,043 -,112 -,001 ,048 -,007 ,039 -,049 -,066 ,100
L3.a. Participated last 12 months in cooperative work of preparing a garden ,193 ,042 -,047 ,023 -,004 ,007 ,044 -,054 ,038 ,001 ,474 ,103 -,114 ,058 -,010 ,018 ,109 -,133 ,094 ,003
L3.b. Participated last12 months in cooperative work of planting ,077 ,027 ,030 -,026 ,014 ,008 ,021 ,015 -,026 -,008 ,305 ,107 ,120 -,104 ,056 ,032 ,085 ,061 -,102 -,031
L3.c. Participated last 12 months in cooperative work of irrigating ,019 ,003 ,023 ,014 ,010 -,005 ,011 -,011 -,007 ,013 ,140 ,023 ,173 ,105 ,073 -,039 ,079 -,084 -,054 ,097
L3.d. Participated last 12 months in cooperative work of weeding ,199 -,002 ,015 ,014 ,035 ,016 ,026 -,037 ,005 ,054 ,533 -,006 ,039 ,037 ,094 ,043 ,070 -,100 ,012 ,144
L3.e. Participated last 12 months in cooperative work of harvesting ,191 ,022 -,029 -,040 ,034 ,004 ,009 ,004 -,063 ,060 ,477 ,054 -,072 -,100 ,085 ,009 ,022 ,010 -,157 ,149
L3.f. Participated last 12 months in cooperative work of other agriculture work ,161 ,076 -,125 -,049 ,020 ,005 -,019 ,040 -,022 -,003 ,450 ,212 -,351 -,137 ,056 ,015 -,053 ,113 -,061 -,008
L6 Participation in other exchange work than agriculture ,272 -,004 -,031 -,041 -,064 ,007 -,058 ,026 ,002 ,023 ,544 -,008 -,063 -,082 -,127 ,014 -,116 ,053 ,003 ,046
L7 Participated in public works without payment during the last year -,182 -,084 ,227 ,031 ,038 -,037 -,022 -,037 ,021 -,003 -,447 -,207 ,558 ,077 ,093 -,092 -,054 -,090 ,050 -,008
L8.a. Participated in school project over the last 12 months -,018 -,043 ,271 ,068 ,013 -,007 ,027 ,009 -,031 ,012 -,036 -,085 ,541 ,137 ,026 -,015 ,053 ,018 -,063 ,024
L8.b. Participated in road project over the last 12 months -,073 -,003 ,309 -,087 ,019 ,015 ,018 -,005 ,039 -,043 -,145 -,006 ,618 -,173 ,039 ,029 ,036 -,010 ,078 -,086
L8.c. Participated in bridge project over the last 12 months -,002 -,035 ,236 -,005 -,004 -,043 ,016 -,010 ,032 ,040 -,005 -,079 ,527 -,012 -,009 -,096 ,036 -,021 ,072 ,089
L8.d. Participated in church project over the last 12 months -,039 ,004 ,195 -,030 ,010 ,046 ,089 ,016 -,083 -,013 -,088 ,009 ,436 -,068 ,022 ,103 ,199 ,036 -,186 -,030
L8.f. Participated in kindergarten project over the last 12 months -,008 ,002 ,034 -,013 ,025 ,004 ,050 ,008 -,016 -,004 -,038 ,009 ,164 -,062 ,122 ,017 ,242 ,039 -,075 -,022
L8.g. Participated in health centre project over the last 12 months -,021 -,009 ,121 -,050 -,044 -,021 ,018 ,001 -,011 ,006 -,058 -,026 ,342 -,142 -,126 -,060 ,051 ,002 -,031 ,016
L8.h. Participated in irrigation project over the last 12 months ,024 ,016 ,126 -,026 ,003 ,029 -,044 ,004 -,022 -,016 ,073 ,050 ,383 -,079 ,009 ,090 -,134 ,011 -,068 -,049
L8.i. Participated in borehole project over the last 12 months -,123 ,023 ,147 -,027 ,016 -,013 ,110 ,106 -,082 -,035 -,272 ,052 ,325 -,060 ,035 -,030 ,243 ,235 -,181 -,078
L8.j. Participated in dam project over the last 12 months -,022 ,005 ,020 ,004 -,013 -,003 -,001 ,008 -,013 ,008 -,149 ,035 ,134 ,030 -,085 -,023 -,006 ,054 -,090 ,056
L8.k. Participated in graveyard clearing project over the last 12 months -,117 -,006 ,155 -,103 -,032 -,111 ,023 ,008 ,103 -,044 -,236 -,012 ,314 -,208 -,064 -,224 ,047 ,017 ,208 -,090
L8.l. Participated in other projects over the last 12 months -,071 ,040 -,031 -,005 ,015 ,048 -,009 -,049 ,000 -,006 -,259 ,147 -,115 -,018 ,054 ,173 -,033 -,179 ,002 -,020
M1 Most people can be trusted (1) or you cannot be too careful (0) ,106 ,222 -,056 -,031 ,011 ,000 -,009 ,044 ,080 ,052 ,213 ,445 -,112 -,062 ,023 ,000 -,018 ,089 ,160 ,104
M2.d. Trust in Traditional Authorities -,101 ,256 ,067 1,034 ,175 -,013 ,015 ,055 ,088 ,026 -,087 ,221 ,057 ,892 ,151 -,011 ,013 ,047 ,076 ,023
M2.e. Trust in group village headmen -,095 ,320 -,182 1,042 ,152 ,097 ,015 ,003 ,048 ,130 -,079 ,266 -,151 ,868 ,127 ,081 ,012 ,003 ,040 ,109
M2.f. Trust in village headmen -,131 ,279 -,376 ,847 ,317 ,280 ,132 ,114 ,153 ,135 -,108 ,231 -,311 ,702 ,262 ,232 ,110 ,094 ,127 ,112
M2.j. Trust in police ,029 ,418 ,012 ,419 ,262 ,025 ,183 ,008 ,110 1,083 ,022 ,324 ,009 ,325 ,204 ,020 ,142 ,006 ,085 ,841
M2.k. Trust in traders -,107 ,340 ,051 ,264 ,177 ,027 1,162 ,069 ,147 ,224 -,083 ,263 ,039 ,204 ,137 ,021 ,898 ,054 ,113 ,173
M2.l. Trust in teachers -,133 ,241 -,007 ,346 ,806 ,213 ,152 -,052 ,201 ,119 -,121 ,219 -,007 ,314 ,732 ,194 ,138 -,047 ,183 ,108
M2.m.Trust in school administrators ,011 ,303 ,067 ,349 ,941 ,079 ,246 ,150 ,074 ,104 ,010 ,259 ,058 ,298 ,804 ,068 ,210 ,128 ,063 ,089
M2.n. Trust in religious leaders -,044 ,353 -,149 ,274 ,301 ,083 -,009 ,149 ,920 ,063 -,040 ,317 -,134 ,246 ,270 ,075 -,008 ,133 ,826 ,057
M3.a. Trust in family members ,066 ,277 -,247 ,115 ,236 ,635 ,069 ,236 -,006 ,013 ,069 ,290 -,259 ,120 ,248 ,665 ,072 ,248 -,006 ,014
M3.b. Trust in relatives ,268 ,449 -,058 ,162 ,128 ,336 ,165 ,832 ,156 ,000 ,232 ,388 -,050 ,140 ,110 ,290 ,143 ,719 ,135 ,000
M3.c. Trust in people in own village -,061 ,713 -,040 ,249 ,148 ,090 ,087 ,482 ,179 ,133 -,055 ,650 -,036 ,227 ,135 ,082 ,080 ,439 ,163 ,121
M3.d. Trust in people outside the village ,040 ,866 -,301 ,112 ,281 -,308 ,081 ,110 -,065 -,039 ,036 ,780 -,271 ,101 ,253 -,277 ,073 ,099 -,059 -,035
M3.e. Trust in people of same ethnic group -,097 ,879 ,055 ,280 ,069 ,288 ,002 ,088 -,103 ,086 -,088 ,797 ,050 ,254 ,062 ,261 ,002 ,080 -,094 ,078
M3.f. Trust in people outside ethnic group -,136 ,956 -,171 ,171 ,024 ,104 ,134 ,003 ,077 ,057 -,120 ,845 -,151 ,151 ,021 ,091 ,119 ,003 ,068 ,051
M3.g. Trust in people from same church/ mosque ,029 ,493 ,356 ,333 ,098 ,599 ,011 ,060 ,180 ,041 ,028 ,467 ,337 ,316 ,093 ,567 ,010 ,057 ,170 ,039
M3.h. Trust in people not from same church/ mosque ,076 ,948 ,259 ,254 ,110 ,283 ,169 -,320 ,025 ,032 ,063 ,790 ,216 ,212 ,091 ,235 ,141 -,266 ,021 ,027
Extraction Method: Principal Component Analysis.
Rotation Method: Varimax with Kaiser Normalization.a
a. Rotation converged in 10 iterations.
Factor Analysis
Factor Analysis - Total Variance Explained - February 4, 2020
Total Variance ExplainedTotal Variance Explained, table, 2 levels of column headers and 2 levels of row headers, table with 5 columns and 24 rows
  Component Rotation Sums of Squared Loadings
  Total % of Variance Cumulative %
Raw 1 1,132 4,284 4,284
2 5,254 19,884 24,168
3 1,098 4,154 28,322
4 3,881 14,687 43,009
5 2,111 7,988 50,997
6 1,342 5,078 56,075
7 1,641 6,208 62,283
8 1,217 4,605 66,888
9 1,123 4,248 71,136
10 1,377 5,209 76,345
Rescaled 1 5,001 10,640 10,640
2 4,410 9,384 20,024
3 3,084 6,563 26,587
4 3,035 6,457 33,043
5 1,778 3,784 36,827
6 1,401 2,980 39,808
7 1,333 2,835 42,643
8 1,168 2,484 45,127
9 1,141 2,428 47,555
10 1,105 2,350 49,905
Extraction Method: Principal Component Analysis.
Factor Analysis
Factor Analysis - Component Transformation Matrix - February 4, 2020
Component Transformation MatrixComponent Transformation Matrix, table, 1 levels of column headers and 1 levels of row headers, table with 11 columns and 13 rows
Component 1 2 3 4 5 6 7 8 9 10
1 -,042 ,655 -,059 ,525 ,339 ,213 ,210 ,144 ,168 ,192
2 ,230 ,657 ,028 -,583 -,285 ,121 -,049 ,168 -,115 -,188
3 ,340 -,094 -,396 ,314 -,109 ,228 -,628 ,300 ,082 -,254
4 ,306 -,289 -,146 -,353 ,414 ,121 ,355 ,517 ,303 ,069
5 -,233 -,084 ,595 -,012 ,204 ,500 -,117 ,017 ,172 -,499
6 ,528 -,147 ,400 ,161 -,275 ,414 ,102 -,043 -,231 ,449
7 ,303 ,116 ,128 -,234 ,550 -,125 -,482 -,437 ,147 ,247
8 ,379 -,005 -,084 ,154 ,338 -,096 ,285 -,187 -,571 -,509
9 ,408 ,059 ,262 ,209 -,263 -,434 ,179 -,105 ,581 -,282
10 -,033 ,041 ,459 ,112 ,132 -,488 -,252 ,595 -,303 ,093
Extraction Method: Principal Component Analysis.
Rotation Method: Varimax with Kaiser Normalization.
Log
Log - Log - February 4, 2020

FACTOR
  /VARIABLES K1a K1b K1c K1d K1e K2a K2b K2c K2d K2e L2 L3a L3b L3c L3d L3e L3f L6 L7 L8a L8b L8c
    L8d L8f L8g L8h L8i L8j L8k L8l M1trust M2dTradAut M2eGVH M2fVH M2jPolice M2kTraders M2lTeacher
    M2mSchAdm M2nRelLead M3aFamil M3bRelatives M3cOwnVil M3dOutsideV M3eSameEthnic M3fOutsEthn
    M3gSameChM M3hNotSameChM
  /MISSING LISTWISE
  /ANALYSIS K1a K1b K1c K1d K1e K2a K2b K2c K2d K2e L2 L3a L3b L3c L3d L3e L3f L6 L7 L8a L8b L8c
    L8d L8f L8g L8h L8i L8j L8k L8l M1trust M2dTradAut M2eGVH M2fVH M2jPolice M2kTraders M2lTeacher
    M2mSchAdm M2nRelLead M3aFamil M3bRelatives M3cOwnVil M3dOutsideV M3eSameEthnic M3fOutsEthn
    M3gSameChM M3hNotSameChM
  /PRINT UNIVARIATE INITIAL EXTRACTION ROTATION
  /PLOT EIGEN
  /CRITERIA MINEIGEN(1) ITERATE(25)
  /EXTRACTION PC
  /CRITERIA ITERATE(25)
  /ROTATION VARIMAX
  /METHOD=COVARIANCE.

 - - - - - - - - - - - - - - - - - - - - - - - -   F A C T O R   A N A L Y S I S   - - - - - - - - - - - - - - - - - - - - - - - -

Factor Analysis
Factor Analysis - Active Dataset - February 4, 2020


[DataSet1] E:\Arkiv\1 MLTSC\04 MLTSC papers and report\Berge2009 Trust games\SPSS files\MLTSC HHQwithTrustData 20101116.sav

Factor Analysis
Factor Analysis - Descriptive Statistics - February 4, 2020
Descriptive StatisticsDescriptive Statistics, table, 1 levels of column headers and 1 levels of row headers, table with 4 columns and 49 rows
  Mean Std. Deviation Analysis N
K1a Lending money to family members .44 .498 221
K1b Lending money to relatives .49 .501 221
K1c Lending money to people in your own village .39 .489 221
K1d Lending money to people outside the village .15 .357 221
K1e Lending money to people from the same mosque/ church .15 .362 221
K2a Lending tools like axes, hoes etc. to family members .72 .448 221
K2b Lending tools like axes, hoes etc. to relatives outside the household .77 .419 221
K2c Lending tools like axes, hoes etc. to people in your own village .65 .478 221
K2d Lending tools like axes, hoes etc. to people outside the village .24 .431 221
K2e Lending tools like axes, hoes etc. to people from the same mosque/ church .27 .446 221
L2 Participated in cooperative agricultural work .40 .491 221
L3.a. Participated last 12 months in cooperative work of preparing a garden .21 .407 221
L3.b. Participated last12 months in cooperative work of planting .07 .252 221
L3.c. Participated last 12 months in cooperative work of irrigating .02 .134 221
L3.d. Participated last 12 months in cooperative work of weeding .17 .374 221
L3.e. Participated last 12 months in cooperative work of harvesting .20 .400 221
L3.f. Participated last 12 months in cooperative work of other agriculture work .15 .357 221
L6 Participation in other exchange work than agriculture .52 .501 221
L7 Participated in public works without payment during the last year .79 .407 221
L8.a. Participated in school project over the last 12 months .49 .501 221
L8.b. Participated in road project over the last 12 months .54 .500 221
L8.c. Participated in bridge project over the last 12 months .28 .448 221
L8.d. Participated in church project over the last 12 months .27 .446 221
L8.f. Participated in kindergarten project over the last 12 months .05 .208 221
L8.g. Participated in health centre project over the last 12 months .14 .353 221
L8.h. Participated in irrigation project over the last 12 months .12 .328 221
L8.i. Participated in borehole project over the last 12 months .29 .452 221
L8.j. Participated in dam project over the last 12 months .02 .149 221
L8.k. Participated in graveyard clearing project over the last 12 months .42 .494 221
L8.l. Participated in other projects over the last 12 months .08 .274 221
M1 Most people can be trusted (1) or you cannot be too careful (0) .45 .498 221
M2.d. Trust in Traditional Authorities 3.76 1.159 221
M2.e. Trust in group village headmen 3.67 1.200 221
M2.f. Trust in village headmen 3.68 1.206 221
M2.j. Trust in police 3.63 1.289 221
M2.k. Trust in traders 2.46 1.295 221
M2.l. Trust in teachers 3.81 1.101 221
M2.m.Trust in school administrators 3.69 1.171 221
M2.n. Trust in religious leaders 3.88 1.114 221
M3.a. Trust in family members 4.38 .954 221
M3.b. Trust in relatives 3.85 1.158 221
M3.c. Trust in people in own village 3.33 1.097 221
M3.d. Trust in people outside the village 2.73 1.110 221
M3.e. Trust in people of same ethnic group 3.16 1.103 221
M3.f. Trust in people outside ethnic group 2.80 1.132 221
M3.g. Trust in people from same church/ mosque 3.59 1.056 221
M3.h. Trust in people not from same church/ mosque 3.00 1.200 221
Factor Analysis
Factor Analysis - Communalities - February 4, 2020
CommunalitiesCommunalities, table, 2 levels of column headers and 1 levels of row headers, table with 5 columns and 51 rows
  Raw Rescaled
Initial Extraction Initial Extraction
K1a Lending money to family members .248 .118 1.000 .477
K1b Lending money to relatives .251 .131 1.000 .523
K1c Lending money to people in your own village .239 .124 1.000 .518
K1d Lending money to people outside the village .128 .036 1.000 .283
K1e Lending money to people from the same mosque/ church .131 .033 1.000 .250
K2a Lending tools like axes, hoes etc. to family members .201 .068 1.000 .341
K2b Lending tools like axes, hoes etc. to relatives outside the household .176 .046 1.000 .259
K2c Lending tools like axes, hoes etc. to people in your own village .228 .084 1.000 .368
K2d Lending tools like axes, hoes etc. to people outside the village .185 .056 1.000 .302
K2e Lending tools like axes, hoes etc. to people from the same mosque/ church .199 .084 1.000 .425
L2 Participated in cooperative agricultural work .241 .105 1.000 .435
L3.a. Participated last 12 months in cooperative work of preparing a garden .166 .048 1.000 .290
L3.b. Participated last12 months in cooperative work of planting .064 .010 1.000 .156
L3.c. Participated last 12 months in cooperative work of irrigating .018 .002 1.000 .094
L3.d. Participated last 12 months in cooperative work of weeding .140 .047 1.000 .334
L3.e. Participated last 12 months in cooperative work of harvesting .160 .048 1.000 .300
L3.f. Participated last 12 months in cooperative work of other agriculture work .128 .053 1.000 .412
L6 Participation in other exchange work than agriculture .251 .086 1.000 .342
L7 Participated in public works without payment during the last year .166 .098 1.000 .591
L8.a. Participated in school project over the last 12 months .251 .082 1.000 .329
L8.b. Participated in road project over the last 12 months .250 .112 1.000 .450
L8.c. Participated in bridge project over the last 12 months .201 .062 1.000 .308
L8.d. Participated in church project over the last 12 months .199 .058 1.000 .291
L8.f. Participated in kindergarten project over the last 12 months .043 .005 1.000 .113
L8.g. Participated in health centre project over the last 12 months .124 .020 1.000 .165
L8.h. Participated in irrigation project over the last 12 months .108 .021 1.000 .194
L8.i. Participated in borehole project over the last 12 months .205 .070 1.000 .341
L8.j. Participated in dam project over the last 12 months .022 .001 1.000 .064
L8.k. Participated in graveyard clearing project over the last 12 months .244 .075 1.000 .306
L8.l. Participated in other projects over the last 12 months .075 .013 1.000 .169
M1 Most people can be trusted (1) or you cannot be too careful (0) .248 .076 1.000 .305
M2.d. Trust in Traditional Authorities 1.344 1.192 1.000 .886
M2.e. Trust in group village headmen 1.440 1.282 1.000 .890
M2.f. Trust in village headmen 1.455 1.204 1.000 .827
M2.j. Trust in police 1.661 1.640 1.000 .988
M2.k. Trust in traders 1.677 1.660 1.000 .990
M2.l. Trust in teachers 1.212 .971 1.000 .801
M2.m.Trust in school administrators 1.370 1.209 1.000 .882
M2.n. Trust in religious leaders 1.241 1.194 1.000 .962
M3.a. Trust in family members .910 .675 1.000 .741
M3.b. Trust in relatives 1.340 1.176 1.000 .878
M3.c. Trust in people in own village 1.202 .894 1.000 .744
M3.d. Trust in people outside the village 1.233 1.053 1.000 .854
M3.e. Trust in people of same ethnic group 1.216 .977 1.000 .804
M3.f. Trust in people outside ethnic group 1.281 1.030 1.000 .804
M3.g. Trust in people from same church/ mosque 1.116 .888 1.000 .796
M3.h. Trust in people not from same church/ mosque 1.441 1.260 1.000 .874
Extraction Method: Principal Component Analysis.
Factor Analysis
Factor Analysis - Total Variance Explained - February 4, 2020
Total Variance ExplainedTotal Variance Explained, table, 2 levels of column headers and 2 levels of row headers, table with 11 columns and 99 rows
  Component Initial Eigenvaluesa Extraction Sums of Squared Loadings Rotation Sums of Squared Loadings
  Total % of Variance Cumulative % Total % of Variance Cumulative % Total % of Variance Cumulative %
Raw 1 9.670 36.593 36.593 9.670 36.593 36.593 1.132 4.284 4.284
2 2.153 8.148 44.742 2.153 8.148 44.742 5.254 19.884 24.168
3 1.667 6.308 51.050 1.667 6.308 51.050 1.098 4.154 28.322
4 1.441 5.454 56.503 1.441 5.454 56.503 3.881 14.687 43.009
5 1.166 4.411 60.914 1.166 4.411 60.914 2.111 7.988 50.997
6 1.024 3.873 64.787 1.024 3.873 64.787 1.342 5.078 56.075
7 .923 3.494 68.281 .923 3.494 68.281 1.641 6.208 62.283
8 .826 3.126 71.408 .826 3.126 71.408 1.217 4.605 66.888
9 .724 2.740 74.147 .724 2.740 74.147 1.123 4.248 71.136
10 .581 2.197 76.345 .581 2.197 76.345 1.377 5.209 76.345
11 .546 2.067 78.412            
12 .507 1.920 80.332            
13 .473 1.788 82.120            
14 .447 1.693 83.814            
15 .397 1.502 85.316            
16 .361 1.364 86.680            
17 .352 1.330 88.011            
18 .301 1.140 89.151            
19 .280 1.058 90.209            
20 .269 1.019 91.229            
21 .228 .862 92.090            
22 .195 .736 92.826            
23 .183 .693 93.519            
24 .167 .633 94.152            
25 .150 .569 94.721            
26 .142 .537 95.258            
27 .123 .465 95.723            
28 .119 .451 96.174            
29 .099 .374 96.548            
30 .094 .356 96.903            
31 .086 .326 97.230            
32 .083 .315 97.545            
33 .077 .292 97.836            
34 .068 .258 98.094            
35 .063 .237 98.332            
36 .061 .233 98.564            
37 .057 .218 98.782            
38 .052 .196 98.978            
39 .047 .178 99.155            
40 .046 .173 99.329            
41 .041 .154 99.483            
42 .033 .124 99.607            
43 .028 .107 99.714            
44 .026 .100 99.814            
45 .023 .089 99.902            
46 .014 .054 99.956            
47 .012 .044 100.000            
Rescaled 1 9.670 36.593 36.593 7.591 16.151 16.151 5.001 10.640 10.640
2 2.153 8.148 44.742 2.233 4.751 20.902 4.410 9.384 20.024
3 1.667 6.308 51.050 2.779 5.914 26.815 3.084 6.563 26.587
4 1.441 5.454 56.503 1.551 3.301 30.116 3.035 6.457 33.043
5 1.166 4.411 60.914 2.173 4.623 34.739 1.778 3.784 36.827
6 1.024 3.873 64.787 1.945 4.138 38.877 1.401 2.980 39.808
7 .923 3.494 68.281 1.197 2.546 41.424 1.333 2.835 42.643
8 .826 3.126 71.408 1.346 2.864 44.288 1.168 2.484 45.127
9 .724 2.740 74.147 1.596 3.395 47.683 1.141 2.428 47.555
10 .581 2.197 76.345 1.045 2.222 49.905 1.105 2.350 49.905
11 .546 2.067 78.412            
12 .507 1.920 80.332            
13 .473 1.788 82.120            
14 .447 1.693 83.814            
15 .397 1.502 85.316            
16 .361 1.364 86.680            
17 .352 1.330 88.011            
18 .301 1.140 89.151            
19 .280 1.058 90.209            
20 .269 1.019 91.229            
21 .228 .862 92.090            
22 .195 .736 92.826            
23 .183 .693 93.519            
24 .167 .633 94.152            
25 .150 .569 94.721            
26 .142 .537 95.258            
27 .123 .465 95.723            
28 .119 .451 96.174            
29 .099 .374 96.548            
30 .094 .356 96.903            
31 .086 .326 97.230            
32 .083 .315 97.545            
33 .077 .292 97.836            
34 .068 .258 98.094            
35 .063 .237 98.332            
36 .061 .233 98.564            
37 .057 .218 98.782            
38 .052 .196 98.978            
39 .047 .178 99.155            
40 .046 .173 99.329            
41 .041 .154 99.483            
42 .033 .124 99.607            
43 .028 .107 99.714            
44 .026 .100 99.814            
45 .023 .089 99.902            
46 .014 .054 99.956            
47 .012 .044 100.000            
Extraction Method: Principal Component Analysis.
a. When analyzing a covariance matrix, the initial eigenvalues are the same across the raw and rescaled solution.
Factor Analysis
Factor Analysis - Scree Plot - February 4, 2020
Scree Plot Component Number: 47
Eigenvalue: 0.0116 Component Number: 46
Eigenvalue: 0.0142 Component Number: 45
Eigenvalue: 0.0235 Component Number: 44
Eigenvalue: 0.0264 Component Number: 43
Eigenvalue: 0.0283 Component Number: 42
Eigenvalue: 0.0326 Component Number: 41
Eigenvalue: 0.0408 Component Number: 40
Eigenvalue: 0.0458 Component Number: 39
Eigenvalue: 0.0469 Component Number: 38
Eigenvalue: 0.0518 Component Number: 37
Eigenvalue: 0.0575 Component Number: 36
Eigenvalue: 0.0615 Component Number: 35
Eigenvalue: 0.0628 Component Number: 34
Eigenvalue: 0.0682 Component Number: 33
Eigenvalue: 0.0771 Component Number: 32
Eigenvalue: 0.0833 Component Number: 31
Eigenvalue: 0.0862 Component Number: 30
Eigenvalue: 0.0940 Component Number: 29
Eigenvalue: 0.0988 Component Number: 28
Eigenvalue: 0.1191 Component Number: 27
Eigenvalue: 0.1230 Component Number: 26
Eigenvalue: 0.1419 Component Number: 25
Eigenvalue: 0.1503 Component Number: 24
Eigenvalue: 0.1672 Component Number: 23
Eigenvalue: 0.1832 Component Number: 22
Eigenvalue: 0.1945 Component Number: 21
Eigenvalue: 0.2277 Component Number: 20
Eigenvalue: 0.2694 Component Number: 19
Eigenvalue: 0.2797 Component Number: 18
Eigenvalue: 0.3013 Component Number: 17
Eigenvalue: 0.3516 Component Number: 16
Eigenvalue: 0.3605 Component Number: 15
Eigenvalue: 0.3970 Component Number: 14
Eigenvalue: 0.4475 Component Number: 13
Eigenvalue: 0.4726 Component Number: 12
Eigenvalue: 0.5074 Component Number: 11
Eigenvalue: 0.5462 Component Number: 10
Eigenvalue: 0.5807 Component Number: 9
Eigenvalue: 0.7240 Component Number: 8
Eigenvalue: 0.8262 Component Number: 7
Eigenvalue: 0.9234 Component Number: 6
Eigenvalue: 1.0235 Component Number: 5
Eigenvalue: 1.1656 Component Number: 4
Eigenvalue: 1.4413 Component Number: 3
Eigenvalue: 1.6670 Component Number: 2
Eigenvalue: 2.1533 Component Number: 1
Eigenvalue: 9.6703 Component Number: 46
Eigenvalue: 0.0142 Component Number: 45
Eigenvalue: 0.0235 Component Number: 44
Eigenvalue: 0.0264 Component Number: 43
Eigenvalue: 0.0283 Component Number: 42
Eigenvalue: 0.0326 Component Number: 41
Eigenvalue: 0.0408 Component Number: 40
Eigenvalue: 0.0458 Component Number: 39
Eigenvalue: 0.0469 Component Number: 38
Eigenvalue: 0.0518 Component Number: 37
Eigenvalue: 0.0575 Component Number: 36
Eigenvalue: 0.0615 Component Number: 35
Eigenvalue: 0.0628 Component Number: 34
Eigenvalue: 0.0682 Component Number: 33
Eigenvalue: 0.0771 Component Number: 32
Eigenvalue: 0.0833 Component Number: 31
Eigenvalue: 0.0862 Component Number: 30
Eigenvalue: 0.0940 Component Number: 29
Eigenvalue: 0.0988 Component Number: 28
Eigenvalue: 0.1191 Component Number: 27
Eigenvalue: 0.1230 Component Number: 26
Eigenvalue: 0.1419 Component Number: 25
Eigenvalue: 0.1503 Component Number: 24
Eigenvalue: 0.1672 Component Number: 23
Eigenvalue: 0.1832 Component Number: 22
Eigenvalue: 0.1945 Component Number: 21
Eigenvalue: 0.2277 Component Number: 20
Eigenvalue: 0.2694 Component Number: 19
Eigenvalue: 0.2797 Component Number: 18
Eigenvalue: 0.3013 Component Number: 17
Eigenvalue: 0.3516 Component Number: 16
Eigenvalue: 0.3605 Component Number: 15
Eigenvalue: 0.3970 Component Number: 14
Eigenvalue: 0.4475 Component Number: 13
Eigenvalue: 0.4726 Component Number: 12
Eigenvalue: 0.5074 Component Number: 11
Eigenvalue: 0.5462 Component Number: 10
Eigenvalue: 0.5807 Component Number: 9
Eigenvalue: 0.7240 Component Number: 8
Eigenvalue: 0.8262 Component Number: 7
Eigenvalue: 0.9234 Component Number: 6
Eigenvalue: 1.0235 Component Number: 5
Eigenvalue: 1.1656 Component Number: 4
Eigenvalue: 1.4413 Component Number: 3
Eigenvalue: 1.6670 Component Number: 2
Eigenvalue: 2.1533 Component Number: 1
Eigenvalue: 9.6703 0 2 4 6 8 10 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47

{"copyright":"(C) Copyright IBM Corp. 2011","grammar":[{"elements":[{"data":{"$ref":"dSource"},"style":{"outline":{"r":0,"b":0,"g":0},"fill":{"r":0,"b":157,"g":100},"stroke":{"width":3.3333333}},"position":[{"field":{"$ref":"fVariable1"}},{"field":{"$ref":"fVariable"}}],"type":"line"},{"data":{"$ref":"dSource"},"style":{"symbol":"circle","outline":{"r":0,"b":157,"g":100},"size":6.6666665,"fill":{"r":119,"b":119,"g":118}},"position":[{"field":{"$ref":"fVariable1"}},{"field":{"$ref":"fVariable"}}],"type":"point"}],"coordinates":{"style":{"outline":{"r":0,"b":157,"g":100},"fill":{"r":255,"b":255,"g":255}},"dimensions":[{"scale":{"padding":{"left":"5%","right":"5%"}},"axis":[{"tickStyle":{"padding":5.0,"fill":{"r":0,"b":157,"g":100},"font":{"size":"8pt","weight":"normal","family":"sans-serif"}},"gridStyle":{"fill":{"r":0,"b":157,"g":100}},"lineStyle":{"fill":{"r":0,"b":157,"g":100},"stroke":{"width":0.6666667}},"titleStyle":{"padding":6.0,"fill":{"r":0,"b":157,"g":100},"font":{"size":"12pt","weight":"bold","family":"sans-serif"}},"title":["Eigenvalue"],"markStyle":{"fill":{"a":0,"r":0,"b":157,"g":100},"stroke":{"width":1.3333334}}}]},{"scale":{"padding":{"left":"5%","right":"5%"}},"axis":[{"tickStyle":{"padding":5.0,"fill":{"r":0,"b":157,"g":100},"font":{"size":"12pt","weight":"normal","family":"sans-serif"}},"lineStyle":{"fill":{"r":0,"b":157,"g":100},"stroke":{"width":0.6666667}},"titleStyle":{"padding":6.0,"fill":{"r":0,"b":157,"g":100},"font":{"size":"12pt","weight":"bold","family":"sans-serif"}},"title":["Component Number"],"markStyle":{"fill":{"a":0,"r":0,"b":157,"g":100},"stroke":{"width":1.3333334}}}]}]}}],"data":[{"id":"dSource","fields":[{"id":"fVariable","label":"Component Number","categories":[]},{"min":0.01164268156971305,"max":9.670268737370698,"id":"fVariable1","label":"Eigenvalue"}],"rows":[[0,9.670268737370698],[1,2.153297637642992],[2,1.666951265060417],[3,1.441268496557172],[4,1.165558819212147],[5,1.023527970753916],[6,0.9233629298237548],[7,0.8261853466431138],[8,0.724010367455887],[9,0.5806746172424283],[10,0.5461824387346055],[11,0.5074297351884859],[12,0.4726215784524337],[13,0.4474970752342117],[14,0.3970394401060312],[15,0.3605374029433688],[16,0.3515820530038962],[17,0.3012742057002933],[18,0.2797088942310774],[19,0.2693669701532067],[20,0.227690795932494],[21,0.1945431387707281],[22,0.1831530185347112],[23,0.1672083269473193],[24,0.1502513318826814],[25,0.1418666650451943],[26,0.1229740901331941],[27,0.1191372402058716],[28,0.09883058308873001],[29,0.09401336174536942],[30,0.08618988591893777],[31,0.08328958600875033],[32,0.07705700828741277],[33,0.06817608171736186],[34,0.06276082158674062],[35,0.0614619772166295],[36,0.05749826780480936],[37,0.05176381243503594],[38,0.04693660578678929],[39,0.04582224648781583],[40,0.0407689273571331],[41,0.03263756836768122],[42,0.02831011942713782],[43,0.02637006492625381],[44,0.02345463835969965],[45,0.01417178750756063],[46,0.01164268156971305]]}],"size":{"width":850.0,"height":500.0},"style":{"outline":{"a":0.0,"r":0,"b":0,"g":0},"fill":{"r":255,"b":255,"g":255}},"titles":[{"backgroundStyle":{"outline":{"a":0.0,"r":0,"b":0,"g":0},"fill":{"a":0.0,"r":0,"b":0,"g":0}},"style":{"padding":3.0,"fill":{"r":0,"b":157,"g":100},"font":{"size":"12pt","weight":"bold","family":"sans-serif"}},"type":"title","content":["Scree Plot"]}],"version":"6.0"}

Factor Analysis
Factor Analysis - Component Matrix - February 4, 2020
Component MatrixaComponent Matrix, table, 3 levels of column headers and 1 levels of row headers, table with 21 columns and 53 rows
  Raw Rescaled
Component Component
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
K1a Lending money to family members -.051 .065 .249 .062 -.089 .156 .035 .073 .081 -.001 -.102 .130 .500 .125 -.178 .314 .070 .147 .163 -.003
K1b Lending money to relatives -.032 .079 .232 .076 -.125 .165 .015 .109 .090 -.043 -.064 .157 .462 .151 -.249 .329 .030 .217 .179 -.085
K1c Lending money to people in your own village .010 .055 .215 .098 -.093 .158 .091 .113 .070 -.073 .020 .112 .440 .201 -.191 .323 .186 .230 .144 -.149
K1d Lending money to people outside the village .011 .062 .042 .058 -.037 .090 .061 .054 .103 -.022 .030 .173 .118 .161 -.103 .251 .170 .152 .289 -.060
K1e Lending money to people from the same mosque/ church -.018 .023 .109 .064 .009 .073 .029 .049 .085 -.004 -.049 .063 .300 .178 .024 .203 .080 .134 .235 -.010
K2a Lending tools like axes, hoes etc. to family members -.100 .070 .138 .061 -.030 .095 .069 .051 .103 .051 -.223 .157 .307 .137 -.068 .213 .154 .114 .231 .114
K2b Lending tools like axes, hoes etc. to relatives outside the household -.060 .068 .045 .070 -.058 .058 .091 .099 .068 .032 -.142 .163 .107 .166 -.138 .138 .218 .236 .162 .075
K2c Lending tools like axes, hoes etc. to people in your own village -.059 .046 .034 .064 .001 .093 .092 .128 .197 .026 -.124 .097 .072 .134 .002 .196 .193 .268 .412 .055
K2d Lending tools like axes, hoes etc. to people outside the village .004 -.007 -.022 .009 .064 .074 .086 .085 .176 -.005 .009 -.016 -.051 .021 .149 .173 .199 .197 .410 -.012
K2e Lending tools like axes, hoes etc. to people from the same mosque/ church -.023 .011 .008 -.014 .142 .061 .069 .119 .190 .069 -.052 .025 .018 -.031 .318 .137 .154 .268 .425 .155
L2 Participated in cooperative agricultural work .015 .066 .087 .095 -.136 .163 .111 .134 .082 -.035 .031 .135 .178 .193 -.278 .333 .227 .273 .167 -.071
L3.a. Participated last 12 months in cooperative work of preparing a garden .043 .043 .048 .044 -.074 .083 .057 .079 .107 -.082 .105 .106 .119 .108 -.181 .205 .139 .194 .263 -.202
L3.b. Participated last12 months in cooperative work of planting .006 .054 -.005 .035 .002 .048 .020 .048 .018 .018 .025 .216 -.021 .137 .009 .189 .081 .192 .070 .073
L3.c. Participated last 12 months in cooperative work of irrigating .011 -.009 -.015 -.003 -.001 .025 .014 .014 .012 .010 .084 -.065 -.111 -.026 -.006 .188 .102 .103 .088 .072
L3.d. Participated last 12 months in cooperative work of weeding .023 .011 .025 .066 -.052 .138 .094 .071 .068 -.027 .062 .028 .068 .177 -.140 .369 .251 .190 .181 -.072
L3.e. Participated last 12 months in cooperative work of harvesting .002 .068 .034 .075 -.096 .114 .083 .087 .001 .005 .006 .169 .085 .188 -.239 .284 .209 .218 .001 .011
L3.f. Participated last 12 months in cooperative work of other agriculture work .030 .117 .104 .079 -.111 .012 .050 .071 .000 -.030 .084 .329 .291 .222 -.309 .035 .141 .198 -.001 -.084
L6 Participation in other exchange work than agriculture -.058 .105 .140 .073 -.095 .148 .074 .043 .089 -.008 -.116 .209 .279 .147 -.190 .297 .148 .087 .178 -.016
L7 Participated in public works without payment during the last year -.047 -.131 -.142 -.085 .180 -.020 .011 -.076 .006 .111 -.115 -.323 -.348 -.209 .443 -.050 .028 -.187 .014 .272
L8.a. Participated in school project over the last 12 months .000 -.068 -.111 -.047 .153 .125 -.002 .004 .058 .146 -.001 -.135 -.221 -.094 .305 .249 -.004 .007 .115 .290
L8.b. Participated in road project over the last 12 months -.051 .039 -.172 -.013 .239 .046 .035 -.056 .060 .106 -.103 .077 -.343 -.027 .479 .092 .071 -.113 .120 .213
L8.c. Participated in bridge project over the last 12 months -.035 -.032 -.123 -.016 .105 .093 .041 -.051 .089 .111 -.078 -.071 -.274 -.037 .235 .208 .092 -.114 .198 .247
L8.d. Participated in church project over the last 12 months -.006 .030 -.145 -.007 .132 .089 -.045 .039 -.024 .077 -.012 .067 -.326 -.017 .297 .200 -.101 .088 -.054 .174
L8.f. Participated in kindergarten project over the last 12 months .010 .003 -.052 .025 .023 .008 -.012 .024 -.005 .013 .050 .012 -.249 .118 .110 .038 -.060 .117 -.022 .060
L8.g. Participated in health centre project over the last 12 months -.055 .031 -.083 -.021 .051 .041 -.011 -.030 .028 .054 -.156 .089 -.236 -.059 .146 .116 -.032 -.085 .080 .154
L8.h. Participated in irrigation project over the last 12 months -.020 .046 -.014 -.023 .093 .061 .042 .000 .008 .059 -.060 .140 -.043 -.071 .283 .186 .127 .001 .025 .180
L8.i. Participated in borehole project over the last 12 months .018 .029 -.151 .015 .104 -.014 -.119 .020 -.043 .135 .040 .065 -.333 .034 .229 -.031 -.263 .043 -.096 .299
L8.j. Participated in dam project over the last 12 months .001 .001 -.014 -.018 .006 .005 -.014 -.012 -.009 .020 .005 .006 -.095 -.122 .041 .031 -.095 -.079 -.060 .137
L8.k. Participated in graveyard clearing project over the last 12 months -.082 .026 -.147 -.006 .097 -.094 -.007 -.104 .103 .077 -.165 .052 -.298 -.013 .196 -.190 -.013 -.211 .208 .156
L8.l. Participated in other projects over the last 12 months .034 .007 -.015 -.044 .024 -.043 .007 -.016 -.055 -.060 .123 .025 -.056 -.161 .089 -.155 .025 -.057 -.201 -.218
M1 Most people can be trusted (1) or you cannot be too careful (0) .160 .172 .039 .040 -.084 -.005 .073 -.040 .058 -.013 .320 .345 .077 .079 -.168 -.010 .147 -.080 .116 -.026
M2.d. Trust in Traditional Authorities .799 -.514 .225 -.347 .060 .039 -.148 .105 .207 .194 .689 -.443 .194 -.299 .051 .034 -.128 .091 .179 .167
M2.e. Trust in group village headmen .880 -.486 .305 -.358 -.105 .045 -.156 .091 .061 .018 .734 -.405 .254 -.298 -.087 .038 -.130 .076 .051 .015
M2.f. Trust in village headmen .918 -.437 .303 -.039 -.077 -.061 -.172 .052 -.101 -.157 .761 -.362 .251 -.032 -.064 -.051 -.143 .043 -.083 -.130
M2.j. Trust in police .852 -.258 -.304 .027 -.516 .444 .294 -.405 -.162 .116 .661 -.200 -.236 .021 -.401 .344 .228 -.314 -.126 .090
M2.k. Trust in traders .751 -.105 -.773 .353 -.149 .101 -.468 .172 .209 -.194 .580 -.081 -.597 .273 -.115 .078 -.361 .133 .162 -.150
M2.l. Trust in teachers .746 -.340 -.121 .225 .230 -.162 .331 .132 -.158 -.067 .677 -.309 -.110 .204 .208 -.147 .300 .119 -.144 -.061
M2.m.Trust in school administrators .818 -.274 -.157 .377 .174 -.133 .326 .308 -.127 .182 .699 -.234 -.134 .322 .148 -.114 .278 .263 -.109 .155
M2.n. Trust in religious leaders .692 -.110 .193 .300 .122 -.331 .190 -.458 .404 -.205 .621 -.099 .173 .270 .109 -.297 .170 -.411 .363 -.184
M3.a. Trust in family members .519 .167 .273 .256 .167 .115 -.090 .053 -.355 -.244 .544 .175 .286 .268 .175 .121 -.094 .056 -.373 -.255
M3.b. Trust in relatives .666 .378 .344 .533 .079 .127 -.305 -.057 .007 .260 .576 .327 .297 .460 .068 .110 -.263 -.050 .006 .225
M3.c. Trust in people in own village .815 .308 .081 .109 -.035 -.110 -.123 -.179 .012 .240 .743 .281 .074 .099 -.032 -.100 -.112 -.163 .011 .219
M3.d. Trust in people outside the village .686 .416 -.028 -.092 -.358 -.412 .134 .237 .047 .158 .618 .375 -.025 -.083 -.322 -.371 .120 .214 .043 .142
M3.e. Trust in people of same ethnic group .820 .419 .003 -.307 .077 .046 -.018 -.007 -.152 .056 .744 .380 .003 -.278 .070 .041 -.016 -.007 -.137 .051
M3.f. Trust in people outside ethnic group .814 .473 -.086 -.255 -.127 -.196 -.033 -.053 -.008 -.112 .719 .418 -.076 -.225 -.112 -.173 -.029 -.047 -.007 -.099
M3.g. Trust in people from same church/ mosque .686 .172 .069 -.098 .490 .335 .018 -.126 .006 -.077 .649 .163 .065 -.093 .464 .317 .017 -.119 .006 -.073
M3.h. Trust in people not from same church/ mosque .833 .431 -.241 -.395 .181 .171 .201 .129 .125 -.177 .694 .359 -.201 -.329 .151 .142 .168 .108 .104 -.148
Extraction Method: Principal Component Analysis.
a. 10 components extracted.
Factor Analysis
Factor Analysis - Rotated Component Matrix - February 4, 2020
Rotated Component MatrixaRotated Component Matrix, table, 3 levels of column headers and 1 levels of row headers, table with 21 columns and 53 rows
  Raw Rescaled
Component Component
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
K1a Lending money to family members .296 -.039 -.074 .038 -.076 .036 -.103 .064 -.017 -.018 .594 -.079 -.149 .077 -.152 .072 -.207 .128 -.035 -.037
K1b Lending money to relatives .322 -.022 -.110 .039 -.082 .040 -.047 .046 -.027 -.019 .642 -.044 -.221 .077 -.164 .080 -.094 .092 -.054 -.038
K1c Lending money to people in your own village .322 -.011 -.104 .035 .002 .071 -.054 .006 .002 .000 .658 -.022 -.213 .072 .005 .146 -.111 .012 .005 -.001
K1d Lending money to people outside the village .183 .029 .010 -.009 -.005 -.002 .017 -.011 .033 -.001 .513 .080 .029 -.026 -.014 -.006 .047 -.030 .092 -.003
K1e Lending money to people from the same mosque/ church .161 -.029 .004 .019 -.007 .023 -.028 .031 .034 -.044 .446 -.081 .011 .052 -.019 .064 -.076 .086 .095 -.122
K2a Lending tools like axes, hoes etc. to family members .224 -.045 .020 -.037 -.041 -.033 -.089 .046 .003 -.038 .500 -.101 .044 -.083 -.092 -.074 -.199 .102 .007 -.086
K2b Lending tools like axes, hoes etc. to relatives outside the household .191 -.007 .002 -.060 .026 -.057 -.018 .002 -.030 -.020 .455 -.016 .004 -.143 .063 -.135 -.043 .005 -.071 -.048
K2c Lending tools like axes, hoes etc. to people in your own village .249 -.022 .085 -.013 .010 -.074 .017 -.031 .032 -.078 .522 -.045 .177 -.026 .020 -.156 .035 -.065 .067 -.164
K2d Lending tools like axes, hoes etc. to people outside the village .148 .001 .123 .036 .031 -.034 .034 -.080 .064 -.063 .344 .002 .285 .084 .071 -.079 .079 -.185 .149 -.146
K2e Lending tools like axes, hoes etc. to people from the same mosque/ church .142 -.004 .190 .047 .032 -.043 -.008 -.038 .033 -.144 .320 -.009 .425 .105 .071 -.097 -.018 -.085 .073 -.322
L2 Participated in cooperative agricultural work .310 .021 -.055 -.001 .023 -.003 .019 -.024 -.032 .049 .632 .043 -.112 -.001 .048 -.007 .039 -.049 -.066 .100
L3.a. Participated last 12 months in cooperative work of preparing a garden .193 .042 -.047 .023 -.004 .007 .044 -.054 .038 .001 .474 .103 -.114 .058 -.010 .018 .109 -.133 .094 .003
L3.b. Participated last12 months in cooperative work of planting .077 .027 .030 -.026 .014 .008 .021 .015 -.026 -.008 .305 .107 .120 -.104 .056 .032 .085 .061 -.102 -.031
L3.c. Participated last 12 months in cooperative work of irrigating .019 .003 .023 .014 .010 -.005 .011 -.011 -.007 .013 .140 .023 .173 .105 .073 -.039 .079 -.084 -.054 .097
L3.d. Participated last 12 months in cooperative work of weeding .199 -.002 .015 .014 .035 .016 .026 -.037 .005 .054 .533 -.006 .039 .037 .094 .043 .070 -.100 .012 .144
L3.e. Participated last 12 months in cooperative work of harvesting .191 .022 -.029 -.040 .034 .004 .009 .004 -.063 .060 .477 .054 -.072 -.100 .085 .009 .022 .010 -.157 .149
L3.f. Participated last 12 months in cooperative work of other agriculture work .161 .076 -.125 -.049 .020 .005 -.019 .040 -.022 -.003 .450 .212 -.351 -.137 .056 .015 -.053 .113 -.061 -.008
L6 Participation in other exchange work than agriculture .272 -.004 -.031 -.041 -.064 .007 -.058 .026 .002 .023 .544 -.008 -.063 -.082 -.127 .014 -.116 .053 .003 .046
L7 Participated in public works without payment during the last year -.182 -.084 .227 .031 .038 -.037 -.022 -.037 .021 -.003 -.447 -.207 .558 .077 .093 -.092 -.054 -.090 .050 -.008
L8.a. Participated in school project over the last 12 months -.018 -.043 .271 .068 .013 -.007 .027 .009 -.031 .012 -.036 -.085 .541 .137 .026 -.015 .053 .018 -.063 .024
L8.b. Participated in road project over the last 12 months -.073 -.003 .309 -.087 .019 .015 .018 -.005 .039 -.043 -.145 -.006 .618 -.173 .039 .029 .036 -.010 .078 -.086
L8.c. Participated in bridge project over the last 12 months -.002 -.035 .236 -.005 -.004 -.043 .016 -.010 .032 .040 -.005 -.079 .527 -.012 -.009 -.096 .036 -.021 .072 .089
L8.d. Participated in church project over the last 12 months -.039 .004 .195 -.030 .010 .046 .089 .016 -.083 -.013 -.088 .009 .436 -.068 .022 .103 .199 .036 -.186 -.030
L8.f. Participated in kindergarten project over the last 12 months -.008 .002 .034 -.013 .025 .004 .050 .008 -.016 -.004 -.038 .009 .164 -.062 .122 .017 .242 .039 -.075 -.022
L8.g. Participated in health centre project over the last 12 months -.021 -.009 .121 -.050 -.044 -.021 .018 .001 -.011 .006 -.058 -.026 .342 -.142 -.126 -.060 .051 .002 -.031 .016
L8.h. Participated in irrigation project over the last 12 months .024 .016 .126 -.026 .003 .029 -.044 .004 -.022 -.016 .073 .050 .383 -.079 .009 .090 -.134 .011 -.068 -.049
L8.i. Participated in borehole project over the last 12 months -.123 .023 .147 -.027 .016 -.013 .110 .106 -.082 -.035 -.272 .052 .325 -.060 .035 -.030 .243 .235 -.181 -.078
L8.j. Participated in dam project over the last 12 months -.022 .005 .020 .004 -.013 -.003 -.001 .008 -.013 .008 -.149 .035 .134 .030 -.085 -.023 -.006 .054 -.090 .056
L8.k. Participated in graveyard clearing project over the last 12 months -.117 -.006 .155 -.103 -.032 -.111 .023 .008 .103 -.044 -.236 -.012 .314 -.208 -.064 -.224 .047 .017 .208 -.090
L8.l. Participated in other projects over the last 12 months -.071 .040 -.031 -.005 .015 .048 -.009 -.049 .000 -.006 -.259 .147 -.115 -.018 .054 .173 -.033 -.179 .002 -.020
M1 Most people can be trusted (1) or you cannot be too careful (0) .106 .222 -.056 -.031 .011 .000 -.009 .044 .080 .052 .213 .445 -.112 -.062 .023 .000 -.018 .089 .160 .104
M2.d. Trust in Traditional Authorities -.101 .256 .067 1.034 .175 -.013 .015 .055 .088 .026 -.087 .221 .057 .892 .151 -.011 .013 .047 .076 .023
M2.e. Trust in group village headmen -.095 .320 -.182 1.042 .152 .097 .015 .003 .048 .130 -.079 .266 -.151 .868 .127 .081 .012 .003 .040 .109
M2.f. Trust in village headmen -.131 .279 -.376 .847 .317 .280 .132 .114 .153 .135 -.108 .231 -.311 .702 .262 .232 .110 .094 .127 .112
M2.j. Trust in police .029 .418 .012 .419 .262 .025 .183 .008 .110 1.083 .022 .324 .009 .325 .204 .020 .142 .006 .085 .841
M2.k. Trust in traders -.107 .340 .051 .264 .177 .027 1.162 .069 .147 .224 -.083 .263 .039 .204 .137 .021 .898 .054 .113 .173
M2.l. Trust in teachers -.133 .241 -.007 .346 .806 .213 .152 -.052 .201 .119 -.121 .219 -.007 .314 .732 .194 .138 -.047 .183 .108
M2.m.Trust in school administrators .011 .303 .067 .349 .941 .079 .246 .150 .074 .104 .010 .259 .058 .298 .804 .068 .210 .128 .063 .089
M2.n. Trust in religious leaders -.044 .353 -.149 .274 .301 .083 -.009 .149 .920 .063 -.040 .317 -.134 .246 .270 .075 -.008 .133 .826 .057
M3.a. Trust in family members .066 .277 -.247 .115 .236 .635 .069 .236 -.006 .013 .069 .290 -.259 .120 .248 .665 .072 .248 -.006 .014
M3.b. Trust in relatives .268 .449 -.058 .162 .128 .336 .165 .832 .156 .000 .232 .388 -.050 .140 .110 .290 .143 .719 .135 .000
M3.c. Trust in people in own village -.061 .713 -.040 .249 .148 .090 .087 .482 .179 .133 -.055 .650 -.036 .227 .135 .082 .080 .439 .163 .121
M3.d. Trust in people outside the village .040 .866 -.301 .112 .281 -.308 .081 .110 -.065 -.039 .036 .780 -.271 .101 .253 -.277 .073 .099 -.059 -.035
M3.e. Trust in people of same ethnic group -.097 .879 .055 .280 .069 .288 .002 .088 -.103 .086 -.088 .797 .050 .254 .062 .261 .002 .080 -.094 .078
M3.f. Trust in people outside ethnic group -.136 .956 -.171 .171 .024 .104 .134 .003 .077 .057 -.120 .845 -.151 .151 .021 .091 .119 .003 .068 .051
M3.g. Trust in people from same church/ mosque .029 .493 .356 .333 .098 .599 .011 .060 .180 .041 .028 .467 .337 .316 .093 .567 .010 .057 .170 .039
M3.h. Trust in people not from same church/ mosque .076 .948 .259 .254 .110 .283 .169 -.320 .025 .032 .063 .790 .216 .212 .091 .235 .141 -.266 .021 .027
Extraction Method: Principal Component Analysis.
Rotation Method: Varimax with Kaiser Normalization.a
a. Rotation converged in 10 iterations.
Factor Analysis
Factor Analysis - Component Transformation Matrix - February 4, 2020
Component Transformation MatrixComponent Transformation Matrix, table, 1 levels of column headers and 1 levels of row headers, table with 11 columns and 13 rows
Component 1 2 3 4 5 6 7 8 9 10
1 -.042 .655 -.059 .525 .339 .213 .210 .144 .168 .192
2 .230 .657 .028 -.583 -.285 .121 -.049 .168 -.115 -.188
3 .340 -.094 -.396 .314 -.109 .228 -.628 .300 .082 -.254
4 .306 -.289 -.146 -.353 .414 .121 .355 .517 .303 .069
5 -.233 -.084 .595 -.012 .204 .500 -.117 .017 .172 -.499
6 .528 -.147 .400 .161 -.275 .414 .102 -.043 -.231 .449
7 .303 .116 .128 -.234 .550 -.125 -.482 -.437 .147 .247
8 .379 -.005 -.084 .154 .338 -.096 .285 -.187 -.571 -.509
9 .408 .059 .262 .209 -.263 -.434 .179 -.105 .581 -.282
10 -.033 .041 .459 .112 .132 -.488 -.252 .595 -.303 .093
Extraction Method: Principal Component Analysis.
Rotation Method: Varimax with Kaiser Normalization.
Log
Log - Log - February 4, 2020

FACTOR
  /VARIABLES K1a K1b K1c K1d K1e K2a K2b K2c K2d K2e L2 L3a L3b L3c L3d L3e L3f L6 L7 L8a L8b L8c
    L8d L8f L8g L8h L8i L8j L8k L8l M1trust M2dTradAut M2eGVH M2fVH M2jPolice M2kTraders M2lTeacher
    M2mSchAdm M2nRelLead M3aFamil M3bRelatives M3cOwnVil M3dOutsideV M3eSameEthnic M3fOutsEthn
    M3gSameChM M3hNotSameChM
  /MISSING LISTWISE
  /ANALYSIS K1a K1b K1c K1d K1e K2a K2b K2c K2d K2e L2 L3a L3b L3c L3d L3e L3f L6 L7 L8a L8b L8c
    L8d L8f L8g L8h L8i L8j L8k L8l M1trust M2dTradAut M2eGVH M2fVH M2jPolice M2kTraders M2lTeacher
    M2mSchAdm M2nRelLead M3aFamil M3bRelatives M3cOwnVil M3dOutsideV M3eSameEthnic M3fOutsEthn
    M3gSameChM M3hNotSameChM
  /PRINT UNIVARIATE INITIAL EXTRACTION ROTATION
  /PLOT EIGEN
  /CRITERIA FACTORS(6) ITERATE(25)
  /EXTRACTION PC
  /CRITERIA ITERATE(25)
  /ROTATION VARIMAX
  /METHOD=COVARIANCE.

Factor Analysis
Factor Analysis - Descriptive Statistics - February 4, 2020
Descriptive StatisticsDescriptive Statistics, table, 1 levels of column headers and 1 levels of row headers, table with 4 columns and 49 rows
  Mean Std. Deviation Analysis N
K1a Lending money to family members .44 .498 221
K1b Lending money to relatives .49 .501 221
K1c Lending money to people in your own village .39 .489 221
K1d Lending money to people outside the village .15 .357 221
K1e Lending money to people from the same mosque/ church .15 .362 221
K2a Lending tools like axes, hoes etc. to family members .72 .448 221
K2b Lending tools like axes, hoes etc. to relatives outside the household .77 .419 221
K2c Lending tools like axes, hoes etc. to people in your own village .65 .478 221
K2d Lending tools like axes, hoes etc. to people outside the village .24 .431 221
K2e Lending tools like axes, hoes etc. to people from the same mosque/ church .27 .446 221
L2 Participated in cooperative agricultural work .40 .491 221
L3.a. Participated last 12 months in cooperative work of preparing a garden .21 .407 221
L3.b. Participated last12 months in cooperative work of planting .07 .252 221
L3.c. Participated last 12 months in cooperative work of irrigating .02 .134 221
L3.d. Participated last 12 months in cooperative work of weeding .17 .374 221
L3.e. Participated last 12 months in cooperative work of harvesting .20 .400 221
L3.f. Participated last 12 months in cooperative work of other agriculture work .15 .357 221
L6 Participation in other exchange work than agriculture .52 .501 221
L7 Participated in public works without payment during the last year .79 .407 221
L8.a. Participated in school project over the last 12 months .49 .501 221
L8.b. Participated in road project over the last 12 months .54 .500 221
L8.c. Participated in bridge project over the last 12 months .28 .448 221
L8.d. Participated in church project over the last 12 months .27 .446 221
L8.f. Participated in kindergarten project over the last 12 months .05 .208 221
L8.g. Participated in health centre project over the last 12 months .14 .353 221
L8.h. Participated in irrigation project over the last 12 months .12 .328 221
L8.i. Participated in borehole project over the last 12 months .29 .452 221
L8.j. Participated in dam project over the last 12 months .02 .149 221
L8.k. Participated in graveyard clearing project over the last 12 months .42 .494 221
L8.l. Participated in other projects over the last 12 months .08 .274 221
M1 Most people can be trusted (1) or you cannot be too careful (0) .45 .498 221
M2.d. Trust in Traditional Authorities 3.76 1.159 221
M2.e. Trust in group village headmen 3.67 1.200 221
M2.f. Trust in village headmen 3.68 1.206 221
M2.j. Trust in police 3.63 1.289 221
M2.k. Trust in traders 2.46 1.295 221
M2.l. Trust in teachers 3.81 1.101 221
M2.m.Trust in school administrators 3.69 1.171 221
M2.n. Trust in religious leaders 3.88 1.114 221
M3.a. Trust in family members 4.38 .954 221
M3.b. Trust in relatives 3.85 1.158 221
M3.c. Trust in people in own village 3.33 1.097 221
M3.d. Trust in people outside the village 2.73 1.110 221
M3.e. Trust in people of same ethnic group 3.16 1.103 221
M3.f. Trust in people outside ethnic group 2.80 1.132 221
M3.g. Trust in people from same church/ mosque 3.59 1.056 221
M3.h. Trust in people not from same church/ mosque 3.00 1.200 221
Factor Analysis
Factor Analysis - Communalities - February 4, 2020
CommunalitiesCommunalities, table, 2 levels of column headers and 1 levels of row headers, table with 5 columns and 51 rows
  Raw Rescaled
Initial Extraction Initial Extraction
K1a Lending money to family members .248 .105 1.000 .424
K1b Lending money to relatives .251 .109 1.000 .436
K1c Lending money to people in your own village .239 .093 1.000 .388
K1d Lending money to people outside the village .128 .018 1.000 .144
K1e Lending money to people from the same mosque/ church .131 .022 1.000 .170
K2a Lending tools like axes, hoes etc. to family members .201 .048 1.000 .238
K2b Lending tools like axes, hoes etc. to relatives outside the household .176 .022 1.000 .124
K2c Lending tools like axes, hoes etc. to people in your own village .228 .020 1.000 .086
K2d Lending tools like axes, hoes etc. to people outside the village .185 .010 1.000 .055
K2e Lending tools like axes, hoes etc. to people from the same mosque/ church .199 .025 1.000 .125
L2 Participated in cooperative agricultural work .241 .066 1.000 .276
L3.a. Participated last 12 months in cooperative work of preparing a garden .166 .020 1.000 .123
L3.b. Participated last12 months in cooperative work of planting .064 .007 1.000 .102
L3.c. Participated last 12 months in cooperative work of irrigating .018 .001 1.000 .060
L3.d. Participated last 12 months in cooperative work of weeding .140 .027 1.000 .196
L3.e. Participated last 12 months in cooperative work of harvesting .160 .033 1.000 .209
L3.f. Participated last 12 months in cooperative work of other agriculture work .128 .044 1.000 .346
L6 Participation in other exchange work than agriculture .251 .070 1.000 .281
L7 Participated in public works without payment during the last year .166 .080 1.000 .481
L8.a. Participated in school project over the last 12 months .251 .058 1.000 .231
L8.b. Participated in road project over the last 12 months .250 .093 1.000 .373
L8.c. Participated in bridge project over the last 12 months .201 .037 1.000 .186
L8.d. Participated in church project over the last 12 months .199 .048 1.000 .240
L8.f. Participated in kindergarten project over the last 12 months .043 .004 1.000 .092
L8.g. Participated in health centre project over the last 12 months .124 .016 1.000 .126
L8.h. Participated in irrigation project over the last 12 months .108 .016 1.000 .145
L8.i. Participated in borehole project over the last 12 months .205 .035 1.000 .172
L8.j. Participated in dam project over the last 12 months .022 .001 1.000 .026
L8.k. Participated in graveyard clearing project over the last 12 months .244 .047 1.000 .193
L8.l. Participated in other projects over the last 12 months .075 .006 1.000 .077
M1 Most people can be trusted (1) or you cannot be too careful (0) .248 .065 1.000 .263
M2.d. Trust in Traditional Authorities 1.344 1.078 1.000 .802
M2.e. Trust in group village headmen 1.440 1.245 1.000 .865
M2.f. Trust in village headmen 1.455 1.137 1.000 .781
M2.j. Trust in police 1.661 1.350 1.000 .813
M2.k. Trust in traders 1.677 1.330 1.000 .793
M2.l. Trust in teachers 1.212 .815 1.000 .673
M2.m.Trust in school administrators 1.370 .959 1.000 .700
M2.n. Trust in religious leaders 1.241 .743 1.000 .599
M3.a. Trust in family members .910 .478 1.000 .525
M3.b. Trust in relatives 1.340 1.012 1.000 .755
M3.c. Trust in people in own village 1.202 .790 1.000 .657
M3.d. Trust in people outside the village 1.233 .951 1.000 .772
M3.e. Trust in people of same ethnic group 1.216 .951 1.000 .782
M3.f. Trust in people outside ethnic group 1.281 1.014 1.000 .791
M3.g. Trust in people from same church/ mosque 1.116 .866 1.000 .776
M3.h. Trust in people not from same church/ mosque 1.441 1.155 1.000 .802
Extraction Method: Principal Component Analysis.
Factor Analysis
Factor Analysis - Total Variance Explained - February 4, 2020
Total Variance ExplainedTotal Variance Explained, table, 2 levels of column headers and 2 levels of row headers, table with 11 columns and 99 rows
  Component Initial Eigenvaluesa Extraction Sums of Squared Loadings Rotation Sums of Squared Loadings
  Total % of Variance Cumulative % Total % of Variance Cumulative % Total % of Variance Cumulative %
Raw 1 9.670 36.593 36.593 9.670 36.593 36.593 5.286 20.002 20.002
2 2.153 8.148 44.742 2.153 8.148 44.742 1.365 5.166 25.169
3 1.667 6.308 51.050 1.667 6.308 51.050 3.636 13.758 38.927
4 1.441 5.454 56.503 1.441 5.454 56.503 3.351 12.682 51.609
5 1.166 4.411 60.914 1.166 4.411 60.914 1.174 4.443 56.053
6 1.024 3.873 64.787 1.024 3.873 64.787 2.308 8.735 64.787
7 .923 3.494 68.281            
8 .826 3.126 71.408            
9 .724 2.740 74.147            
10 .581 2.197 76.345            
11 .546 2.067 78.412            
12 .507 1.920 80.332            
13 .473 1.788 82.120            
14 .447 1.693 83.814            
15 .397 1.502 85.316            
16 .361 1.364 86.680            
17 .352 1.330 88.011            
18 .301 1.140 89.151            
19 .280 1.058 90.209            
20 .269 1.019 91.229            
21 .228 .862 92.090            
22 .195 .736 92.826            
23 .183 .693 93.519            
24 .167 .633 94.152            
25 .150 .569 94.721            
26 .142 .537 95.258            
27 .123 .465 95.723            
28 .119 .451 96.174            
29 .099 .374 96.548            
30 .094 .356 96.903            
31 .086 .326 97.230            
32 .083 .315 97.545            
33 .077 .292 97.836            
34 .068 .258 98.094            
35 .063 .237 98.332            
36 .061 .233 98.564            
37 .057 .218 98.782            
38 .052 .196 98.978            
39 .047 .178 99.155            
40 .046 .173 99.329            
41 .041 .154 99.483            
42 .033 .124 99.607            
43 .028 .107 99.714            
44 .026 .100 99.814            
45 .023 .089 99.902            
46 .014 .054 99.956            
47 .012 .044 100.000            
Rescaled 1 9.670 36.593 36.593 7.591 16.151 16.151 4.446 9.459 9.459
2 2.153 8.148 44.742 2.233 4.751 20.902 3.957 8.419 17.879
3 1.667 6.308 51.050 2.779 5.914 26.815 2.954 6.284 24.163
4 1.441 5.454 56.503 1.551 3.301 30.116 2.734 5.816 29.979
5 1.166 4.411 60.914 2.173 4.623 34.739 2.370 5.043 35.023
6 1.024 3.873 64.787 1.945 4.138 38.877 1.812 3.854 38.877
7 .923 3.494 68.281            
8 .826 3.126 71.408            
9 .724 2.740 74.147            
10 .581 2.197 76.345            
11 .546 2.067 78.412            
12 .507 1.920 80.332            
13 .473 1.788 82.120            
14 .447 1.693 83.814            
15 .397 1.502 85.316            
16 .361 1.364 86.680            
17 .352 1.330 88.011            
18 .301 1.140 89.151            
19 .280 1.058 90.209            
20 .269 1.019 91.229            
21 .228 .862 92.090            
22 .195 .736 92.826            
23 .183 .693 93.519            
24 .167 .633 94.152            
25 .150 .569 94.721            
26 .142 .537 95.258            
27 .123 .465 95.723            
28 .119 .451 96.174            
29 .099 .374 96.548            
30 .094 .356 96.903            
31 .086 .326 97.230            
32 .083 .315 97.545            
33 .077 .292 97.836            
34 .068 .258 98.094            
35 .063 .237 98.332            
36 .061 .233 98.564            
37 .057 .218 98.782            
38 .052 .196 98.978            
39 .047 .178 99.155            
40 .046 .173 99.329            
41 .041 .154 99.483            
42 .033 .124 99.607            
43 .028 .107 99.714            
44 .026 .100 99.814            
45 .023 .089 99.902            
46 .014 .054 99.956            
47 .012 .044 100.000            
Extraction Method: Principal Component Analysis.
a. When analyzing a covariance matrix, the initial eigenvalues are the same across the raw and rescaled solution.
Factor Analysis
Factor Analysis - Scree Plot - February 4, 2020
Scree Plot Component Number: 47
Eigenvalue: 0.0116 Component Number: 46
Eigenvalue: 0.0142 Component Number: 45
Eigenvalue: 0.0235 Component Number: 44
Eigenvalue: 0.0264 Component Number: 43
Eigenvalue: 0.0283 Component Number: 42
Eigenvalue: 0.0326 Component Number: 41
Eigenvalue: 0.0408 Component Number: 40
Eigenvalue: 0.0458 Component Number: 39
Eigenvalue: 0.0469 Component Number: 38
Eigenvalue: 0.0518 Component Number: 37
Eigenvalue: 0.0575 Component Number: 36
Eigenvalue: 0.0615 Component Number: 35
Eigenvalue: 0.0628 Component Number: 34
Eigenvalue: 0.0682 Component Number: 33
Eigenvalue: 0.0771 Component Number: 32
Eigenvalue: 0.0833 Component Number: 31
Eigenvalue: 0.0862 Component Number: 30
Eigenvalue: 0.0940 Component Number: 29
Eigenvalue: 0.0988 Component Number: 28
Eigenvalue: 0.1191 Component Number: 27
Eigenvalue: 0.1230 Component Number: 26
Eigenvalue: 0.1419 Component Number: 25
Eigenvalue: 0.1503 Component Number: 24
Eigenvalue: 0.1672 Component Number: 23
Eigenvalue: 0.1832 Component Number: 22
Eigenvalue: 0.1945 Component Number: 21
Eigenvalue: 0.2277 Component Number: 20
Eigenvalue: 0.2694 Component Number: 19
Eigenvalue: 0.2797 Component Number: 18
Eigenvalue: 0.3013 Component Number: 17
Eigenvalue: 0.3516 Component Number: 16
Eigenvalue: 0.3605 Component Number: 15
Eigenvalue: 0.3970 Component Number: 14
Eigenvalue: 0.4475 Component Number: 13
Eigenvalue: 0.4726 Component Number: 12
Eigenvalue: 0.5074 Component Number: 11
Eigenvalue: 0.5462 Component Number: 10
Eigenvalue: 0.5807 Component Number: 9
Eigenvalue: 0.7240 Component Number: 8
Eigenvalue: 0.8262 Component Number: 7
Eigenvalue: 0.9234 Component Number: 6
Eigenvalue: 1.0235 Component Number: 5
Eigenvalue: 1.1656 Component Number: 4
Eigenvalue: 1.4413 Component Number: 3
Eigenvalue: 1.6670 Component Number: 2
Eigenvalue: 2.1533 Component Number: 1
Eigenvalue: 9.6703 Component Number: 46
Eigenvalue: 0.0142 Component Number: 45
Eigenvalue: 0.0235 Component Number: 44
Eigenvalue: 0.0264 Component Number: 43
Eigenvalue: 0.0283 Component Number: 42
Eigenvalue: 0.0326 Component Number: 41
Eigenvalue: 0.0408 Component Number: 40
Eigenvalue: 0.0458 Component Number: 39
Eigenvalue: 0.0469 Component Number: 38
Eigenvalue: 0.0518 Component Number: 37
Eigenvalue: 0.0575 Component Number: 36
Eigenvalue: 0.0615 Component Number: 35
Eigenvalue: 0.0628 Component Number: 34
Eigenvalue: 0.0682 Component Number: 33
Eigenvalue: 0.0771 Component Number: 32
Eigenvalue: 0.0833 Component Number: 31
Eigenvalue: 0.0862 Component Number: 30
Eigenvalue: 0.0940 Component Number: 29
Eigenvalue: 0.0988 Component Number: 28
Eigenvalue: 0.1191 Component Number: 27
Eigenvalue: 0.1230 Component Number: 26
Eigenvalue: 0.1419 Component Number: 25
Eigenvalue: 0.1503 Component Number: 24
Eigenvalue: 0.1672 Component Number: 23
Eigenvalue: 0.1832 Component Number: 22
Eigenvalue: 0.1945 Component Number: 21
Eigenvalue: 0.2277 Component Number: 20
Eigenvalue: 0.2694 Component Number: 19
Eigenvalue: 0.2797 Component Number: 18
Eigenvalue: 0.3013 Component Number: 17
Eigenvalue: 0.3516 Component Number: 16
Eigenvalue: 0.3605 Component Number: 15
Eigenvalue: 0.3970 Component Number: 14
Eigenvalue: 0.4475 Component Number: 13
Eigenvalue: 0.4726 Component Number: 12
Eigenvalue: 0.5074 Component Number: 11
Eigenvalue: 0.5462 Component Number: 10
Eigenvalue: 0.5807 Component Number: 9
Eigenvalue: 0.7240 Component Number: 8
Eigenvalue: 0.8262 Component Number: 7
Eigenvalue: 0.9234 Component Number: 6
Eigenvalue: 1.0235 Component Number: 5
Eigenvalue: 1.1656 Component Number: 4
Eigenvalue: 1.4413 Component Number: 3
Eigenvalue: 1.6670 Component Number: 2
Eigenvalue: 2.1533 Component Number: 1
Eigenvalue: 9.6703 0 2 4 6 8 10 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47

{"copyright":"(C) Copyright IBM Corp. 2011","grammar":[{"elements":[{"data":{"$ref":"dSource"},"style":{"outline":{"r":0,"b":0,"g":0},"fill":{"r":0,"b":157,"g":100},"stroke":{"width":3.3333333}},"position":[{"field":{"$ref":"fVariable1"}},{"field":{"$ref":"fVariable"}}],"type":"line"},{"data":{"$ref":"dSource"},"style":{"symbol":"circle","outline":{"r":0,"b":157,"g":100},"size":6.6666665,"fill":{"r":119,"b":119,"g":118}},"position":[{"field":{"$ref":"fVariable1"}},{"field":{"$ref":"fVariable"}}],"type":"point"}],"coordinates":{"style":{"outline":{"r":0,"b":157,"g":100},"fill":{"r":255,"b":255,"g":255}},"dimensions":[{"scale":{"padding":{"left":"5%","right":"5%"}},"axis":[{"tickStyle":{"padding":5.0,"fill":{"r":0,"b":157,"g":100},"font":{"size":"8pt","weight":"normal","family":"sans-serif"}},"gridStyle":{"fill":{"r":0,"b":157,"g":100}},"lineStyle":{"fill":{"r":0,"b":157,"g":100},"stroke":{"width":0.6666667}},"titleStyle":{"padding":6.0,"fill":{"r":0,"b":157,"g":100},"font":{"size":"12pt","weight":"bold","family":"sans-serif"}},"title":["Eigenvalue"],"markStyle":{"fill":{"a":0,"r":0,"b":157,"g":100},"stroke":{"width":1.3333334}}}]},{"scale":{"padding":{"left":"5%","right":"5%"}},"axis":[{"tickStyle":{"padding":5.0,"fill":{"r":0,"b":157,"g":100},"font":{"size":"12pt","weight":"normal","family":"sans-serif"}},"lineStyle":{"fill":{"r":0,"b":157,"g":100},"stroke":{"width":0.6666667}},"titleStyle":{"padding":6.0,"fill":{"r":0,"b":157,"g":100},"font":{"size":"12pt","weight":"bold","family":"sans-serif"}},"title":["Component Number"],"markStyle":{"fill":{"a":0,"r":0,"b":157,"g":100},"stroke":{"width":1.3333334}}}]}]}}],"data":[{"id":"dSource","fields":[{"id":"fVariable","label":"Component Number","categories":[]},{"min":0.01164268156971305,"max":9.670268737370698,"id":"fVariable1","label":"Eigenvalue"}],"rows":[[0,9.670268737370698],[1,2.153297637642992],[2,1.666951265060417],[3,1.441268496557172],[4,1.165558819212147],[5,1.023527970753916],[6,0.9233629298237548],[7,0.8261853466431138],[8,0.724010367455887],[9,0.5806746172424283],[10,0.5461824387346055],[11,0.5074297351884859],[12,0.4726215784524337],[13,0.4474970752342117],[14,0.3970394401060312],[15,0.3605374029433688],[16,0.3515820530038962],[17,0.3012742057002933],[18,0.2797088942310774],[19,0.2693669701532067],[20,0.227690795932494],[21,0.1945431387707281],[22,0.1831530185347112],[23,0.1672083269473193],[24,0.1502513318826814],[25,0.1418666650451943],[26,0.1229740901331941],[27,0.1191372402058716],[28,0.09883058308873001],[29,0.09401336174536942],[30,0.08618988591893777],[31,0.08328958600875033],[32,0.07705700828741277],[33,0.06817608171736186],[34,0.06276082158674062],[35,0.0614619772166295],[36,0.05749826780480936],[37,0.05176381243503594],[38,0.04693660578678929],[39,0.04582224648781583],[40,0.0407689273571331],[41,0.03263756836768122],[42,0.02831011942713782],[43,0.02637006492625381],[44,0.02345463835969965],[45,0.01417178750756063],[46,0.01164268156971305]]}],"size":{"width":850.0,"height":500.0},"style":{"outline":{"a":0.0,"r":0,"b":0,"g":0},"fill":{"r":255,"b":255,"g":255}},"titles":[{"backgroundStyle":{"outline":{"a":0.0,"r":0,"b":0,"g":0},"fill":{"a":0.0,"r":0,"b":0,"g":0}},"style":{"padding":3.0,"fill":{"r":0,"b":157,"g":100},"font":{"size":"12pt","weight":"bold","family":"sans-serif"}},"type":"title","content":["Scree Plot"]}],"version":"6.0"}

Factor Analysis
Factor Analysis - Component Matrix - February 4, 2020
Component MatrixaComponent Matrix, table, 3 levels of column headers and 1 levels of row headers, table with 13 columns and 53 rows
  Raw Rescaled
Component Component
1 2 3 4 5 6 1 2 3 4 5 6
K1a Lending money to family members -.051 .065 .249 .062 -.089 .156 -.102 .130 .500 .125 -.178 .314
K1b Lending money to relatives -.032 .079 .232 .076 -.125 .165 -.064 .157 .462 .151 -.249 .329
K1c Lending money to people in your own village .010 .055 .215 .098 -.093 .158 .020 .112 .440 .201 -.191 .323
K1d Lending money to people outside the village .011 .062 .042 .058 -.037 .090 .030 .173 .118 .161 -.103 .251
K1e Lending money to people from the same mosque/ church -.018 .023 .109 .064 .009 .073 -.049 .063 .300 .178 .024 .203
K2a Lending tools like axes, hoes etc. to family members -.100 .070 .138 .061 -.030 .095 -.223 .157 .307 .137 -.068 .213
K2b Lending tools like axes, hoes etc. to relatives outside the household -.060 .068 .045 .070 -.058 .058 -.142 .163 .107 .166 -.138 .138
K2c Lending tools like axes, hoes etc. to people in your own village -.059 .046 .034 .064 .001 .093 -.124 .097 .072 .134 .002 .196
K2d Lending tools like axes, hoes etc. to people outside the village .004 -.007 -.022 .009 .064 .074 .009 -.016 -.051 .021 .149 .173
K2e Lending tools like axes, hoes etc. to people from the same mosque/ church -.023 .011 .008 -.014 .142 .061 -.052 .025 .018 -.031 .318 .137
L2 Participated in cooperative agricultural work .015 .066 .087 .095 -.136 .163 .031 .135 .178 .193 -.278 .333
L3.a. Participated last 12 months in cooperative work of preparing a garden .043 .043 .048 .044 -.074 .083 .105 .106 .119 .108 -.181 .205
L3.b. Participated last12 months in cooperative work of planting .006 .054 -.005 .035 .002 .048 .025 .216 -.021 .137 .009 .189
L3.c. Participated last 12 months in cooperative work of irrigating .011 -.009 -.015 -.003 -.001 .025 .084 -.065 -.111 -.026 -.006 .188
L3.d. Participated last 12 months in cooperative work of weeding .023 .011 .025 .066 -.052 .138 .062 .028 .068 .177 -.140 .369
L3.e. Participated last 12 months in cooperative work of harvesting .002 .068 .034 .075 -.096 .114 .006 .169 .085 .188 -.239 .284
L3.f. Participated last 12 months in cooperative work of other agriculture work .030 .117 .104 .079 -.111 .012 .084 .329 .291 .222 -.309 .035
L6 Participation in other exchange work than agriculture -.058 .105 .140 .073 -.095 .148 -.116 .209 .279 .147 -.190 .297
L7 Participated in public works without payment during the last year -.047 -.131 -.142 -.085 .180 -.020 -.115 -.323 -.348 -.209 .443 -.050
L8.a. Participated in school project over the last 12 months .000 -.068 -.111 -.047 .153 .125 -.001 -.135 -.221 -.094 .305 .249
L8.b. Participated in road project over the last 12 months -.051 .039 -.172 -.013 .239 .046 -.103 .077 -.343 -.027 .479 .092
L8.c. Participated in bridge project over the last 12 months -.035 -.032 -.123 -.016 .105 .093 -.078 -.071 -.274 -.037 .235 .208
L8.d. Participated in church project over the last 12 months -.006 .030 -.145 -.007 .132 .089 -.012 .067 -.326 -.017 .297 .200
L8.f. Participated in kindergarten project over the last 12 months .010 .003 -.052 .025 .023 .008 .050 .012 -.249 .118 .110 .038
L8.g. Participated in health centre project over the last 12 months -.055 .031 -.083 -.021 .051 .041 -.156 .089 -.236 -.059 .146 .116
L8.h. Participated in irrigation project over the last 12 months -.020 .046 -.014 -.023 .093 .061 -.060 .140 -.043 -.071 .283 .186
L8.i. Participated in borehole project over the last 12 months .018 .029 -.151 .015 .104 -.014 .040 .065 -.333 .034 .229 -.031
L8.j. Participated in dam project over the last 12 months .001 .001 -.014 -.018 .006 .005 .005 .006 -.095 -.122 .041 .031
L8.k. Participated in graveyard clearing project over the last 12 months -.082 .026 -.147 -.006 .097 -.094 -.165 .052 -.298 -.013 .196 -.190
L8.l. Participated in other projects over the last 12 months .034 .007 -.015 -.044 .024 -.043 .123 .025 -.056 -.161 .089 -.155
M1 Most people can be trusted (1) or you cannot be too careful (0) .160 .172 .039 .040 -.084 -.005 .320 .345 .077 .079 -.168 -.010
M2.d. Trust in Traditional Authorities .799 -.514 .225 -.347 .060 .039 .689 -.443 .194 -.299 .051 .034
M2.e. Trust in group village headmen .880 -.486 .305 -.358 -.105 .045 .734 -.405 .254 -.298 -.087 .038
M2.f. Trust in village headmen .918 -.437 .303 -.039 -.077 -.061 .761 -.362 .251 -.032 -.064 -.051
M2.j. Trust in police .852 -.258 -.304 .027 -.516 .444 .661 -.200 -.236 .021 -.401 .344
M2.k. Trust in traders .751 -.105 -.773 .353 -.149 .101 .580 -.081 -.597 .273 -.115 .078
M2.l. Trust in teachers .746 -.340 -.121 .225 .230 -.162 .677 -.309 -.110 .204 .208 -.147
M2.m.Trust in school administrators .818 -.274 -.157 .377 .174 -.133 .699 -.234 -.134 .322 .148 -.114
M2.n. Trust in religious leaders .692 -.110 .193 .300 .122 -.331 .621 -.099 .173 .270 .109 -.297
M3.a. Trust in family members .519 .167 .273 .256 .167 .115 .544 .175 .286 .268 .175 .121
M3.b. Trust in relatives .666 .378 .344 .533 .079 .127 .576 .327 .297 .460 .068 .110
M3.c. Trust in people in own village .815 .308 .081 .109 -.035 -.110 .743 .281 .074 .099 -.032 -.100
M3.d. Trust in people outside the village .686 .416 -.028 -.092 -.358 -.412 .618 .375 -.025 -.083 -.322 -.371
M3.e. Trust in people of same ethnic group .820 .419 .003 -.307 .077 .046 .744 .380 .003 -.278 .070 .041
M3.f. Trust in people outside ethnic group .814 .473 -.086 -.255 -.127 -.196 .719 .418 -.076 -.225 -.112 -.173
M3.g. Trust in people from same church/ mosque .686 .172 .069 -.098 .490 .335 .649 .163 .065 -.093 .464 .317
M3.h. Trust in people not from same church/ mosque .833 .431 -.241 -.395 .181 .171 .694 .359 -.201 -.329 .151 .142
Extraction Method: Principal Component Analysis.
a. 6 components extracted.
Factor Analysis
Factor Analysis - Rotated Component Matrix - February 4, 2020
Rotated Component MatrixaRotated Component Matrix, table, 3 levels of column headers and 1 levels of row headers, table with 13 columns and 53 rows
  Raw Rescaled
Component Component
1 2 3 4 5 6 1 2 3 4 5 6
K1a Lending money to family members -.030 .291 -.017 .060 -.055 -.112 -.060 .584 -.034 .121 -.110 -.226
K1b Lending money to relatives -.011 .309 -.019 .052 -.072 -.075 -.022 .616 -.037 .104 -.144 -.150
K1c Lending money to people in your own village -.007 .286 .033 .064 -.052 -.056 -.013 .584 .067 .131 -.105 -.115
K1d Lending money to people outside the village .024 .132 .009 -.013 .009 .012 .067 .369 .025 -.037 .024 .034
K1e Lending money to people from the same mosque/ church -.027 .128 .038 .013 .011 -.058 -.076 .354 .105 .036 .030 -.161
K2a Lending tools like axes, hoes etc. to family members -.050 .186 -.029 -.030 -.011 -.093 -.111 .416 -.065 -.067 -.024 -.208
K2b Lending tools like axes, hoes etc. to relatives outside the household -.019 .129 -.020 -.061 -.026 -.009 -.045 .307 -.049 -.145 -.061 -.022
K2c Lending tools like axes, hoes etc. to people in your own village -.036 .120 -.009 -.043 .042 -.015 -.074 .252 -.019 -.090 .088 -.032
K2d Lending tools like axes, hoes etc. to people outside the village -.010 .021 .012 .009 .097 .011 -.024 .050 .027 .022 .224 .026
K2e Lending tools like axes, hoes etc. to people from the same mosque/ church -.012 .000 .016 .001 .141 -.068 -.026 .000 .036 .002 .316 -.152
L2 Participated in cooperative agricultural work .014 .248 -.009 .014 -.040 .054 .029 .505 -.018 .029 -.082 .110
L3.a. Participated last 12 months in cooperative work of preparing a garden .037 .129 .008 .021 -.025 .034 .092 .317 .020 .052 -.060 .085
L3.b. Participated last12 months in cooperative work of planting .027 .059 .007 -.034 .030 .012 .109 .235 .028 -.134 .119 .047
L3.c. Participated last 12 months in cooperative work of irrigating .002 .006 -.004 .013 .018 .023 .013 .044 -.029 .097 .138 .169
L3.d. Participated last 12 months in cooperative work of weeding -.007 .148 .010 .026 .027 .063 -.020 .396 .027 .070 .073 .168
L3.e. Participated last 12 months in cooperative work of harvesting .017 .172 -.013 -.021 -.020 .051 .043 .429 -.032 -.054 -.049 .128
L3.f. Participated last 12 months in cooperative work of other agriculture work .071 .155 .026 -.039 -.111 -.022 .200 .434 .074 -.110 -.309 -.061
L6 Participation in other exchange work than agriculture -.004 .256 -.040 -.017 -.029 -.043 -.008 .512 -.080 -.034 -.058 -.087
L7 Participated in public works without payment during the last year -.089 -.205 -.016 .021 .170 .011 -.220 -.503 -.040 .052 .418 .027
L8.a. Participated in school project over the last 12 months -.038 -.053 -.014 .042 .222 .048 -.076 -.105 -.028 .083 .444 .096
L8.b. Participated in road project over the last 12 months -.004 -.110 .003 -.111 .262 -.004 -.007 -.220 .007 -.221 .525 -.008
L8.c. Participated in bridge project over the last 12 months -.042 -.039 -.029 -.019 .172 .057 -.093 -.087 -.066 -.043 .384 .128
L8.d. Participated in church project over the last 12 months .018 -.039 -.011 -.058 .198 .056 .039 -.087 -.026 -.131 .444 .126
L8.f. Participated in kindergarten project over the last 12 months .002 -.015 .019 -.028 .035 .037 .012 -.072 .093 -.135 .170 .176
L8.g. Participated in health centre project over the last 12 months -.008 -.021 -.054 -.059 .092 .017 -.022 -.059 -.153 -.167 .262 .049
L8.h. Participated in irrigation project over the last 12 months .020 .012 -.017 -.019 .113 -.039 .061 .038 -.051 -.059 .346 -.119
L8.i. Participated in borehole project over the last 12 months .033 -.095 .029 -.087 .115 .058 .073 -.209 .064 -.193 .255 .127
L8.j. Participated in dam project over the last 12 months .007 -.012 -.014 .003 .013 .004 .048 -.079 -.092 .022 .089 .030
L8.k. Participated in graveyard clearing project over the last 12 months -.022 -.149 -.021 -.141 .067 .002 -.045 -.301 -.042 -.284 .135 .004
L8.l. Participated in other projects over the last 12 months .044 -.060 .002 .012 .002 -.013 .159 -.218 .006 .043 .006 -.047
M1 Most people can be trusted (1) or you cannot be too careful (0) .210 .101 .059 -.028 -.078 .026 .421 .203 .119 -.056 -.156 .052
M2.d. Trust in Traditional Authorities .265 -.232 .315 .917 -.009 .120 .228 -.200 .271 .791 -.008 .104
M2.e. Trust in group village headmen .340 -.141 .297 .987 -.153 .157 .284 -.117 .248 .822 -.127 .131
M2.f. Trust in village headmen .304 -.085 .565 .796 -.222 .188 .252 -.071 .468 .660 -.184 .156
M2.j. Trust in police .376 .207 .159 .557 -.062 .909 .292 .161 .124 .432 -.048 .705
M2.k. Trust in traders .349 -.166 .435 -.036 .136 .985 .269 -.128 .336 -.028 .105 .761
M2.l. Trust in teachers .195 -.295 .700 .323 .063 .303 .177 -.268 .636 .294 .058 .276
M2.m.Trust in school administrators .241 -.198 .799 .245 .037 .403 .206 -.170 .682 .209 .031 .344
M2.n. Trust in religious leaders .289 -.131 .742 .215 -.210 .028 .260 -.117 .666 .193 -.188 .025
M3.a. Trust in family members .344 .271 .504 .150 .078 -.062 .361 .284 .528 .157 .081 -.065
M3.b. Trust in relatives .495 .504 .716 .003 -.023 -.013 .428 .435 .618 .002 -.020 -.011
M3.c. Trust in people in own village .712 .069 .475 .140 -.130 .131 .649 .063 .433 .127 -.119 .119
M3.d. Trust in people outside the village .800 -.119 .181 .002 -.487 .163 .721 -.107 .163 .002 -.439 .147
M3.e. Trust in people of same ethnic group .913 -.022 .162 .273 .110 .057 .828 -.020 .147 .247 .100 .052
M3.f. Trust in people outside ethnic group .956 -.123 .150 .124 -.157 .146 .845 -.108 .133 .109 -.139 .129
M3.g. Trust in people from same church/ mosque .557 .083 .375 .343 .539 -.035 .527 .079 .355 .325 .510 -.033
M3.h. Trust in people not from same church/ mosque .960 -.109 .070 .242 .345 .199 .800 -.091 .058 .201 .287 .166
Extraction Method: Principal Component Analysis.
Rotation Method: Varimax with Kaiser Normalization.a
a. Rotation converged in 14 iterations.
Factor Analysis
Factor Analysis - Component Transformation Matrix - February 4, 2020
Component Transformation MatrixComponent Transformation Matrix, table, 1 levels of column headers and 1 levels of row headers, table with 7 columns and 9 rows
Component 1 2 3 4 5 6
1 .654 -.054 .520 .450 -.022 .311
2 .682 .317 -.168 -.587 .040 -.247
3 -.055 .445 .182 .402 -.312 -.712
4 -.316 .387 .694 -.458 -.092 .225
5 -.030 -.311 .366 -.063 .743 -.460
6 -.064 .673 -.229 .281 .583 .270
Extraction Method: Principal Component Analysis.
Rotation Method: Varimax with Kaiser Normalization.
Log
Log - Log - February 4, 2020

FACTOR
  /VARIABLES K1a K1b K1c K1d K1e K2a K2b K2c K2d K2e L2 L3a L3b L3c L3d L3e L3f L6 L7 M1trust
    M2dTradAut M2eGVH M2fVH M2jPolice M2kTraders M2lTeacher M2mSchAdm M2nRelLead M3aFamil M3bRelatives
    M3cOwnVil M3dOutsideV M3eSameEthnic M3fOutsEthn M3gSameChM M3hNotSameChM
  /MISSING LISTWISE
  /ANALYSIS K1a K1b K1c K1d K1e K2a K2b K2c K2d K2e L2 L3a L3b L3c L3d L3e L3f L6 L7 M1trust
    M2dTradAut M2eGVH M2fVH M2jPolice M2kTraders M2lTeacher M2mSchAdm M2nRelLead M3aFamil M3bRelatives
    M3cOwnVil M3dOutsideV M3eSameEthnic M3fOutsEthn M3gSameChM M3hNotSameChM
  /PRINT UNIVARIATE INITIAL EXTRACTION ROTATION
  /PLOT EIGEN
  /CRITERIA FACTORS(6) ITERATE(25)
  /EXTRACTION PC
  /CRITERIA ITERATE(25)
  /ROTATION VARIMAX
  /METHOD=COVARIANCE.

Factor Analysis
Factor Analysis - Descriptive Statistics - February 4, 2020
Descriptive StatisticsDescriptive Statistics, table, 1 levels of column headers and 1 levels of row headers, table with 4 columns and 38 rows
  Mean Std. Deviation Analysis N
K1a Lending money to family members .44 .497 234
K1b Lending money to relatives .49 .501 234
K1c Lending money to people in your own village .38 .488 234
K1d Lending money to people outside the village .15 .362 234
K1e Lending money to people from the same mosque/ church .16 .366 234
K2a Lending tools like axes, hoes etc. to family members .71 .453 234
K2b Lending tools like axes, hoes etc. to relatives outside the household .76 .428 234
K2c Lending tools like axes, hoes etc. to people in your own village .65 .478 234
K2d Lending tools like axes, hoes etc. to people outside the village .24 .425 234
K2e Lending tools like axes, hoes etc. to people from the same mosque/ church .28 .449 234
L2 Participated in cooperative agricultural work .41 .492 234
L3.a. Participated last 12 months in cooperative work of preparing a garden .21 .411 234
L3.b. Participated last12 months in cooperative work of planting .06 .245 234
L3.c. Participated last 12 months in cooperative work of irrigating .02 .145 234
L3.d. Participated last 12 months in cooperative work of weeding .17 .377 234
L3.e. Participated last 12 months in cooperative work of harvesting .20 .398 234
L3.f. Participated last 12 months in cooperative work of other agriculture work .14 .349 234
L6 Participation in other exchange work than agriculture .52 .501 234
L7 Participated in public works without payment during the last year .80 .398 234
M1 Most people can be trusted (1) or you cannot be too careful (0) .46 .499 234
M2.d. Trust in Traditional Authorities 3.78 1.168 234
M2.e. Trust in group village headmen 3.68 1.198 234
M2.f. Trust in village headmen 3.70 1.207 234
M2.j. Trust in police 3.66 1.282 234
M2.k. Trust in traders 2.50 1.327 234
M2.l. Trust in teachers 3.85 1.097 234
M2.m.Trust in school administrators 3.71 1.175 234
M2.n. Trust in religious leaders 3.92 1.109 234
M3.a. Trust in family members 4.41 .938 234
M3.b. Trust in relatives 3.88 1.157 234
M3.c. Trust in people in own village 3.35 1.102 234
M3.d. Trust in people outside the village 2.72 1.121 234
M3.e. Trust in people of same ethnic group 3.14 1.095 234
M3.f. Trust in people outside ethnic group 2.79 1.121 234
M3.g. Trust in people from same church/ mosque 3.62 1.070 234
M3.h. Trust in people not from same church/ mosque 3.01 1.215 234
Factor Analysis
Factor Analysis - Communalities - February 4, 2020
CommunalitiesCommunalities, table, 2 levels of column headers and 1 levels of row headers, table with 5 columns and 40 rows
  Raw Rescaled
Initial Extraction Initial Extraction
K1a Lending money to family members .247 .116 1.000 .468
K1b Lending money to relatives .251 .110 1.000 .437
K1c Lending money to people in your own village .238 .099 1.000 .418
K1d Lending money to people outside the village .131 .025 1.000 .193
K1e Lending money to people from the same mosque/ church .134 .028 1.000 .208
K2a Lending tools like axes, hoes etc. to family members .205 .051 1.000 .249
K2b Lending tools like axes, hoes etc. to relatives outside the household .183 .030 1.000 .163
K2c Lending tools like axes, hoes etc. to people in your own village .229 .026 1.000 .113
K2d Lending tools like axes, hoes etc. to people outside the village .181 .010 1.000 .056
K2e Lending tools like axes, hoes etc. to people from the same mosque/ church .201 .021 1.000 .105
L2 Participated in cooperative agricultural work .242 .073 1.000 .300
L3.a. Participated last 12 months in cooperative work of preparing a garden .169 .021 1.000 .122
L3.b. Participated last12 months in cooperative work of planting .060 .006 1.000 .092
L3.c. Participated last 12 months in cooperative work of irrigating .021 .001 1.000 .056
L3.d. Participated last 12 months in cooperative work of weeding .142 .035 1.000 .244
L3.e. Participated last 12 months in cooperative work of harvesting .159 .034 1.000 .214
L3.f. Participated last 12 months in cooperative work of other agriculture work .122 .037 1.000 .303
L6 Participation in other exchange work than agriculture .251 .083 1.000 .331
L7 Participated in public works without payment during the last year .159 .051 1.000 .324
M1 Most people can be trusted (1) or you cannot be too careful (0) .249 .063 1.000 .252
M2.d. Trust in Traditional Authorities 1.364 1.089 1.000 .798
M2.e. Trust in group village headmen 1.436 1.228 1.000 .855
M2.f. Trust in village headmen 1.457 1.154 1.000 .792
M2.j. Trust in police 1.642 1.397 1.000 .850
M2.k. Trust in traders 1.762 1.447 1.000 .821
M2.l. Trust in teachers 1.204 .786 1.000 .653
M2.m.Trust in school administrators 1.381 .930 1.000 .673
M2.n. Trust in religious leaders 1.230 .709 1.000 .577
M3.a. Trust in family members .879 .460 1.000 .524
M3.b. Trust in relatives 1.339 1.015 1.000 .759
M3.c. Trust in people in own village 1.214 .794 1.000 .654
M3.d. Trust in people outside the village 1.257 .957 1.000 .761
M3.e. Trust in people of same ethnic group 1.200 .931 1.000 .776
M3.f. Trust in people outside ethnic group 1.256 .985 1.000 .784
M3.g. Trust in people from same church/ mosque 1.146 .909 1.000 .793
M3.h. Trust in people not from same church/ mosque 1.476 1.237 1.000 .838
Extraction Method: Principal Component Analysis.
Factor Analysis
Factor Analysis - Total Variance Explained - February 4, 2020
Total Variance ExplainedTotal Variance Explained, table, 2 levels of column headers and 2 levels of row headers, table with 11 columns and 77 rows
  Component Initial Eigenvaluesa Extraction Sums of Squared Loadings Rotation Sums of Squared Loadings
  Total % of Variance Cumulative % Total % of Variance Cumulative % Total % of Variance Cumulative %
Raw 1 9.617 38.753 38.753 9.617 38.753 38.753 1.364 5.496 5.496
2 2.254 9.085 47.838 2.254 9.085 47.838 4.651 18.744 24.240
3 1.586 6.390 54.229 1.586 6.390 54.229 3.829 15.428 39.668
4 1.462 5.890 60.118 1.462 5.890 60.118 3.825 15.413 55.082
5 1.072 4.319 64.438 1.072 4.319 64.438 2.231 8.991 64.073
6 .956 3.854 68.292 .956 3.854 68.292 1.047 4.219 68.292
7 .913 3.680 71.972            
8 .797 3.211 75.183            
9 .677 2.730 77.912            
10 .548 2.206 80.119            
11 .545 2.196 82.315            
12 .496 1.998 84.313            
13 .441 1.776 86.089            
14 .412 1.660 87.749            
15 .373 1.504 89.253            
16 .327 1.319 90.572            
17 .295 1.191 91.762            
18 .279 1.123 92.886            
19 .240 .966 93.852            
20 .207 .835 94.687            
21 .193 .779 95.466            
22 .148 .597 96.063            
23 .132 .532 96.595            
24 .118 .475 97.070            
25 .112 .450 97.520            
26 .089 .357 97.877            
27 .085 .343 98.220            
28 .077 .310 98.530            
29 .067 .271 98.801            
30 .066 .267 99.067            
31 .056 .228 99.295            
32 .050 .201 99.496            
33 .044 .176 99.672            
34 .038 .152 99.824            
35 .027 .108 99.932            
36 .017 .068 100.000            
Rescaled 1 9.617 38.753 38.753 7.448 20.690 20.690 3.992 11.090 11.090
2 2.254 9.085 47.838 2.233 6.201 26.891 3.842 10.672 21.762
3 1.586 6.390 54.229 1.948 5.410 32.301 3.126 8.684 30.446
4 1.462 5.890 60.118 1.454 4.038 36.339 2.820 7.832 38.279
5 1.072 4.319 64.438 1.938 5.382 41.721 1.627 4.519 42.798
6 .956 3.854 68.292 1.535 4.263 45.983 1.147 3.186 45.983
7 .913 3.680 71.972            
8 .797 3.211 75.183            
9 .677 2.730 77.912            
10 .548 2.206 80.119            
11 .545 2.196 82.315            
12 .496 1.998 84.313            
13 .441 1.776 86.089            
14 .412 1.660 87.749            
15 .373 1.504 89.253            
16 .327 1.319 90.572            
17 .295 1.191 91.762            
18 .279 1.123 92.886            
19 .240 .966 93.852            
20 .207 .835 94.687            
21 .193 .779 95.466            
22 .148 .597 96.063            
23 .132 .532 96.595            
24 .118 .475 97.070            
25 .112 .450 97.520            
26 .089 .357 97.877            
27 .085 .343 98.220            
28 .077 .310 98.530            
29 .067 .271 98.801            
30 .066 .267 99.067            
31 .056 .228 99.295            
32 .050 .201 99.496            
33 .044 .176 99.672            
34 .038 .152 99.824            
35 .027 .108 99.932            
36 .017 .068 100.000            
Extraction Method: Principal Component Analysis.
a. When analyzing a covariance matrix, the initial eigenvalues are the same across the raw and rescaled solution.
Factor Analysis
Factor Analysis - Scree Plot - February 4, 2020
Scree Plot Component Number: 36
Eigenvalue: 0.0169 Component Number: 35
Eigenvalue: 0.0267 Component Number: 34
Eigenvalue: 0.0377 Component Number: 33
Eigenvalue: 0.0436 Component Number: 32
Eigenvalue: 0.0499 Component Number: 31
Eigenvalue: 0.0565 Component Number: 30
Eigenvalue: 0.0661 Component Number: 29
Eigenvalue: 0.0671 Component Number: 28
Eigenvalue: 0.0770 Component Number: 27
Eigenvalue: 0.0851 Component Number: 26
Eigenvalue: 0.0887 Component Number: 25
Eigenvalue: 0.1117 Component Number: 24
Eigenvalue: 0.1180 Component Number: 23
Eigenvalue: 0.1319 Component Number: 22
Eigenvalue: 0.1482 Component Number: 21
Eigenvalue: 0.1933 Component Number: 20
Eigenvalue: 0.2071 Component Number: 19
Eigenvalue: 0.2398 Component Number: 18
Eigenvalue: 0.2788 Component Number: 17
Eigenvalue: 0.2954 Component Number: 16
Eigenvalue: 0.3272 Component Number: 15
Eigenvalue: 0.3732 Component Number: 14
Eigenvalue: 0.4120 Component Number: 13
Eigenvalue: 0.4407 Component Number: 12
Eigenvalue: 0.4959 Component Number: 11
Eigenvalue: 0.5450 Component Number: 10
Eigenvalue: 0.5475 Component Number: 9
Eigenvalue: 0.6774 Component Number: 8
Eigenvalue: 0.7968 Component Number: 7
Eigenvalue: 0.9133 Component Number: 6
Eigenvalue: 0.9564 Component Number: 5
Eigenvalue: 1.0719 Component Number: 4
Eigenvalue: 1.4616 Component Number: 3
Eigenvalue: 1.5858 Component Number: 2
Eigenvalue: 2.2544 Component Number: 1
Eigenvalue: 9.6170 Component Number: 35
Eigenvalue: 0.0267 Component Number: 34
Eigenvalue: 0.0377 Component Number: 33
Eigenvalue: 0.0436 Component Number: 32
Eigenvalue: 0.0499 Component Number: 31
Eigenvalue: 0.0565 Component Number: 30
Eigenvalue: 0.0661 Component Number: 29
Eigenvalue: 0.0671 Component Number: 28
Eigenvalue: 0.0770 Component Number: 27
Eigenvalue: 0.0851 Component Number: 26
Eigenvalue: 0.0887 Component Number: 25
Eigenvalue: 0.1117 Component Number: 24
Eigenvalue: 0.1180 Component Number: 23
Eigenvalue: 0.1319 Component Number: 22
Eigenvalue: 0.1482 Component Number: 21
Eigenvalue: 0.1933 Component Number: 20
Eigenvalue: 0.2071 Component Number: 19
Eigenvalue: 0.2398 Component Number: 18
Eigenvalue: 0.2788 Component Number: 17
Eigenvalue: 0.2954 Component Number: 16
Eigenvalue: 0.3272 Component Number: 15
Eigenvalue: 0.3732 Component Number: 14
Eigenvalue: 0.4120 Component Number: 13
Eigenvalue: 0.4407 Component Number: 12
Eigenvalue: 0.4959 Component Number: 11
Eigenvalue: 0.5450 Component Number: 10
Eigenvalue: 0.5475 Component Number: 9
Eigenvalue: 0.6774 Component Number: 8
Eigenvalue: 0.7968 Component Number: 7
Eigenvalue: 0.9133 Component Number: 6
Eigenvalue: 0.9564 Component Number: 5
Eigenvalue: 1.0719 Component Number: 4
Eigenvalue: 1.4616 Component Number: 3
Eigenvalue: 1.5858 Component Number: 2
Eigenvalue: 2.2544 Component Number: 1
Eigenvalue: 9.6170 0 2 4 6 8 10 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

{"copyright":"(C) Copyright IBM Corp. 2011","grammar":[{"elements":[{"data":{"$ref":"dSource"},"style":{"outline":{"r":0,"b":0,"g":0},"fill":{"r":0,"b":157,"g":100},"stroke":{"width":3.3333333}},"position":[{"field":{"$ref":"fVariable1"}},{"field":{"$ref":"fVariable"}}],"type":"line"},{"data":{"$ref":"dSource"},"style":{"symbol":"circle","outline":{"r":0,"b":157,"g":100},"size":6.6666665,"fill":{"r":119,"b":119,"g":118}},"position":[{"field":{"$ref":"fVariable1"}},{"field":{"$ref":"fVariable"}}],"type":"point"}],"coordinates":{"style":{"outline":{"r":0,"b":157,"g":100},"fill":{"r":255,"b":255,"g":255}},"dimensions":[{"scale":{"padding":{"left":"5%","right":"5%"}},"axis":[{"tickStyle":{"padding":5.0,"fill":{"r":0,"b":157,"g":100},"font":{"size":"8pt","weight":"normal","family":"sans-serif"}},"gridStyle":{"fill":{"r":0,"b":157,"g":100}},"lineStyle":{"fill":{"r":0,"b":157,"g":100},"stroke":{"width":0.6666667}},"titleStyle":{"padding":6.0,"fill":{"r":0,"b":157,"g":100},"font":{"size":"12pt","weight":"bold","family":"sans-serif"}},"title":["Eigenvalue"],"markStyle":{"fill":{"a":0,"r":0,"b":157,"g":100},"stroke":{"width":1.3333334}}}]},{"scale":{"padding":{"left":"5%","right":"5%"}},"axis":[{"tickStyle":{"padding":5.0,"fill":{"r":0,"b":157,"g":100},"font":{"size":"12pt","weight":"normal","family":"sans-serif"}},"lineStyle":{"fill":{"r":0,"b":157,"g":100},"stroke":{"width":0.6666667}},"titleStyle":{"padding":6.0,"fill":{"r":0,"b":157,"g":100},"font":{"size":"12pt","weight":"bold","family":"sans-serif"}},"title":["Component Number"],"markStyle":{"fill":{"a":0,"r":0,"b":157,"g":100},"stroke":{"width":1.3333334}}}]}]}}],"data":[{"id":"dSource","fields":[{"id":"fVariable","label":"Component Number","categories":[]},{"min":0.01692178886058365,"max":9.616961740418724,"id":"fVariable1","label":"Eigenvalue"}],"rows":[[0,9.616961740418724],[1,2.254428077668321],[2,1.585834777684287],[3,1.461566989197253],[4,1.071892567006869],[5,0.9564051609615936],[6,0.9133027295108553],[7,0.7967648388563214],[8,0.6773558244727135],[9,0.547518343574805],[10,0.5450246342708664],[11,0.4959110859447666],[12,0.4407144484354305],[13,0.4119576566791092],[14,0.3731896281328455],[15,0.3272420744318216],[16,0.2954375879148733],[17,0.2787959079342504],[18,0.2397634260638702],[19,0.2071484964195937],[20,0.1933356431629545],[21,0.148167699595405],[22,0.1319436606559906],[23,0.1179507112736851],[24,0.1116938081240205],[25,0.08866416805834629],[26,0.08505455748803828],[27,0.077021137659915],[28,0.06713267650232395],[29,0.06614886290808945],[30,0.05649047652247754],[31,0.04993199170026899],[32,0.04363638033290313],[33,0.03772191871424004],[34,0.02673096737938333],[35,0.01692178886058365]]}],"size":{"width":850.0,"height":500.0},"style":{"outline":{"a":0.0,"r":0,"b":0,"g":0},"fill":{"r":255,"b":255,"g":255}},"titles":[{"backgroundStyle":{"outline":{"a":0.0,"r":0,"b":0,"g":0},"fill":{"a":0.0,"r":0,"b":0,"g":0}},"style":{"padding":3.0,"fill":{"r":0,"b":157,"g":100},"font":{"size":"12pt","weight":"bold","family":"sans-serif"}},"type":"title","content":["Scree Plot"]}],"version":"6.0"}

Factor Analysis
Factor Analysis - Component Matrix - February 4, 2020
Component MatrixaComponent Matrix, table, 3 levels of column headers and 1 levels of row headers, table with 13 columns and 42 rows
  Raw Rescaled
Component Component
1 2 3 4 5 6 1 2 3 4 5 6
K1a Lending money to family members -.068 .071 .244 .058 .175 .109 -.138 .144 .491 .118 .353 .220
K1b Lending money to relatives -.045 .083 .214 .074 .193 .111 -.091 .166 .427 .147 .386 .221
K1c Lending money to people in your own village -.008 .069 .201 .089 .164 .139 -.017 .141 .412 .183 .337 .286
K1d Lending money to people outside the village -.001 .065 .054 .067 .076 .088 -.003 .179 .150 .184 .211 .244
K1e Lending money to people from the same mosque/ church -.030 .033 .120 .066 .041 .073 -.081 .090 .329 .181 .113 .199
K2a Lending tools like axes, hoes etc. to family members -.105 .064 .133 .054 .098 .074 -.232 .142 .295 .120 .217 .162
K2b Lending tools like axes, hoes etc. to relatives outside the household -.071 .080 .045 .037 .112 .048 -.167 .187 .106 .087 .262 .111
K2c Lending tools like axes, hoes etc. to people in your own village -.066 .060 .044 .065 .061 .089 -.137 .125 .092 .137 .129 .186
K2d Lending tools like axes, hoes etc. to people outside the village -.008 .006 .004 .004 -.019 .098 -.020 .015 .009 .009 -.044 .230
K2e Lending tools like axes, hoes etc. to people from the same mosque/ church -.036 .024 .063 -.004 -.079 .094 -.080 .054 .141 -.009 -.177 .210
L2 Participated in cooperative agricultural work .013 .065 .061 .097 .175 .156 .026 .132 .125 .197 .356 .317
L3.a. Participated last 12 months in cooperative work of preparing a garden .052 .031 .018 .057 .084 .078 .128 .076 .044 .138 .205 .191
L3.b. Participated last12 months in cooperative work of planting .004 .049 -.003 .034 .019 .040 .017 .201 -.011 .139 .076 .163
L3.c. Participated last 12 months in cooperative work of irrigating .008 .003 -.007 -.001 -.003 .032 .057 .020 -.047 -.006 -.019 .223
L3.d. Participated last 12 months in cooperative work of weeding .009 .025 .034 .058 .089 .147 .024 .066 .090 .153 .237 .389
L3.e. Participated last 12 months in cooperative work of harvesting .001 .060 .016 .059 .122 .108 .002 .152 .040 .149 .306 .271
L3.f. Participated last 12 months in cooperative work of other agriculture work .023 .109 .072 .068 .120 -.007 .066 .314 .207 .194 .345 -.021
L6 Participation in other exchange work than agriculture -.068 .114 .139 .064 .172 .110 -.136 .228 .278 .127 .344 .220
L7 Participated in public works without payment during the last year -.036 -.124 -.078 -.069 -.153 .016 -.091 -.312 -.196 -.174 -.384 .041
M1 Most people can be trusted (1) or you cannot be too careful (0) .165 .156 .030 .052 .087 .017 .330 .313 .060 .104 .173 .035
M2.d. Trust in Traditional Authorities .798 -.484 .280 -.371 -.005 -.033 .684 -.414 .240 -.318 -.004 -.028
M2.e. Trust in group village headmen .882 -.448 .304 -.377 .117 -.034 .736 -.374 .254 -.315 .098 -.029
M2.f. Trust in village headmen .921 -.431 .287 -.086 .113 -.131 .763 -.357 .238 -.071 .094 -.108
M2.j. Trust in police .858 -.258 -.316 -.029 .565 .417 .670 -.201 -.247 -.023 .441 .326
M2.k. Trust in traders .800 -.150 -.827 .310 .052 -.027 .603 -.113 -.623 .233 .039 -.020
M2.l. Trust in teachers .752 -.344 -.068 .197 -.243 .022 .685 -.313 -.062 .179 -.222 .020
M2.m.Trust in school administrators .836 -.316 -.139 .301 -.146 -.007 .711 -.269 -.118 .256 -.125 -.006
M2.n. Trust in religious leaders .695 -.131 .195 .319 -.160 -.208 .627 -.118 .175 .287 -.144 -.188
M3.a. Trust in family members .498 .146 .290 .302 -.083 .093 .531 .156 .309 .322 -.088 .100
M3.b. Trust in relatives .652 .325 .321 .611 .072 -.049 .564 .281 .277 .528 .062 -.043
M3.c. Trust in people in own village .800 .285 .080 .146 .059 -.204 .726 .258 .072 .132 .054 -.185
M3.d. Trust in people outside the village .683 .458 -.113 -.150 .264 -.420 .609 .409 -.100 -.133 .235 -.375
M3.e. Trust in people of same ethnic group .781 .476 .042 -.293 -.070 .042 .713 .435 .038 -.268 -.063 .038
M3.f. Trust in people outside ethnic group .785 .518 -.088 -.239 .034 -.188 .700 .462 -.079 -.213 .030 -.168
M3.g. Trust in people from same church/ mosque .693 .166 .135 .021 -.457 .416 .648 .155 .126 .020 -.427 .389
M3.h. Trust in people not from same church/ mosque .822 .505 -.166 -.350 -.216 .330 .677 .416 -.136 -.288 -.177 .272
Extraction Method: Principal Component Analysis.
a. 6 components extracted.
Factor Analysis
Factor Analysis - Rotated Component Matrix - February 4, 2020
Rotated Component MatrixaRotated Component Matrix, table, 3 levels of column headers and 1 levels of row headers, table with 13 columns and 42 rows
  Raw Rescaled
Component Component
1 2 3 4 5 6 1 2 3 4 5 6
K1a Lending money to family members .319 -.033 -.017 .036 -.106 -.001 .641 -.067 -.034 .073 -.213 -.003
K1b Lending money to relatives .323 -.014 -.008 .026 -.067 -.005 .645 -.027 -.015 .053 -.133 -.010
K1c Lending money to people in your own village .306 -.011 .029 .037 -.047 .035 .628 -.022 .059 .076 -.097 .072
K1d Lending money to people outside the village .150 .012 .019 -.026 .010 .039 .414 .034 .053 -.071 .029 .107
K1e Lending money to people from the same mosque/ church .145 -.032 .034 -.004 -.059 .032 .396 -.088 .094 -.012 -.163 .087
K2a Lending tools like axes, hoes etc. to family members .201 -.049 -.034 -.038 -.076 .003 .443 -.107 -.075 -.084 -.167 .008
K2b Lending tools like axes, hoes etc. to relatives outside the household .155 -.001 -.051 -.055 -.005 -.015 .361 -.002 -.119 -.129 -.011 -.035
K2c Lending tools like axes, hoes etc. to people in your own village .139 -.028 -.014 -.062 -.007 .041 .290 -.059 -.029 -.131 -.015 .085
K2d Lending tools like axes, hoes etc. to people outside the village .030 -.013 -.006 -.007 .002 .094 .071 -.031 -.014 -.017 .005 .222
K2e Lending tools like axes, hoes etc. to people from the same mosque/ church .022 -.020 .007 -.018 -.085 .112 .049 -.046 .016 -.040 -.190 .249
L2 Participated in cooperative agricultural work .253 .007 .009 -.005 .074 .055 .515 .014 .017 -.010 .150 .112
L3.a. Participated last 12 months in cooperative work of preparing a garden .117 .027 .033 .012 .061 .033 .285 .067 .081 .030 .149 .081
L3.b. Participated last12 months in cooperative work of planting .051 .023 .012 -.037 .015 .027 .207 .094 .048 -.150 .063 .109
L3.c. Participated last 12 months in cooperative work of irrigating .007 .004 -.001 .001 .011 .031 .050 .029 -.004 .009 .076 .216
L3.d. Participated last 12 months in cooperative work of weeding .156 -.011 .005 .005 .051 .087 .413 -.030 .014 .012 .136 .231
L3.e. Participated last 12 months in cooperative work of harvesting .165 .016 -.011 -.023 .064 .040 .415 .040 -.028 -.058 .160 .101
L3.f. Participated last 12 months in cooperative work of other agriculture work .162 .069 .030 -.029 -.001 -.063 .465 .197 .085 -.083 -.004 -.182
L6 Participation in other exchange work than agriculture .281 .005 -.039 -.032 -.037 .008 .561 .009 -.077 -.065 -.074 .016
L7 Participated in public works without payment during the last year -.187 -.088 -.028 .022 -.009 .084 -.470 -.222 -.071 .056 -.023 .211
M1 Most people can be trusted (1) or you cannot be too careful (0) .126 .190 .091 .000 .048 -.009 .253 .381 .183 .001 .096 -.019
M2.d. Trust in Traditional Authorities -.202 .224 .269 .960 .049 .043 -.173 .192 .230 .822 .042 .037
M2.e. Trust in group village headmen -.109 .304 .271 1.020 .103 -.002 -.091 .254 .226 .851 .086 -.002
M2.f. Trust in village headmen -.063 .250 .510 .886 .174 -.111 -.052 .207 .422 .734 .144 -.092
M2.j. Trust in police .230 .330 .151 .620 .882 .222 .180 .257 .118 .484 .688 .174
M2.k. Trust in traders -.381 .326 .466 .042 .987 .039 -.287 .246 .351 .032 .744 .030
M2.l. Trust in teachers -.284 .117 .639 .415 .293 .159 -.259 .107 .583 .378 .267 .145
M2.m.Trust in school administrators -.230 .163 .712 .386 .430 .094 -.196 .139 .606 .329 .366 .080
M2.n. Trust in religious leaders -.087 .202 .739 .316 .060 -.109 -.078 .182 .666 .285 .054 -.098
M3.a. Trust in family members .215 .256 .562 .131 -.050 .116 .229 .273 .599 .140 -.053 .123
M3.b. Trust in relatives .414 .387 .826 .004 .053 -.091 .358 .335 .714 .004 .046 -.079
M3.c. Trust in people in own village .063 .640 .541 .207 .147 -.151 .057 .581 .491 .188 .134 -.137
M3.d. Trust in people outside the village -.008 .846 .163 .137 .206 -.393 -.007 .754 .146 .122 .184 -.350
M3.e. Trust in people of same ethnic group -.028 .890 .209 .253 .007 .174 -.026 .813 .191 .231 .006 .159
M3.f. Trust in people outside ethnic group -.080 .943 .209 .166 .118 -.070 -.072 .841 .186 .148 .105 -.063
M3.g. Trust in people from same church/ mosque -.082 .444 .521 .221 -.063 .617 -.077 .415 .487 .206 -.059 .577
M3.h. Trust in people not from same church/ mosque -.127 .935 .159 .186 .136 .517 -.105 .770 .131 .153 .112 .425
Extraction Method: Principal Component Analysis.
Rotation Method: Varimax with Kaiser Normalization.a
a. Rotation converged in 7 iterations.
Factor Analysis
Factor Analysis - Component Transformation Matrix - February 4, 2020
Component Transformation MatrixComponent Transformation Matrix, table, 1 levels of column headers and 1 levels of row headers, table with 7 columns and 9 rows
Component 1 2 3 4 5 6
1 -.081 .584 .543 .507 .305 .084
2 .288 .722 -.069 -.583 -.224 .032
3 .476 -.083 .227 .389 -.748 -.065
4 .313 -.343 .720 -.450 .232 -.100
5 .664 .040 -.342 .217 .464 -.422
6 .380 -.106 -.113 .053 .170 .894
Extraction Method: Principal Component Analysis.
Rotation Method: Varimax with Kaiser Normalization.
Log
Log - Log - February 4, 2020

FACTOR
  /VARIABLES K1a K1b K1c K1d K1e K2a K2b K2c K2d K2e L2 L3a L3b L3c L3d L3e L3f L6 L7 M1trust
    M2dTradAut M2eGVH M2fVH M2jPolice M2kTraders M2lTeacher M2mSchAdm M2nRelLead M3aFamil M3bRelatives
    M3cOwnVil M3dOutsideV M3eSameEthnic M3fOutsEthn M3gSameChM M3hNotSameChM
  /MISSING LISTWISE
  /ANALYSIS K1a K1b K1c K1d K1e K2a K2b K2c K2d K2e L2 L3a L3b L3c L3d L3e L3f L6 L7 M1trust
    M2dTradAut M2eGVH M2fVH M2jPolice M2kTraders M2lTeacher M2mSchAdm M2nRelLead M3aFamil M3bRelatives
    M3cOwnVil M3dOutsideV M3eSameEthnic M3fOutsEthn M3gSameChM M3hNotSameChM
  /PRINT UNIVARIATE INITIAL EXTRACTION ROTATION
  /PLOT EIGEN
  /CRITERIA MINEIGEN(1) ITERATE(25)
  /EXTRACTION PC
  /CRITERIA ITERATE(25)
  /ROTATION VARIMAX
  /METHOD=COVARIANCE.

Factor Analysis
Factor Analysis - Descriptive Statistics - February 4, 2020
Descriptive StatisticsDescriptive Statistics, table, 1 levels of column headers and 1 levels of row headers, table with 4 columns and 38 rows
  Mean Std. Deviation Analysis N
K1a Lending money to family members .44 .497 234
K1b Lending money to relatives .49 .501 234
K1c Lending money to people in your own village .38 .488 234
K1d Lending money to people outside the village .15 .362 234
K1e Lending money to people from the same mosque/ church .16 .366 234
K2a Lending tools like axes, hoes etc. to family members .71 .453 234
K2b Lending tools like axes, hoes etc. to relatives outside the household .76 .428 234
K2c Lending tools like axes, hoes etc. to people in your own village .65 .478 234
K2d Lending tools like axes, hoes etc. to people outside the village .24 .425 234
K2e Lending tools like axes, hoes etc. to people from the same mosque/ church .28 .449 234
L2 Participated in cooperative agricultural work .41 .492 234
L3.a. Participated last 12 months in cooperative work of preparing a garden .21 .411 234
L3.b. Participated last12 months in cooperative work of planting .06 .245 234
L3.c. Participated last 12 months in cooperative work of irrigating .02 .145 234
L3.d. Participated last 12 months in cooperative work of weeding .17 .377 234
L3.e. Participated last 12 months in cooperative work of harvesting .20 .398 234
L3.f. Participated last 12 months in cooperative work of other agriculture work .14 .349 234
L6 Participation in other exchange work than agriculture .52 .501 234
L7 Participated in public works without payment during the last year .80 .398 234
M1 Most people can be trusted (1) or you cannot be too careful (0) .46 .499 234
M2.d. Trust in Traditional Authorities 3.78 1.168 234
M2.e. Trust in group village headmen 3.68 1.198 234
M2.f. Trust in village headmen 3.70 1.207 234
M2.j. Trust in police 3.66 1.282 234
M2.k. Trust in traders 2.50 1.327 234
M2.l. Trust in teachers 3.85 1.097 234
M2.m.Trust in school administrators 3.71 1.175 234
M2.n. Trust in religious leaders 3.92 1.109 234
M3.a. Trust in family members 4.41 .938 234
M3.b. Trust in relatives 3.88 1.157 234
M3.c. Trust in people in own village 3.35 1.102 234
M3.d. Trust in people outside the village 2.72 1.121 234
M3.e. Trust in people of same ethnic group 3.14 1.095 234
M3.f. Trust in people outside ethnic group 2.79 1.121 234
M3.g. Trust in people from same church/ mosque 3.62 1.070 234
M3.h. Trust in people not from same church/ mosque 3.01 1.215 234
Factor Analysis
Factor Analysis - Communalities - February 4, 2020
CommunalitiesCommunalities, table, 2 levels of column headers and 1 levels of row headers, table with 5 columns and 40 rows
  Raw Rescaled
Initial Extraction Initial Extraction
K1a Lending money to family members .247 .123 1.000 .497
K1b Lending money to relatives .251 .123 1.000 .488
K1c Lending money to people in your own village .238 .116 1.000 .488
K1d Lending money to people outside the village .131 .030 1.000 .229
K1e Lending money to people from the same mosque/ church .134 .032 1.000 .241
K2a Lending tools like axes, hoes etc. to family members .205 .057 1.000 .276
K2b Lending tools like axes, hoes etc. to relatives outside the household .183 .049 1.000 .268
K2c Lending tools like axes, hoes etc. to people in your own village .229 .051 1.000 .221
K2d Lending tools like axes, hoes etc. to people outside the village .181 .024 1.000 .134
K2e Lending tools like axes, hoes etc. to people from the same mosque/ church .201 .044 1.000 .217
L2 Participated in cooperative agricultural work .242 .093 1.000 .383
L3.a. Participated last 12 months in cooperative work of preparing a garden .169 .026 1.000 .155
L3.b. Participated last12 months in cooperative work of planting .060 .008 1.000 .135
L3.c. Participated last 12 months in cooperative work of irrigating .021 .001 1.000 .064
L3.d. Participated last 12 months in cooperative work of weeding .142 .043 1.000 .305
L3.e. Participated last 12 months in cooperative work of harvesting .159 .044 1.000 .276
L3.f. Participated last 12 months in cooperative work of other agriculture work .122 .043 1.000 .356
L6 Participation in other exchange work than agriculture .251 .088 1.000 .350
L7 Participated in public works without payment during the last year .159 .055 1.000 .349
M1 Most people can be trusted (1) or you cannot be too careful (0) .249 .069 1.000 .277
M2.d. Trust in Traditional Authorities 1.364 1.130 1.000 .828
M2.e. Trust in group village headmen 1.436 1.266 1.000 .882
M2.f. Trust in village headmen 1.457 1.172 1.000 .804
M2.j. Trust in police 1.642 1.596 1.000 .972
M2.k. Trust in traders 1.762 1.687 1.000 .957
M2.l. Trust in teachers 1.204 .940 1.000 .781
M2.m.Trust in school administrators 1.381 1.161 1.000 .841
M2.n. Trust in religious leaders 1.230 .937 1.000 .762
M3.a. Trust in family members .879 .473 1.000 .538
M3.b. Trust in relatives 1.339 1.103 1.000 .824
M3.c. Trust in people in own village 1.214 .851 1.000 .701
M3.d. Trust in people outside the village 1.257 1.074 1.000 .854
M3.e. Trust in people of same ethnic group 1.200 .934 1.000 .778
M3.f. Trust in people outside ethnic group 1.256 .995 1.000 .792
M3.g. Trust in people from same church/ mosque 1.146 .947 1.000 .827
M3.h. Trust in people not from same church/ mosque 1.476 1.272 1.000 .862
Extraction Method: Principal Component Analysis.
Factor Analysis
Factor Analysis - Total Variance Explained - February 4, 2020
Total Variance ExplainedTotal Variance Explained, table, 2 levels of column headers and 2 levels of row headers, table with 11 columns and 77 rows
  Component Initial Eigenvaluesa Extraction Sums of Squared Loadings Rotation Sums of Squared Loadings
  Total % of Variance Cumulative % Total % of Variance Cumulative % Total % of Variance Cumulative %
Raw 1 9.617 38.753 38.753 9.617 38.753 38.753 1.274 5.135 5.135
2 2.254 9.085 47.838 2.254 9.085 47.838 4.579 18.451 23.586
3 1.586 6.390 54.229 1.586 6.390 54.229 3.988 16.069 39.655
4 1.462 5.890 60.118 1.462 5.890 60.118 2.341 9.434 49.088
5 1.072 4.319 64.438 1.072 4.319 64.438 2.405 9.692 58.781
6 .956 3.854 68.292 .956 3.854 68.292 1.047 4.219 63.000
7 .913 3.680 71.972 .913 3.680 71.972 1.651 6.652 69.652
8 .797 3.211 75.183 .797 3.211 75.183 1.373 5.531 75.183
9 .677 2.730 77.912            
10 .548 2.206 80.119            
11 .545 2.196 82.315            
12 .496 1.998 84.313            
13 .441 1.776 86.089            
14 .412 1.660 87.749            
15 .373 1.504 89.253            
16 .327 1.319 90.572            
17 .295 1.191 91.762            
18 .279 1.123 92.886            
19 .240 .966 93.852            
20 .207 .835 94.687            
21 .193 .779 95.466            
22 .148 .597 96.063            
23 .132 .532 96.595            
24 .118 .475 97.070            
25 .112 .450 97.520            
26 .089 .357 97.877            
27 .085 .343 98.220            
28 .077 .310 98.530            
29 .067 .271 98.801            
30 .066 .267 99.067            
31 .056 .228 99.295            
32 .050 .201 99.496            
33 .044 .176 99.672            
34 .038 .152 99.824            
35 .027 .108 99.932            
36 .017 .068 100.000            
Rescaled 1 9.617 38.753 38.753 7.448 20.690 20.690 4.534 12.595 12.595
2 2.254 9.085 47.838 2.233 6.201 26.891 3.812 10.588 23.183
3 1.586 6.390 54.229 1.948 5.410 32.301 2.946 8.183 31.366
4 1.462 5.890 60.118 1.454 4.038 36.339 2.051 5.696 37.062
5 1.072 4.319 64.438 1.938 5.382 41.721 1.942 5.395 42.457
6 .956 3.854 68.292 1.535 4.263 45.983 1.259 3.497 45.954
7 .913 3.680 71.972 .929 2.579 48.563 1.140 3.168 49.122
8 .797 3.211 75.183 1.231 3.421 51.983 1.030 2.862 51.983
9 .677 2.730 77.912            
10 .548 2.206 80.119            
11 .545 2.196 82.315            
12 .496 1.998 84.313            
13 .441 1.776 86.089            
14 .412 1.660 87.749            
15 .373 1.504 89.253            
16 .327 1.319 90.572            
17 .295 1.191 91.762            
18 .279 1.123 92.886            
19 .240 .966 93.852            
20 .207 .835 94.687            
21 .193 .779 95.466            
22 .148 .597 96.063            
23 .132 .532 96.595            
24 .118 .475 97.070            
25 .112 .450 97.520            
26 .089 .357 97.877            
27 .085 .343 98.220            
28 .077 .310 98.530            
29 .067 .271 98.801            
30 .066 .267 99.067            
31 .056 .228 99.295            
32 .050 .201 99.496            
33 .044 .176 99.672            
34 .038 .152 99.824            
35 .027 .108 99.932            
36 .017 .068 100.000            
Extraction Method: Principal Component Analysis.
a. When analyzing a covariance matrix, the initial eigenvalues are the same across the raw and rescaled solution.
Factor Analysis
Factor Analysis - Scree Plot - February 4, 2020
Scree Plot Component Number: 36
Eigenvalue: 0.0169 Component Number: 35
Eigenvalue: 0.0267 Component Number: 34
Eigenvalue: 0.0377 Component Number: 33
Eigenvalue: 0.0436 Component Number: 32
Eigenvalue: 0.0499 Component Number: 31
Eigenvalue: 0.0565 Component Number: 30
Eigenvalue: 0.0661 Component Number: 29
Eigenvalue: 0.0671 Component Number: 28
Eigenvalue: 0.0770 Component Number: 27
Eigenvalue: 0.0851 Component Number: 26
Eigenvalue: 0.0887 Component Number: 25
Eigenvalue: 0.1117 Component Number: 24
Eigenvalue: 0.1180 Component Number: 23
Eigenvalue: 0.1319 Component Number: 22
Eigenvalue: 0.1482 Component Number: 21
Eigenvalue: 0.1933 Component Number: 20
Eigenvalue: 0.2071 Component Number: 19
Eigenvalue: 0.2398 Component Number: 18
Eigenvalue: 0.2788 Component Number: 17
Eigenvalue: 0.2954 Component Number: 16
Eigenvalue: 0.3272 Component Number: 15
Eigenvalue: 0.3732 Component Number: 14
Eigenvalue: 0.4120 Component Number: 13
Eigenvalue: 0.4407 Component Number: 12
Eigenvalue: 0.4959 Component Number: 11
Eigenvalue: 0.5450 Component Number: 10
Eigenvalue: 0.5475 Component Number: 9
Eigenvalue: 0.6774 Component Number: 8
Eigenvalue: 0.7968 Component Number: 7
Eigenvalue: 0.9133 Component Number: 6
Eigenvalue: 0.9564 Component Number: 5
Eigenvalue: 1.0719 Component Number: 4
Eigenvalue: 1.4616 Component Number: 3
Eigenvalue: 1.5858 Component Number: 2
Eigenvalue: 2.2544 Component Number: 1
Eigenvalue: 9.6170 Component Number: 35
Eigenvalue: 0.0267 Component Number: 34
Eigenvalue: 0.0377 Component Number: 33
Eigenvalue: 0.0436 Component Number: 32
Eigenvalue: 0.0499 Component Number: 31
Eigenvalue: 0.0565 Component Number: 30
Eigenvalue: 0.0661 Component Number: 29
Eigenvalue: 0.0671 Component Number: 28
Eigenvalue: 0.0770 Component Number: 27
Eigenvalue: 0.0851 Component Number: 26
Eigenvalue: 0.0887 Component Number: 25
Eigenvalue: 0.1117 Component Number: 24
Eigenvalue: 0.1180 Component Number: 23
Eigenvalue: 0.1319 Component Number: 22
Eigenvalue: 0.1482 Component Number: 21
Eigenvalue: 0.1933 Component Number: 20
Eigenvalue: 0.2071 Component Number: 19
Eigenvalue: 0.2398 Component Number: 18
Eigenvalue: 0.2788 Component Number: 17
Eigenvalue: 0.2954 Component Number: 16
Eigenvalue: 0.3272 Component Number: 15
Eigenvalue: 0.3732 Component Number: 14
Eigenvalue: 0.4120 Component Number: 13
Eigenvalue: 0.4407 Component Number: 12
Eigenvalue: 0.4959 Component Number: 11
Eigenvalue: 0.5450 Component Number: 10
Eigenvalue: 0.5475 Component Number: 9
Eigenvalue: 0.6774 Component Number: 8
Eigenvalue: 0.7968 Component Number: 7
Eigenvalue: 0.9133 Component Number: 6
Eigenvalue: 0.9564 Component Number: 5
Eigenvalue: 1.0719 Component Number: 4
Eigenvalue: 1.4616 Component Number: 3
Eigenvalue: 1.5858 Component Number: 2
Eigenvalue: 2.2544 Component Number: 1
Eigenvalue: 9.6170 0 2 4 6 8 10 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

{"copyright":"(C) Copyright IBM Corp. 2011","grammar":[{"elements":[{"data":{"$ref":"dSource"},"style":{"outline":{"r":0,"b":0,"g":0},"fill":{"r":0,"b":157,"g":100},"stroke":{"width":3.3333333}},"position":[{"field":{"$ref":"fVariable1"}},{"field":{"$ref":"fVariable"}}],"type":"line"},{"data":{"$ref":"dSource"},"style":{"symbol":"circle","outline":{"r":0,"b":157,"g":100},"size":6.6666665,"fill":{"r":119,"b":119,"g":118}},"position":[{"field":{"$ref":"fVariable1"}},{"field":{"$ref":"fVariable"}}],"type":"point"}],"coordinates":{"style":{"outline":{"r":0,"b":157,"g":100},"fill":{"r":255,"b":255,"g":255}},"dimensions":[{"scale":{"padding":{"left":"5%","right":"5%"}},"axis":[{"tickStyle":{"padding":5.0,"fill":{"r":0,"b":157,"g":100},"font":{"size":"8pt","weight":"normal","family":"sans-serif"}},"gridStyle":{"fill":{"r":0,"b":157,"g":100}},"lineStyle":{"fill":{"r":0,"b":157,"g":100},"stroke":{"width":0.6666667}},"titleStyle":{"padding":6.0,"fill":{"r":0,"b":157,"g":100},"font":{"size":"12pt","weight":"bold","family":"sans-serif"}},"title":["Eigenvalue"],"markStyle":{"fill":{"a":0,"r":0,"b":157,"g":100},"stroke":{"width":1.3333334}}}]},{"scale":{"padding":{"left":"5%","right":"5%"}},"axis":[{"tickStyle":{"padding":5.0,"fill":{"r":0,"b":157,"g":100},"font":{"size":"12pt","weight":"normal","family":"sans-serif"}},"lineStyle":{"fill":{"r":0,"b":157,"g":100},"stroke":{"width":0.6666667}},"titleStyle":{"padding":6.0,"fill":{"r":0,"b":157,"g":100},"font":{"size":"12pt","weight":"bold","family":"sans-serif"}},"title":["Component Number"],"markStyle":{"fill":{"a":0,"r":0,"b":157,"g":100},"stroke":{"width":1.3333334}}}]}]}}],"data":[{"id":"dSource","fields":[{"id":"fVariable","label":"Component Number","categories":[]},{"min":0.01692178886058365,"max":9.616961740418724,"id":"fVariable1","label":"Eigenvalue"}],"rows":[[0,9.616961740418724],[1,2.254428077668321],[2,1.585834777684287],[3,1.461566989197253],[4,1.071892567006869],[5,0.9564051609615936],[6,0.9133027295108553],[7,0.7967648388563214],[8,0.6773558244727135],[9,0.547518343574805],[10,0.5450246342708664],[11,0.4959110859447666],[12,0.4407144484354305],[13,0.4119576566791092],[14,0.3731896281328455],[15,0.3272420744318216],[16,0.2954375879148733],[17,0.2787959079342504],[18,0.2397634260638702],[19,0.2071484964195937],[20,0.1933356431629545],[21,0.148167699595405],[22,0.1319436606559906],[23,0.1179507112736851],[24,0.1116938081240205],[25,0.08866416805834629],[26,0.08505455748803828],[27,0.077021137659915],[28,0.06713267650232395],[29,0.06614886290808945],[30,0.05649047652247754],[31,0.04993199170026899],[32,0.04363638033290313],[33,0.03772191871424004],[34,0.02673096737938333],[35,0.01692178886058365]]}],"size":{"width":850.0,"height":500.0},"style":{"outline":{"a":0.0,"r":0,"b":0,"g":0},"fill":{"r":255,"b":255,"g":255}},"titles":[{"backgroundStyle":{"outline":{"a":0.0,"r":0,"b":0,"g":0},"fill":{"a":0.0,"r":0,"b":0,"g":0}},"style":{"padding":3.0,"fill":{"r":0,"b":157,"g":100},"font":{"size":"12pt","weight":"bold","family":"sans-serif"}},"type":"title","content":["Scree Plot"]}],"version":"6.0"}

Factor Analysis
Factor Analysis - Component Matrix - February 4, 2020
Component MatrixaComponent Matrix, table, 3 levels of column headers and 1 levels of row headers, table with 17 columns and 42 rows
  Raw Rescaled
Component Component
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
K1a Lending money to family members -.068 .071 .244 .058 .175 .109 .008 .084 -.138 .144 .491 .118 .353 .220 .016 .169
K1b Lending money to relatives -.045 .083 .214 .074 .193 .111 -.013 .113 -.091 .166 .427 .147 .386 .221 -.025 .225
K1c Lending money to people in your own village -.008 .069 .201 .089 .164 .139 .066 .110 -.017 .141 .412 .183 .337 .286 .136 .226
K1d Lending money to people outside the village -.001 .065 .054 .067 .076 .088 .043 .054 -.003 .179 .150 .184 .211 .244 .119 .150
K1e Lending money to people from the same mosque/ church -.030 .033 .120 .066 .041 .073 .023 .063 -.081 .090 .329 .181 .113 .199 .062 .171
K2a Lending tools like axes, hoes etc. to family members -.105 .064 .133 .054 .098 .074 .042 .063 -.232 .142 .295 .120 .217 .162 .094 .138
K2b Lending tools like axes, hoes etc. to relatives outside the household -.071 .080 .045 .037 .112 .048 .091 .106 -.167 .187 .106 .087 .262 .111 .212 .247
K2c Lending tools like axes, hoes etc. to people in your own village -.066 .060 .044 .065 .061 .089 .079 .136 -.137 .125 .092 .137 .129 .186 .165 .285
K2d Lending tools like axes, hoes etc. to people outside the village -.008 .006 .004 .004 -.019 .098 .067 .099 -.020 .015 .009 .009 -.044 .230 .157 .232
K2e Lending tools like axes, hoes etc. to people from the same mosque/ church -.036 .024 .063 -.004 -.079 .094 .062 .137 -.080 .054 .141 -.009 -.177 .210 .139 .306
L2 Participated in cooperative agricultural work .013 .065 .061 .097 .175 .156 .076 .119 .026 .132 .125 .197 .356 .317 .155 .242
L3.a. Participated last 12 months in cooperative work of preparing a garden .052 .031 .018 .057 .084 .078 .027 .070 .128 .076 .044 .138 .205 .191 .066 .171
L3.b. Participated last12 months in cooperative work of planting .004 .049 -.003 .034 .019 .040 .013 .049 .017 .201 -.011 .139 .076 .163 .052 .199
L3.c. Participated last 12 months in cooperative work of irrigating .008 .003 -.007 -.001 -.003 .032 .009 .010 .057 .020 -.047 -.006 -.019 .223 .060 .067
L3.d. Participated last 12 months in cooperative work of weeding .009 .025 .034 .058 .089 .147 .063 .069 .024 .066 .090 .153 .237 .389 .167 .183
L3.e. Participated last 12 months in cooperative work of harvesting .001 .060 .016 .059 .122 .108 .065 .075 .002 .152 .040 .149 .306 .271 .163 .189
L3.f. Participated last 12 months in cooperative work of other agriculture work .023 .109 .072 .068 .120 -.007 .055 .059 .066 .314 .207 .194 .345 -.021 .158 .168
L6 Participation in other exchange work than agriculture -.068 .114 .139 .064 .172 .110 .039 .057 -.136 .228 .278 .127 .344 .220 .077 .114
L7 Participated in public works without payment during the last year -.036 -.124 -.078 -.069 -.153 .016 .010 -.063 -.091 -.312 -.196 -.174 -.384 .041 .024 -.158
M1 Most people can be trusted (1) or you cannot be too careful (0) .165 .156 .030 .052 .087 .017 .066 -.042 .330 .313 .060 .104 .173 .035 .133 -.084
M2.d. Trust in Traditional Authorities .798 -.484 .280 -.371 -.005 -.033 -.145 .143 .684 -.414 .240 -.318 -.004 -.028 -.124 .122
M2.e. Trust in group village headmen .882 -.448 .304 -.377 .117 -.034 -.167 .103 .736 -.374 .254 -.315 .098 -.029 -.139 .086
M2.f. Trust in village headmen .921 -.431 .287 -.086 .113 -.131 -.109 .077 .763 -.357 .238 -.071 .094 -.108 -.090 .063
M2.j. Trust in police .858 -.258 -.316 -.029 .565 .417 .116 -.431 .670 -.201 -.247 -.023 .441 .326 .091 -.336
M2.k. Trust in traders .800 -.150 -.827 .310 .052 -.027 -.425 .244 .603 -.113 -.623 .233 .039 -.020 -.320 .184
M2.l. Trust in teachers .752 -.344 -.068 .197 -.243 .022 .388 .059 .685 -.313 -.062 .179 -.222 .020 .354 .054
M2.m.Trust in school administrators .836 -.316 -.139 .301 -.146 -.007 .398 .269 .711 -.269 -.118 .256 -.125 -.006 .339 .229
M2.n. Trust in religious leaders .695 -.131 .195 .319 -.160 -.208 .238 -.414 .627 -.118 .175 .287 -.144 -.188 .215 -.373
M3.a. Trust in family members .498 .146 .290 .302 -.083 .093 -.097 .052 .531 .156 .309 .322 -.088 .100 -.104 .055
M3.b. Trust in relatives .652 .325 .321 .611 .072 -.049 -.293 .044 .564 .281 .277 .528 .062 -.043 -.254 .038
M3.c. Trust in people in own village .800 .285 .080 .146 .059 -.204 -.131 -.199 .726 .258 .072 .132 .054 -.185 -.119 -.180
M3.d. Trust in people outside the village .683 .458 -.113 -.150 .264 -.420 .283 .191 .609 .409 -.100 -.133 .235 -.375 .252 .170
M3.e. Trust in people of same ethnic group .781 .476 .042 -.293 -.070 .042 -.042 -.032 .713 .435 .038 -.268 -.063 .038 -.038 -.029
M3.f. Trust in people outside ethnic group .785 .518 -.088 -.239 .034 -.188 .018 -.097 .700 .462 -.079 -.213 .030 -.168 .016 -.086
M3.g. Trust in people from same church/ mosque .693 .166 .135 .021 -.457 .416 -.163 -.110 .648 .155 .126 .020 -.427 .389 -.152 -.103
M3.h. Trust in people not from same church/ mosque .822 .505 -.166 -.350 -.216 .330 .126 .138 .677 .416 -.136 -.288 -.177 .272 .104 .113
Extraction Method: Principal Component Analysis.
a. 8 components extracted.
Factor Analysis
Factor Analysis - Rotated Component Matrix - February 4, 2020
Rotated Component MatrixaRotated Component Matrix, table, 3 levels of column headers and 1 levels of row headers, table with 17 columns and 42 rows
  Raw Rescaled
Component Component
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
K1a Lending money to family members .321 -.044 .040 .037 -.076 -.018 -.091 -.025 .645 -.089 .080 .075 -.153 -.036 -.182 -.051
K1b Lending money to relatives .332 -.027 .042 .041 -.079 -.015 -.036 -.025 .662 -.053 .084 .082 -.158 -.030 -.073 -.050
K1c Lending money to people in your own village .330 -.013 .036 .037 .000 .037 -.055 -.006 .676 -.027 .075 .076 .000 .077 -.113 -.012
K1d Lending money to people outside the village .163 .012 -.026 .023 .008 .041 .002 .013 .452 .032 -.072 .062 .023 .115 .005 .037
K1e Lending money to people from the same mosque/ church .158 -.037 .002 .046 -.002 .029 -.039 -.036 .432 -.102 .005 .127 -.006 .080 -.108 -.098
K2a Lending tools like axes, hoes etc. to family members .212 -.050 -.041 -.007 -.041 .005 -.067 -.034 .469 -.110 -.091 -.014 -.092 .011 -.147 -.076
K2b Lending tools like axes, hoes etc. to relatives outside the household .196 .009 -.056 -.073 .001 .027 -.005 -.036 .458 .022 -.132 -.172 .001 .062 -.012 -.084
K2c Lending tools like axes, hoes etc. to people in your own village .189 -.024 -.053 -.036 .013 .082 .014 -.055 .396 -.051 -.111 -.075 .028 .172 .030 -.114
K2d Lending tools like axes, hoes etc. to people outside the village .072 -.013 -.003 -.025 .026 .129 .006 -.028 .169 -.032 -.008 -.059 .062 .304 .014 -.066
K2e Lending tools like axes, hoes etc. to people from the same mosque/ church .076 -.027 -.002 .000 .010 .156 -.035 -.108 .169 -.059 -.004 .001 .022 .347 -.078 -.241
L2 Participated in cooperative agricultural work .287 .009 -.005 -.008 .023 .074 .044 .048 .584 .018 -.010 -.017 .046 .150 .089 .098
L3.a. Participated last 12 months in cooperative work of preparing a garden .137 .027 .019 .016 .027 .044 .051 .029 .334 .065 .046 .038 .065 .107 .125 .070
L3.b. Participated last12 months in cooperative work of planting .066 .021 -.028 .011 .001 .038 .030 -.011 .269 .085 -.113 .047 .002 .153 .121 -.046
L3.c. Participated last 12 months in cooperative work of irrigating .010 .003 .000 .002 .002 .033 .004 .011 .072 .018 .002 .014 .014 .226 .031 .077
L3.d. Participated last 12 months in cooperative work of weeding .176 -.012 -.003 .001 .022 .094 .015 .052 .467 -.032 -.008 .003 .058 .249 .040 .139
L3.e. Participated last 12 months in cooperative work of harvesting .189 .020 -.027 -.023 .014 .057 .034 .042 .475 .049 -.069 -.058 .035 .142 .086 .106
L3.f. Participated last 12 months in cooperative work of other agriculture work .183 .078 -.025 .004 .025 -.045 .003 -.023 .524 .224 -.071 .013 .070 -.129 .010 -.065
L6 Participation in other exchange work than agriculture .283 .001 -.038 .006 -.060 -.001 -.050 .016 .565 .002 -.077 .011 -.120 -.002 -.099 .032
L7 Participated in public works without payment during the last year -.196 -.089 .004 -.029 .022 .079 -.038 .019 -.491 -.223 .009 -.072 .055 .197 -.095 .048
M1 Most people can be trusted (1) or you cannot be too careful (0) .114 .199 -.015 .078 .064 -.022 -.006 .074 .229 .398 -.029 .155 .129 -.045 -.011 .149
M2.d. Trust in Traditional Authorities -.168 .198 1.004 .127 .172 .072 .027 .050 -.144 .170 .860 .109 .148 .061 .023 .043
M2.e. Trust in group village headmen -.100 .277 1.056 .142 .155 .003 .041 .132 -.084 .232 .882 .118 .129 .003 .034 .110
M2.f. Trust in village headmen -.043 .250 .929 .267 .363 -.116 .125 .112 -.036 .207 .770 .221 .300 -.096 .103 .093
M2.j. Trust in police .073 .356 .454 .054 .315 .057 .250 1.044 .057 .278 .354 .042 .245 .045 .195 .815
M2.k. Trust in traders -.319 .294 .227 .237 .252 .082 1.117 .269 -.241 .222 .171 .179 .190 .061 .842 .203
M2.l. Trust in teachers -.156 .185 .377 .192 .785 .249 .111 .111 -.142 .169 .343 .175 .716 .227 .101 .101
M2.m.Trust in school administrators -.023 .240 .400 .160 .863 .260 .321 .036 -.020 .204 .340 .136 .735 .221 .273 .031
M2.n. Trust in religious leaders -.164 .265 .224 .470 .665 -.227 -.171 .216 -.148 .239 .202 .423 .599 -.205 -.154 .195
M3.a. Trust in family members .201 .222 .199 .548 .192 .036 .054 -.040 .215 .237 .213 .584 .205 .039 .058 -.043
M3.b. Trust in relatives .361 .342 .142 .812 .210 -.234 .275 -.052 .312 .295 .123 .702 .181 -.202 .238 -.045
M3.c. Trust in people in own village -.025 .634 .243 .489 .216 -.251 .137 .147 -.023 .576 .221 .444 .196 -.227 .124 .134
M3.d. Trust in people outside the village .129 .920 .164 -.140 .295 -.182 .186 -.097 .115 .820 .147 -.125 .263 -.162 .166 -.086
M3.e. Trust in people of same ethnic group -.058 .853 .285 .295 -.024 .168 .000 .080 -.053 .778 .260 .270 -.022 .153 .000 .073
M3.f. Trust in people outside ethnic group -.105 .944 .185 .191 .070 -.046 .078 .094 -.094 .842 .165 .170 .062 -.041 .070 .084
M3.g. Trust in people from same church/ mosque -.165 .355 .260 .695 .077 .466 -.039 .136 -.155 .332 .243 .649 .072 .436 -.036 .127
M3.h. Trust in people not from same church/ mosque -.069 .895 .212 .211 .047 .595 .086 .113 -.057 .737 .175 .173 .038 .490 .071 .093
Extraction Method: Principal Component Analysis.
Rotation Method: Varimax with Kaiser Normalization.a
a. Rotation converged in 12 iterations.
Factor Analysis
Factor Analysis - Component Transformation Matrix - February 4, 2020
Component Transformation MatrixComponent Transformation Matrix, table, 1 levels of column headers and 1 levels of row headers, table with 9 columns and 11 rows
Component 1 2 3 4 5 6 7 8
1 -.070 .583 .537 .360 .376 .078 .217 .207
2 .257 .690 -.537 .191 -.315 .031 -.066 -.168
3 .429 -.113 .382 .351 -.058 -.166 -.644 -.298
4 .320 -.317 -.394 .520 .469 -.202 .333 -.008
5 .618 .078 .159 -.378 -.144 -.433 .209 .438
6 .308 -.195 -.008 .201 -.207 .749 -.047 .470
7 .189 .162 -.213 -.448 .687 .223 -.411 .038
8 .360 -.016 .228 -.237 .014 .356 .458 -.653
Extraction Method: Principal Component Analysis.
Rotation Method: Varimax with Kaiser Normalization.
Log
Log - Log - February 4, 2020

FACTOR
  /VARIABLES K1a K1b K1c K1d K1e K2a K2b L2 L3d L3e L3f L6 L7 M1trust M2dTradAut M2eGVH M2fVH
    M2jPolice M2kTraders M2lTeacher M2mSchAdm M2nRelLead M3aFamil M3bRelatives M3cOwnVil M3dOutsideV
    M3eSameEthnic M3fOutsEthn M3gSameChM M3hNotSameChM
  /MISSING LISTWISE
  /ANALYSIS K1a K1b K1c K1d K1e K2a K2b L2 L3d L3e L3f L6 L7 M1trust M2dTradAut M2eGVH M2fVH
    M2jPolice M2kTraders M2lTeacher M2mSchAdm M2nRelLead M3aFamil M3bRelatives M3cOwnVil M3dOutsideV
    M3eSameEthnic M3fOutsEthn M3gSameChM M3hNotSameChM
  /PRINT UNIVARIATE INITIAL EXTRACTION ROTATION
  /PLOT EIGEN
  /CRITERIA MINEIGEN(1) ITERATE(25)
  /EXTRACTION PC
  /CRITERIA ITERATE(25)
  /ROTATION VARIMAX
  /METHOD=COVARIANCE.

Factor Analysis
Factor Analysis - Descriptive Statistics - February 4, 2020
Descriptive StatisticsDescriptive Statistics, table, 1 levels of column headers and 1 levels of row headers, table with 4 columns and 32 rows
  Mean Std. Deviation Analysis N
K1a Lending money to family members .43 .497 235
K1b Lending money to relatives .49 .501 235
K1c Lending money to people in your own village .39 .488 235
K1d Lending money to people outside the village .16 .365 235
K1e Lending money to people from the same mosque/ church .16 .365 235
K2a Lending tools like axes, hoes etc. to family members .71 .454 235
K2b Lending tools like axes, hoes etc. to relatives outside the household .76 .427 235
L2 Participated in cooperative agricultural work .41 .493 235
L3.d. Participated last 12 months in cooperative work of weeding .17 .377 235
L3.e. Participated last 12 months in cooperative work of harvesting .20 .401 235
L3.f. Participated last 12 months in cooperative work of other agriculture work .14 .348 235
L6 Participation in other exchange work than agriculture .52 .501 235
L7 Participated in public works without payment during the last year .80 .398 235
M1 Most people can be trusted (1) or you cannot be too careful (0) .46 .499 235
M2.d. Trust in Traditional Authorities 3.79 1.168 235
M2.e. Trust in group village headmen 3.69 1.196 235
M2.f. Trust in village headmen 3.70 1.207 235
M2.j. Trust in police 3.66 1.279 235
M2.k. Trust in traders 2.50 1.325 235
M2.l. Trust in teachers 3.85 1.095 235
M2.m.Trust in school administrators 3.71 1.173 235
M2.n. Trust in religious leaders 3.93 1.109 235
M3.a. Trust in family members 4.41 .936 235
M3.b. Trust in relatives 3.89 1.157 235
M3.c. Trust in people in own village 3.34 1.100 235
M3.d. Trust in people outside the village 2.72 1.120 235
M3.e. Trust in people of same ethnic group 3.13 1.096 235
M3.f. Trust in people outside ethnic group 2.79 1.120 235
M3.g. Trust in people from same church/ mosque 3.63 1.068 235
M3.h. Trust in people not from same church/ mosque 3.01 1.214 235
Factor Analysis
Factor Analysis - Communalities - February 4, 2020
CommunalitiesCommunalities, table, 2 levels of column headers and 1 levels of row headers, table with 5 columns and 34 rows
  Raw Rescaled
Initial Extraction Initial Extraction
K1a Lending money to family members .247 .110 1.000 .446
K1b Lending money to relatives .251 .103 1.000 .412
K1c Lending money to people in your own village .238 .091 1.000 .383
K1d Lending money to people outside the village .133 .021 1.000 .159
K1e Lending money to people from the same mosque/ church .133 .024 1.000 .179
K2a Lending tools like axes, hoes etc. to family members .207 .047 1.000 .228
K2b Lending tools like axes, hoes etc. to relatives outside the household .182 .031 1.000 .172
L2 Participated in cooperative agricultural work .243 .060 1.000 .247
L3.d. Participated last 12 months in cooperative work of weeding .142 .029 1.000 .204
L3.e. Participated last 12 months in cooperative work of harvesting .161 .032 1.000 .197
L3.f. Participated last 12 months in cooperative work of other agriculture work .121 .038 1.000 .316
L6 Participation in other exchange work than agriculture .251 .078 1.000 .312
L7 Participated in public works without payment during the last year .158 .050 1.000 .317
M1 Most people can be trusted (1) or you cannot be too careful (0) .249 .068 1.000 .272
M2.d. Trust in Traditional Authorities 1.365 1.127 1.000 .826
M2.e. Trust in group village headmen 1.430 1.257 1.000 .878
M2.f. Trust in village headmen 1.458 1.168 1.000 .801
M2.j. Trust in police 1.637 1.489 1.000 .910
M2.k. Trust in traders 1.755 1.667 1.000 .950
M2.l. Trust in teachers 1.199 .930 1.000 .776
M2.m.Trust in school administrators 1.376 1.065 1.000 .774
M2.n. Trust in religious leaders 1.230 .771 1.000 .627
M3.a. Trust in family members .876 .470 1.000 .536
M3.b. Trust in relatives 1.338 1.106 1.000 .827
M3.c. Trust in people in own village 1.210 .795 1.000 .657
M3.d. Trust in people outside the village 1.254 1.040 1.000 .829
M3.e. Trust in people of same ethnic group 1.200 .932 1.000 .776
M3.f. Trust in people outside ethnic group 1.254 .981 1.000 .782
M3.g. Trust in people from same church/ mosque 1.141 .939 1.000 .822
M3.h. Trust in people not from same church/ mosque 1.474 1.218 1.000 .826
Extraction Method: Principal Component Analysis.
Factor Analysis
Factor Analysis - Total Variance Explained - February 4, 2020
Total Variance ExplainedTotal Variance Explained, table, 2 levels of column headers and 2 levels of row headers, table with 11 columns and 65 rows
  Component Initial Eigenvaluesa Extraction Sums of Squared Loadings Rotation Sums of Squared Loadings
  Total % of Variance Cumulative % Total % of Variance Cumulative % Total % of Variance Cumulative %
Raw 1 9.571 40.025 40.025 9.571 40.025 40.025 4.421 18.487 18.487
2 2.245 9.390 49.415 2.245 9.390 49.415 1.319 5.517 24.003
3 1.577 6.596 56.010 1.577 6.596 56.010 3.810 15.935 39.939
4 1.451 6.066 62.077 1.451 6.066 62.077 2.959 12.374 52.313
5 1.053 4.406 66.482 1.053 4.406 66.482 1.731 7.239 59.552
6 .938 3.921 70.403 .938 3.921 70.403 1.531 6.403 65.955
7 .901 3.766 74.170 .901 3.766 74.170 1.964 8.214 74.170
8 .766 3.201 77.371            
9 .632 2.643 80.014            
10 .540 2.258 82.272            
11 .510 2.133 84.405            
12 .470 1.967 86.372            
13 .434 1.817 88.188            
14 .388 1.624 89.812            
15 .356 1.488 91.301            
16 .295 1.235 92.536            
17 .282 1.179 93.715            
18 .260 1.088 94.803            
19 .206 .860 95.663            
20 .182 .762 96.425            
21 .159 .663 97.088            
22 .142 .592 97.681            
23 .111 .464 98.145            
24 .086 .358 98.503            
25 .085 .355 98.858            
26 .076 .320 99.177            
27 .061 .255 99.432            
28 .051 .214 99.646            
29 .045 .186 99.833            
30 .040 .167 100.000            
Rescaled 1 9.571 40.025 40.025 7.386 24.621 24.621 3.703 12.343 12.343
2 2.245 9.390 49.415 2.128 7.092 31.713 3.451 11.503 23.847
3 1.577 6.596 56.010 1.892 6.307 38.021 2.802 9.340 33.187
4 1.451 6.066 62.077 1.354 4.512 42.533 2.389 7.962 41.149
5 1.053 4.406 66.482 1.774 5.913 48.446 1.427 4.758 45.907
6 .938 3.921 70.403 1.049 3.495 51.941 1.338 4.461 50.369
7 .901 3.766 74.170 .859 2.862 54.803 1.330 4.434 54.803
8 .766 3.201 77.371            
9 .632 2.643 80.014            
10 .540 2.258 82.272            
11 .510 2.133 84.405            
12 .470 1.967 86.372            
13 .434 1.817 88.188            
14 .388 1.624 89.812            
15 .356 1.488 91.301            
16 .295 1.235 92.536            
17 .282 1.179 93.715            
18 .260 1.088 94.803            
19 .206 .860 95.663            
20 .182 .762 96.425            
21 .159 .663 97.088            
22 .142 .592 97.681            
23 .111 .464 98.145            
24 .086 .358 98.503            
25 .085 .355 98.858            
26 .076 .320 99.177            
27 .061 .255 99.432            
28 .051 .214 99.646            
29 .045 .186 99.833            
30 .040 .167 100.000            
Extraction Method: Principal Component Analysis.
a. When analyzing a covariance matrix, the initial eigenvalues are the same across the raw and rescaled solution.
Factor Analysis
Factor Analysis - Scree Plot - February 4, 2020
Scree Plot Component Number: 30
Eigenvalue: 0.0400 Component Number: 29
Eigenvalue: 0.0446 Component Number: 28
Eigenvalue: 0.0512 Component Number: 27
Eigenvalue: 0.0609 Component Number: 26
Eigenvalue: 0.0765 Component Number: 25
Eigenvalue: 0.0848 Component Number: 24
Eigenvalue: 0.0856 Component Number: 23
Eigenvalue: 0.1110 Component Number: 22
Eigenvalue: 0.1416 Component Number: 21
Eigenvalue: 0.1586 Component Number: 20
Eigenvalue: 0.1822 Component Number: 19
Eigenvalue: 0.2058 Component Number: 18
Eigenvalue: 0.2601 Component Number: 17
Eigenvalue: 0.2819 Component Number: 16
Eigenvalue: 0.2954 Component Number: 15
Eigenvalue: 0.3559 Component Number: 14
Eigenvalue: 0.3883 Component Number: 13
Eigenvalue: 0.4344 Component Number: 12
Eigenvalue: 0.4704 Component Number: 11
Eigenvalue: 0.5099 Component Number: 10
Eigenvalue: 0.5400 Component Number: 9
Eigenvalue: 0.6319 Component Number: 8
Eigenvalue: 0.7655 Component Number: 7
Eigenvalue: 0.9006 Component Number: 6
Eigenvalue: 0.9377 Component Number: 5
Eigenvalue: 1.0535 Component Number: 4
Eigenvalue: 1.4506 Component Number: 3
Eigenvalue: 1.5772 Component Number: 2
Eigenvalue: 2.2454 Component Number: 1
Eigenvalue: 9.5708 Component Number: 29
Eigenvalue: 0.0446 Component Number: 28
Eigenvalue: 0.0512 Component Number: 27
Eigenvalue: 0.0609 Component Number: 26
Eigenvalue: 0.0765 Component Number: 25
Eigenvalue: 0.0848 Component Number: 24
Eigenvalue: 0.0856 Component Number: 23
Eigenvalue: 0.1110 Component Number: 22
Eigenvalue: 0.1416 Component Number: 21
Eigenvalue: 0.1586 Component Number: 20
Eigenvalue: 0.1822 Component Number: 19
Eigenvalue: 0.2058 Component Number: 18
Eigenvalue: 0.2601 Component Number: 17
Eigenvalue: 0.2819 Component Number: 16
Eigenvalue: 0.2954 Component Number: 15
Eigenvalue: 0.3559 Component Number: 14
Eigenvalue: 0.3883 Component Number: 13
Eigenvalue: 0.4344 Component Number: 12
Eigenvalue: 0.4704 Component Number: 11
Eigenvalue: 0.5099 Component Number: 10
Eigenvalue: 0.5400 Component Number: 9
Eigenvalue: 0.6319 Component Number: 8
Eigenvalue: 0.7655 Component Number: 7
Eigenvalue: 0.9006 Component Number: 6
Eigenvalue: 0.9377 Component Number: 5
Eigenvalue: 1.0535 Component Number: 4
Eigenvalue: 1.4506 Component Number: 3
Eigenvalue: 1.5772 Component Number: 2
Eigenvalue: 2.2454 Component Number: 1
Eigenvalue: 9.5708 0 2 4 6 8 10 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

{"copyright":"(C) Copyright IBM Corp. 2011","grammar":[{"elements":[{"data":{"$ref":"dSource"},"style":{"outline":{"r":0,"b":0,"g":0},"fill":{"r":0,"b":157,"g":100},"stroke":{"width":3.3333333}},"position":[{"field":{"$ref":"fVariable1"}},{"field":{"$ref":"fVariable"}}],"type":"line"},{"data":{"$ref":"dSource"},"style":{"symbol":"circle","outline":{"r":0,"b":157,"g":100},"size":6.6666665,"fill":{"r":119,"b":119,"g":118}},"position":[{"field":{"$ref":"fVariable1"}},{"field":{"$ref":"fVariable"}}],"type":"point"}],"coordinates":{"style":{"outline":{"r":0,"b":157,"g":100},"fill":{"r":255,"b":255,"g":255}},"dimensions":[{"scale":{"padding":{"left":"5%","right":"5%"}},"axis":[{"tickStyle":{"padding":5.0,"fill":{"r":0,"b":157,"g":100},"font":{"size":"8pt","weight":"normal","family":"sans-serif"}},"gridStyle":{"fill":{"r":0,"b":157,"g":100}},"lineStyle":{"fill":{"r":0,"b":157,"g":100},"stroke":{"width":0.6666667}},"titleStyle":{"padding":6.0,"fill":{"r":0,"b":157,"g":100},"font":{"size":"12pt","weight":"bold","family":"sans-serif"}},"title":["Eigenvalue"],"markStyle":{"fill":{"a":0,"r":0,"b":157,"g":100},"stroke":{"width":1.3333334}}}]},{"scale":{"padding":{"left":"5%","right":"5%"}},"axis":[{"tickStyle":{"padding":5.0,"fill":{"r":0,"b":157,"g":100},"font":{"size":"12pt","weight":"normal","family":"sans-serif"}},"lineStyle":{"fill":{"r":0,"b":157,"g":100},"stroke":{"width":0.6666667}},"titleStyle":{"padding":6.0,"fill":{"r":0,"b":157,"g":100},"font":{"size":"12pt","weight":"bold","family":"sans-serif"}},"title":["Component Number"],"markStyle":{"fill":{"a":0,"r":0,"b":157,"g":100},"stroke":{"width":1.3333334}}}]}]}}],"data":[{"id":"dSource","fields":[{"id":"fVariable","label":"Component Number","categories":[]},{"min":0.0399737509867418,"max":9.570802493011337,"id":"fVariable1","label":"Eigenvalue"}],"rows":[[0,9.570802493011337],[1,2.245355387972992],[2,1.57720825988975],[3,1.450582263681228],[4,1.053457346316275],[5,0.9376855481423746],[6,0.9005888669360474],[7,0.7655093631698154],[8,0.6319165148907427],[9,0.5400454140793908],[10,0.5099362323002994],[11,0.4703792635617538],[12,0.4343847214755815],[13,0.3883098194590851],[14,0.3559191840224681],[15,0.2954129027304115],[16,0.2819333653284069],[17,0.2601379008400377],[18,0.2057525059131212],[19,0.1822244930535127],[20,0.1585582772998798],[21,0.1415818427699833],[22,0.1110270131220416],[23,0.08556529630587456],[24,0.08484453130115507],[25,0.07648372543201241],[26,0.06092258476950938],[27,0.05122500664134239],[28,0.04458745392942624],[29,0.0399737509867418]]}],"size":{"width":850.0,"height":500.0},"style":{"outline":{"a":0.0,"r":0,"b":0,"g":0},"fill":{"r":255,"b":255,"g":255}},"titles":[{"backgroundStyle":{"outline":{"a":0.0,"r":0,"b":0,"g":0},"fill":{"a":0.0,"r":0,"b":0,"g":0}},"style":{"padding":3.0,"fill":{"r":0,"b":157,"g":100},"font":{"size":"12pt","weight":"bold","family":"sans-serif"}},"type":"title","content":["Scree Plot"]}],"version":"6.0"}

Factor Analysis
Factor Analysis - Component Matrix - February 4, 2020
Component MatrixaComponent Matrix, table, 3 levels of column headers and 1 levels of row headers, table with 15 columns and 36 rows
  Raw Rescaled
Component Component
1 2 3 4 5 6 7 1 2 3 4 5 6 7
K1a Lending money to family members -.068 .067 .240 .051 .175 .096 .027 -.138 .135 .483 .103 .353 .193 .054
K1b Lending money to relatives -.044 .075 .213 .068 .188 .103 -.002 -.089 .149 .425 .136 .375 .205 -.003
K1c Lending money to people in your own village -.007 .059 .200 .082 .155 .103 .082 -.014 .122 .409 .167 .317 .210 .168
K1d Lending money to people outside the village .000 .057 .055 .064 .072 .060 .045 .000 .157 .150 .176 .197 .166 .123
K1e Lending money to people from the same mosque/ church -.029 .029 .116 .062 .042 .049 .024 -.080 .079 .318 .170 .115 .135 .066
K2a Lending tools like axes, hoes etc. to family members -.105 .062 .127 .047 .100 .044 .043 -.231 .137 .279 .102 .221 .096 .095
K2b Lending tools like axes, hoes etc. to relatives outside the household -.070 .075 .041 .032 .115 .003 .070 -.164 .175 .097 .076 .269 .007 .163
L2 Participated in cooperative agricultural work .013 .056 .060 .087 .159 .109 .092 .027 .114 .122 .176 .322 .221 .186
L3.d. Participated last 12 months in cooperative work of weeding .009 .021 .030 .049 .082 .106 .085 .023 .056 .080 .131 .217 .280 .226
L3.e. Participated last 12 months in cooperative work of harvesting .002 .054 .018 .055 .110 .080 .082 .004 .134 .045 .138 .276 .199 .205
L3.f. Participated last 12 months in cooperative work of other agriculture work .023 .107 .073 .065 .119 -.023 .045 .065 .308 .210 .186 .343 -.066 .130
L6 Participation in other exchange work than agriculture -.067 .107 .139 .059 .169 .089 .054 -.134 .214 .277 .119 .338 .178 .109
L7 Participated in public works without payment during the last year -.036 -.123 -.080 -.066 -.151 .009 .018 -.090 -.308 -.201 -.166 -.379 .023 .045
M1 Most people can be trusted (1) or you cannot be too careful (0) .163 .156 .030 .050 .087 .000 .075 .327 .313 .060 .099 .174 .000 .150
M2.d. Trust in Traditional Authorities .798 -.487 .273 -.376 -.017 -.012 -.191 .683 -.417 .234 -.321 -.015 -.010 -.164
M2.e. Trust in group village headmen .880 -.446 .297 -.385 .106 .008 -.188 .736 -.373 .249 -.322 .088 .007 -.157
M2.f. Trust in village headmen .921 -.435 .285 -.089 .112 -.084 -.147 .763 -.361 .236 -.074 .092 -.070 -.122
M2.j. Trust in police .855 -.249 -.323 -.049 .560 .416 .321 .668 -.195 -.252 -.038 .438 .325 .251
M2.k. Trust in traders .799 -.148 -.826 .308 .049 .077 -.471 .603 -.112 -.624 .232 .037 .058 -.356
M2.l. Trust in teachers .750 -.343 -.076 .194 -.234 -.112 .373 .685 -.313 -.069 .177 -.214 -.102 .340
M2.m.Trust in school administrators .835 -.319 -.149 .293 -.135 -.160 .338 .712 -.272 -.127 .250 -.115 -.136 .288
M2.n. Trust in religious leaders .695 -.139 .195 .322 -.150 -.260 .189 .627 -.126 .176 .290 -.136 -.234 .170
M3.a. Trust in family members .497 .144 .292 .304 -.076 .135 -.028 .531 .154 .312 .325 -.081 .144 -.030
M3.b. Trust in relatives .653 .310 .330 .620 .092 .065 -.280 .564 .268 .285 .536 .080 .056 -.242
M3.c. Trust in people in own village .798 .287 .084 .151 .079 -.131 -.149 .725 .261 .076 .138 .072 -.119 -.136
M3.d. Trust in people outside the village .680 .464 -.109 -.151 .270 -.494 .107 .607 .414 -.097 -.135 .241 -.441 .095
M3.e. Trust in people of same ethnic group .778 .485 .044 -.286 -.066 .059 -.007 .710 .442 .041 -.261 -.060 .054 -.007
M3.f. Trust in people outside ethnic group .782 .525 -.082 -.232 .035 -.175 -.028 .698 .469 -.074 -.208 .031 -.157 -.025
M3.g. Trust in people from same church/ mosque .692 .161 .137 .031 -.472 .437 -.008 .648 .151 .128 .029 -.442 .409 -.007
M3.h. Trust in people not from same church/ mosque .822 .500 -.162 -.342 -.241 .247 .171 .677 .412 -.133 -.281 -.199 .204 .141
Extraction Method: Principal Component Analysis.
a. 7 components extracted.
Factor Analysis
Factor Analysis - Rotated Component Matrix - February 4, 2020
Rotated Component MatrixaRotated Component Matrix, table, 3 levels of column headers and 1 levels of row headers, table with 15 columns and 36 rows
  Raw Rescaled
Component Component
1 2 3 4 5 6 7 1 2 3 4 5 6 7
K1a Lending money to family members -.031 .309 .044 -.070 .028 -.015 -.077 -.062 .622 .088 -.140 .057 -.029 -.155
K1b Lending money to relatives -.017 .300 .044 -.075 .060 -.017 -.040 -.034 .599 .089 -.150 .119 -.033 -.080
K1c Lending money to people in your own village -.006 .297 .031 .010 .020 .014 -.035 -.013 .609 .064 .021 .041 .028 -.071
K1d Lending money to people outside the village .013 .139 -.027 .009 .021 .016 .016 .036 .380 -.074 .026 .057 .045 .043
K1e Lending money to people from the same mosque/ church -.032 .138 -.002 .001 .035 .018 -.048 -.087 .377 -.006 .004 .095 .050 -.131
K2a Lending tools like axes, hoes etc. to family members -.037 .192 -.041 -.050 -.005 -.028 -.062 -.082 .422 -.090 -.109 -.011 -.062 -.137
K2b Lending tools like axes, hoes etc. to relatives outside the household .019 .145 -.065 -.022 -.033 -.062 -.009 .045 .341 -.153 -.052 -.078 -.145 -.022
L2 Participated in cooperative agricultural work .015 .230 -.018 .024 -.002 .006 .075 .031 .468 -.037 .049 -.003 .011 .152
L3.d. Participated last 12 months in cooperative work of weeding -.008 .148 -.014 .028 -.027 .041 .061 -.022 .392 -.037 .075 -.071 .109 .161
L3.e. Participated last 12 months in cooperative work of harvesting .021 .158 -.037 .016 -.021 .007 .064 .052 .394 -.092 .040 -.051 .018 .160
L3.f. Participated last 12 months in cooperative work of other agriculture work .088 .157 -.028 .016 .039 -.057 -.015 .253 .451 -.081 .047 .111 -.163 -.044
L6 Participation in other exchange work than agriculture .009 .270 -.031 -.060 .006 -.018 -.018 .017 .540 -.062 -.119 .013 -.035 -.035
L7 Participated in public works without payment during the last year -.100 -.167 .003 .030 -.085 .064 -.004 -.252 -.420 .008 .075 -.214 .161 -.011
M1 Most people can be trusted (1) or you cannot be too careful (0) .203 .130 -.006 .076 .046 .021 .037 .406 .260 -.012 .152 .093 .043 .074
M2.d. Trust in Traditional Authorities .181 -.215 .982 .237 .049 .151 .048 .155 -.184 .841 .203 .042 .129 .041
M2.e. Trust in group village headmen .267 -.121 1.043 .229 .060 .124 .106 .224 -.101 .872 .191 .050 .104 .089
M2.f. Trust in village headmen .245 -.064 .918 .429 .242 .042 .130 .203 -.053 .760 .355 .200 .035 .107
M2.j. Trust in police .349 .275 .512 .409 -.196 .130 .898 .273 .215 .400 .320 -.153 .102 .702
M2.k. Trust in traders .293 -.542 .158 .224 .549 .040 .953 .221 -.409 .119 .169 .414 .030 .720
M2.l. Trust in teachers .171 -.189 .303 .842 .025 .183 .175 .157 -.173 .277 .769 .023 .167 .160
M2.m.Trust in school administrators .239 -.171 .291 .889 .121 .095 .284 .203 -.146 .248 .758 .103 .081 .242
M2.n. Trust in religious leaders .255 -.021 .288 .726 .296 .052 -.065 .230 -.019 .260 .655 .267 .047 -.058
M3.a. Trust in family members .217 .227 .178 .291 .411 .292 -.025 .232 .243 .190 .311 .439 .312 -.026
M3.b. Trust in relatives .349 .355 .157 .288 .848 .165 .067 .302 .307 .135 .249 .733 .143 .058
M3.c. Trust in people in own village .637 .043 .286 .272 .459 .084 .117 .579 .039 .260 .247 .417 .077 .107
M3.d. Trust in people outside the village .945 -.025 .131 .228 .063 -.264 .058 .844 -.023 .117 .204 .057 -.236 .052
M3.e. Trust in people of same ethnic group .831 -.019 .277 .063 .098 .385 .051 .759 -.017 .253 .058 .089 .351 .047
M3.f. Trust in people outside ethnic group .935 -.094 .198 .102 .140 .142 .087 .835 -.084 .177 .091 .125 .126 .078
M3.g. Trust in people from same church/ mosque .299 -.058 .243 .261 .258 .806 .052 .280 -.055 .228 .244 .242 .754 .049
M3.h. Trust in people not from same church/ mosque .843 -.120 .154 .145 -.074 .637 .193 .695 -.099 .126 .119 -.061 .524 .159
Extraction Method: Principal Component Analysis.
Rotation Method: Varimax with Kaiser Normalization.a
a. Rotation converged in 7 iterations.
Factor Analysis
Factor Analysis - Component Transformation Matrix - February 4, 2020
Component Transformation MatrixComponent Transformation Matrix, table, 1 levels of column headers and 1 levels of row headers, table with 8 columns and 10 rows
Component 1 2 3 4 5 6 7
1 .570 -.079 .518 .455 .250 .241 .271
2 .695 .242 -.522 -.315 .160 .179 -.171
3 -.100 .526 .418 .017 .162 .107 -.708
4 -.285 .273 -.410 .465 .656 -.084 .150
5 .136 .592 .211 -.208 -.082 -.592 .432
6 -.275 .364 .050 -.260 -.060 .731 .429
7 .083 .320 -.263 .606 -.667 .084 -.056
Extraction Method: Principal Component Analysis.
Rotation Method: Varimax with Kaiser Normalization.
Log
Log - Log - February 4, 2020

FACTOR
  /VARIABLES K1a K1b K1c K1d K1e K2a K2b L2 L3d L3e L3f L6 L7 M1trust M2dTradAut M2eGVH M2fVH
    M2jPolice M2kTraders M2lTeacher M2mSchAdm M2nRelLead M3aFamil M3bRelatives M3cOwnVil M3dOutsideV
    M3eSameEthnic M3fOutsEthn M3gSameChM M3hNotSameChM
  /MISSING LISTWISE
  /ANALYSIS K1a K1b K1c K1d K1e K2a K2b L2 L3d L3e L3f L6 L7 M1trust M2dTradAut M2eGVH M2fVH
    M2jPolice M2kTraders M2lTeacher M2mSchAdm M2nRelLead M3aFamil M3bRelatives M3cOwnVil M3dOutsideV
    M3eSameEthnic M3fOutsEthn M3gSameChM M3hNotSameChM
  /PRINT UNIVARIATE INITIAL EXTRACTION ROTATION
  /PLOT EIGEN
  /CRITERIA FACTORS(6) ITERATE(25)
  /EXTRACTION PC
  /CRITERIA ITERATE(25)
  /ROTATION VARIMAX
  /METHOD=COVARIANCE.

Factor Analysis
Factor Analysis - Descriptive Statistics - February 4, 2020
Descriptive StatisticsDescriptive Statistics, table, 1 levels of column headers and 1 levels of row headers, table with 4 columns and 32 rows
  Mean Std. Deviation Analysis N
K1a Lending money to family members .43 .497 235
K1b Lending money to relatives .49 .501 235
K1c Lending money to people in your own village .39 .488 235
K1d Lending money to people outside the village .16 .365 235
K1e Lending money to people from the same mosque/ church .16 .365 235
K2a Lending tools like axes, hoes etc. to family members .71 .454 235
K2b Lending tools like axes, hoes etc. to relatives outside the household .76 .427 235
L2 Participated in cooperative agricultural work .41 .493 235
L3.d. Participated last 12 months in cooperative work of weeding .17 .377 235
L3.e. Participated last 12 months in cooperative work of harvesting .20 .401 235
L3.f. Participated last 12 months in cooperative work of other agriculture work .14 .348 235
L6 Participation in other exchange work than agriculture .52 .501 235
L7 Participated in public works without payment during the last year .80 .398 235
M1 Most people can be trusted (1) or you cannot be too careful (0) .46 .499 235
M2.d. Trust in Traditional Authorities 3.79 1.168 235
M2.e. Trust in group village headmen 3.69 1.196 235
M2.f. Trust in village headmen 3.70 1.207 235
M2.j. Trust in police 3.66 1.279 235
M2.k. Trust in traders 2.50 1.325 235
M2.l. Trust in teachers 3.85 1.095 235
M2.m.Trust in school administrators 3.71 1.173 235
M2.n. Trust in religious leaders 3.93 1.109 235
M3.a. Trust in family members 4.41 .936 235
M3.b. Trust in relatives 3.89 1.157 235
M3.c. Trust in people in own village 3.34 1.100 235
M3.d. Trust in people outside the village 2.72 1.120 235
M3.e. Trust in people of same ethnic group 3.13 1.096 235
M3.f. Trust in people outside ethnic group 2.79 1.120 235
M3.g. Trust in people from same church/ mosque 3.63 1.068 235
M3.h. Trust in people not from same church/ mosque 3.01 1.214 235
Factor Analysis
Factor Analysis - Communalities - February 4, 2020
CommunalitiesCommunalities, table, 2 levels of column headers and 1 levels of row headers, table with 5 columns and 34 rows
  Raw Rescaled
Initial Extraction Initial Extraction
K1a Lending money to family members .247 .109 1.000 .443
K1b Lending money to relatives .251 .103 1.000 .412
K1c Lending money to people in your own village .238 .085 1.000 .355
K1d Lending money to people outside the village .133 .019 1.000 .144
K1e Lending money to people from the same mosque/ church .133 .023 1.000 .174
K2a Lending tools like axes, hoes etc. to family members .207 .045 1.000 .219
K2b Lending tools like axes, hoes etc. to relatives outside the household .182 .026 1.000 .145
L2 Participated in cooperative agricultural work .243 .051 1.000 .212
L3.d. Participated last 12 months in cooperative work of weeding .142 .022 1.000 .153
L3.e. Participated last 12 months in cooperative work of harvesting .161 .025 1.000 .155
L3.f. Participated last 12 months in cooperative work of other agriculture work .121 .036 1.000 .300
L6 Participation in other exchange work than agriculture .251 .075 1.000 .301
L7 Participated in public works without payment during the last year .158 .050 1.000 .315
M1 Most people can be trusted (1) or you cannot be too careful (0) .249 .062 1.000 .249
M2.d. Trust in Traditional Authorities 1.365 1.090 1.000 .799
M2.e. Trust in group village headmen 1.430 1.221 1.000 .854
M2.f. Trust in village headmen 1.458 1.146 1.000 .786
M2.j. Trust in police 1.637 1.386 1.000 .847
M2.k. Trust in traders 1.755 1.445 1.000 .823
M2.l. Trust in teachers 1.199 .791 1.000 .660
M2.m.Trust in school administrators 1.376 .951 1.000 .691
M2.n. Trust in religious leaders 1.230 .735 1.000 .598
M3.a. Trust in family members .876 .469 1.000 .535
M3.b. Trust in relatives 1.338 1.028 1.000 .768
M3.c. Trust in people in own village 1.210 .772 1.000 .638
M3.d. Trust in people outside the village 1.254 1.028 1.000 .820
M3.e. Trust in people of same ethnic group 1.200 .932 1.000 .776
M3.f. Trust in people outside ethnic group 1.254 .980 1.000 .781
M3.g. Trust in people from same church/ mosque 1.141 .939 1.000 .822
M3.h. Trust in people not from same church/ mosque 1.474 1.189 1.000 .807
Extraction Method: Principal Component Analysis.
Factor Analysis
Factor Analysis - Total Variance Explained - February 4, 2020
Total Variance ExplainedTotal Variance Explained, table, 2 levels of column headers and 2 levels of row headers, table with 11 columns and 65 rows
  Component Initial Eigenvaluesa Extraction Sums of Squared Loadings Rotation Sums of Squared Loadings
  Total % of Variance Cumulative % Total % of Variance Cumulative % Total % of Variance Cumulative %
Raw 1 9.571 40.025 40.025 9.571 40.025 40.025 4.366 18.260 18.260
2 2.245 9.390 49.415 2.245 9.390 49.415 1.372 5.737 23.997
3 1.577 6.596 56.010 1.577 6.596 56.010 4.087 17.090 41.087
4 1.451 6.066 62.077 1.451 6.066 62.077 3.424 14.320 55.406
5 1.053 4.406 66.482 1.053 4.406 66.482 2.128 8.897 64.304
6 .938 3.921 70.403 .938 3.921 70.403 1.459 6.100 70.403
7 .901 3.766 74.170            
8 .766 3.201 77.371            
9 .632 2.643 80.014            
10 .540 2.258 82.272            
11 .510 2.133 84.405            
12 .470 1.967 86.372            
13 .434 1.817 88.188            
14 .388 1.624 89.812            
15 .356 1.488 91.301            
16 .295 1.235 92.536            
17 .282 1.179 93.715            
18 .260 1.088 94.803            
19 .206 .860 95.663            
20 .182 .762 96.425            
21 .159 .663 97.088            
22 .142 .592 97.681            
23 .111 .464 98.145            
24 .086 .358 98.503            
25 .085 .355 98.858            
26 .076 .320 99.177            
27 .061 .255 99.432            
28 .051 .214 99.646            
29 .045 .186 99.833            
30 .040 .167 100.000            
Rescaled 1 9.571 40.025 40.025 7.386 24.621 24.621 3.662 12.206 12.206
2 2.245 9.390 49.415 2.128 7.092 31.713 3.427 11.422 23.629
3 1.577 6.596 56.010 1.892 6.307 38.021 2.982 9.940 33.569
4 1.451 6.066 62.077 1.354 4.512 42.533 2.777 9.257 42.826
5 1.053 4.406 66.482 1.774 5.913 48.446 1.459 4.864 47.690
6 .938 3.921 70.403 1.049 3.495 51.941 1.275 4.251 51.941
7 .901 3.766 74.170            
8 .766 3.201 77.371            
9 .632 2.643 80.014            
10 .540 2.258 82.272            
11 .510 2.133 84.405            
12 .470 1.967 86.372            
13 .434 1.817 88.188            
14 .388 1.624 89.812            
15 .356 1.488 91.301            
16 .295 1.235 92.536            
17 .282 1.179 93.715            
18 .260 1.088 94.803            
19 .206 .860 95.663            
20 .182 .762 96.425            
21 .159 .663 97.088            
22 .142 .592 97.681            
23 .111 .464 98.145            
24 .086 .358 98.503            
25 .085 .355 98.858            
26 .076 .320 99.177            
27 .061 .255 99.432            
28 .051 .214 99.646            
29 .045 .186 99.833            
30 .040 .167 100.000            
Extraction Method: Principal Component Analysis.
a. When analyzing a covariance matrix, the initial eigenvalues are the same across the raw and rescaled solution.
Factor Analysis
Factor Analysis - Scree Plot - February 4, 2020
Scree Plot Component Number: 30
Eigenvalue: 0.0400 Component Number: 29
Eigenvalue: 0.0446 Component Number: 28
Eigenvalue: 0.0512 Component Number: 27
Eigenvalue: 0.0609 Component Number: 26
Eigenvalue: 0.0765 Component Number: 25
Eigenvalue: 0.0848 Component Number: 24
Eigenvalue: 0.0856 Component Number: 23
Eigenvalue: 0.1110 Component Number: 22
Eigenvalue: 0.1416 Component Number: 21
Eigenvalue: 0.1586 Component Number: 20
Eigenvalue: 0.1822 Component Number: 19
Eigenvalue: 0.2058 Component Number: 18
Eigenvalue: 0.2601 Component Number: 17
Eigenvalue: 0.2819 Component Number: 16
Eigenvalue: 0.2954 Component Number: 15
Eigenvalue: 0.3559 Component Number: 14
Eigenvalue: 0.3883 Component Number: 13
Eigenvalue: 0.4344 Component Number: 12
Eigenvalue: 0.4704 Component Number: 11
Eigenvalue: 0.5099 Component Number: 10
Eigenvalue: 0.5400 Component Number: 9
Eigenvalue: 0.6319 Component Number: 8
Eigenvalue: 0.7655 Component Number: 7
Eigenvalue: 0.9006 Component Number: 6
Eigenvalue: 0.9377 Component Number: 5
Eigenvalue: 1.0535 Component Number: 4
Eigenvalue: 1.4506 Component Number: 3
Eigenvalue: 1.5772 Component Number: 2
Eigenvalue: 2.2454 Component Number: 1
Eigenvalue: 9.5708 Component Number: 29
Eigenvalue: 0.0446 Component Number: 28
Eigenvalue: 0.0512 Component Number: 27
Eigenvalue: 0.0609 Component Number: 26
Eigenvalue: 0.0765 Component Number: 25
Eigenvalue: 0.0848 Component Number: 24
Eigenvalue: 0.0856 Component Number: 23
Eigenvalue: 0.1110 Component Number: 22
Eigenvalue: 0.1416 Component Number: 21
Eigenvalue: 0.1586 Component Number: 20
Eigenvalue: 0.1822 Component Number: 19
Eigenvalue: 0.2058 Component Number: 18
Eigenvalue: 0.2601 Component Number: 17
Eigenvalue: 0.2819 Component Number: 16
Eigenvalue: 0.2954 Component Number: 15
Eigenvalue: 0.3559 Component Number: 14
Eigenvalue: 0.3883 Component Number: 13
Eigenvalue: 0.4344 Component Number: 12
Eigenvalue: 0.4704 Component Number: 11
Eigenvalue: 0.5099 Component Number: 10
Eigenvalue: 0.5400 Component Number: 9
Eigenvalue: 0.6319 Component Number: 8
Eigenvalue: 0.7655 Component Number: 7
Eigenvalue: 0.9006 Component Number: 6
Eigenvalue: 0.9377 Component Number: 5
Eigenvalue: 1.0535 Component Number: 4
Eigenvalue: 1.4506 Component Number: 3
Eigenvalue: 1.5772 Component Number: 2
Eigenvalue: 2.2454 Component Number: 1
Eigenvalue: 9.5708 0 2 4 6 8 10 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

{"copyright":"(C) Copyright IBM Corp. 2011","grammar":[{"elements":[{"data":{"$ref":"dSource"},"style":{"outline":{"r":0,"b":0,"g":0},"fill":{"r":0,"b":157,"g":100},"stroke":{"width":3.3333333}},"position":[{"field":{"$ref":"fVariable1"}},{"field":{"$ref":"fVariable"}}],"type":"line"},{"data":{"$ref":"dSource"},"style":{"symbol":"circle","outline":{"r":0,"b":157,"g":100},"size":6.6666665,"fill":{"r":119,"b":119,"g":118}},"position":[{"field":{"$ref":"fVariable1"}},{"field":{"$ref":"fVariable"}}],"type":"point"}],"coordinates":{"style":{"outline":{"r":0,"b":157,"g":100},"fill":{"r":255,"b":255,"g":255}},"dimensions":[{"scale":{"padding":{"left":"5%","right":"5%"}},"axis":[{"tickStyle":{"padding":5.0,"fill":{"r":0,"b":157,"g":100},"font":{"size":"8pt","weight":"normal","family":"sans-serif"}},"gridStyle":{"fill":{"r":0,"b":157,"g":100}},"lineStyle":{"fill":{"r":0,"b":157,"g":100},"stroke":{"width":0.6666667}},"titleStyle":{"padding":6.0,"fill":{"r":0,"b":157,"g":100},"font":{"size":"12pt","weight":"bold","family":"sans-serif"}},"title":["Eigenvalue"],"markStyle":{"fill":{"a":0,"r":0,"b":157,"g":100},"stroke":{"width":1.3333334}}}]},{"scale":{"padding":{"left":"5%","right":"5%"}},"axis":[{"tickStyle":{"padding":5.0,"fill":{"r":0,"b":157,"g":100},"font":{"size":"12pt","weight":"normal","family":"sans-serif"}},"lineStyle":{"fill":{"r":0,"b":157,"g":100},"stroke":{"width":0.6666667}},"titleStyle":{"padding":6.0,"fill":{"r":0,"b":157,"g":100},"font":{"size":"12pt","weight":"bold","family":"sans-serif"}},"title":["Component Number"],"markStyle":{"fill":{"a":0,"r":0,"b":157,"g":100},"stroke":{"width":1.3333334}}}]}]}}],"data":[{"id":"dSource","fields":[{"id":"fVariable","label":"Component Number","categories":[]},{"min":0.0399737509867418,"max":9.570802493011337,"id":"fVariable1","label":"Eigenvalue"}],"rows":[[0,9.570802493011337],[1,2.245355387972992],[2,1.57720825988975],[3,1.450582263681228],[4,1.053457346316275],[5,0.9376855481423746],[6,0.9005888669360474],[7,0.7655093631698154],[8,0.6319165148907427],[9,0.5400454140793908],[10,0.5099362323002994],[11,0.4703792635617538],[12,0.4343847214755815],[13,0.3883098194590851],[14,0.3559191840224681],[15,0.2954129027304115],[16,0.2819333653284069],[17,0.2601379008400377],[18,0.2057525059131212],[19,0.1822244930535127],[20,0.1585582772998798],[21,0.1415818427699833],[22,0.1110270131220416],[23,0.08556529630587456],[24,0.08484453130115507],[25,0.07648372543201241],[26,0.06092258476950938],[27,0.05122500664134239],[28,0.04458745392942624],[29,0.0399737509867418]]}],"size":{"width":850.0,"height":500.0},"style":{"outline":{"a":0.0,"r":0,"b":0,"g":0},"fill":{"r":255,"b":255,"g":255}},"titles":[{"backgroundStyle":{"outline":{"a":0.0,"r":0,"b":0,"g":0},"fill":{"a":0.0,"r":0,"b":0,"g":0}},"style":{"padding":3.0,"fill":{"r":0,"b":157,"g":100},"font":{"size":"12pt","weight":"bold","family":"sans-serif"}},"type":"title","content":["Scree Plot"]}],"version":"6.0"}

Factor Analysis
Factor Analysis - Component Matrix - February 4, 2020
Component MatrixaComponent Matrix, table, 3 levels of column headers and 1 levels of row headers, table with 13 columns and 36 rows
  Raw Rescaled
Component Component
1 2 3 4 5 6 1 2 3 4 5 6
K1a Lending money to family members -.068 .067 .240 .051 .175 .096 -.138 .135 .483 .103 .353 .193
K1b Lending money to relatives -.044 .075 .213 .068 .188 .103 -.089 .149 .425 .136 .375 .205
K1c Lending money to people in your own village -.007 .059 .200 .082 .155 .103 -.014 .122 .409 .167 .317 .210
K1d Lending money to people outside the village .000 .057 .055 .064 .072 .060 .000 .157 .150 .176 .197 .166
K1e Lending money to people from the same mosque/ church -.029 .029 .116 .062 .042 .049 -.080 .079 .318 .170 .115 .135
K2a Lending tools like axes, hoes etc. to family members -.105 .062 .127 .047 .100 .044 -.231 .137 .279 .102 .221 .096
K2b Lending tools like axes, hoes etc. to relatives outside the household -.070 .075 .041 .032 .115 .003 -.164 .175 .097 .076 .269 .007
L2 Participated in cooperative agricultural work .013 .056 .060 .087 .159 .109 .027 .114 .122 .176 .322 .221
L3.d. Participated last 12 months in cooperative work of weeding .009 .021 .030 .049 .082 .106 .023 .056 .080 .131 .217 .280
L3.e. Participated last 12 months in cooperative work of harvesting .002 .054 .018 .055 .110 .080 .004 .134 .045 .138 .276 .199
L3.f. Participated last 12 months in cooperative work of other agriculture work .023 .107 .073 .065 .119 -.023 .065 .308 .210 .186 .343 -.066
L6 Participation in other exchange work than agriculture -.067 .107 .139 .059 .169 .089 -.134 .214 .277 .119 .338 .178
L7 Participated in public works without payment during the last year -.036 -.123 -.080 -.066 -.151 .009 -.090 -.308 -.201 -.166 -.379 .023
M1 Most people can be trusted (1) or you cannot be too careful (0) .163 .156 .030 .050 .087 .000 .327 .313 .060 .099 .174 .000
M2.d. Trust in Traditional Authorities .798 -.487 .273 -.376 -.017 -.012 .683 -.417 .234 -.321 -.015 -.010
M2.e. Trust in group village headmen .880 -.446 .297 -.385 .106 .008 .736 -.373 .249 -.322 .088 .007
M2.f. Trust in village headmen .921 -.435 .285 -.089 .112 -.084 .763 -.361 .236 -.074 .092 -.070
M2.j. Trust in police .855 -.249 -.323 -.049 .560 .416 .668 -.195 -.252 -.038 .438 .325
M2.k. Trust in traders .799 -.148 -.826 .308 .049 .077 .603 -.112 -.624 .232 .037 .058
M2.l. Trust in teachers .750 -.343 -.076 .194 -.234 -.112 .685 -.313 -.069 .177 -.214 -.102
M2.m.Trust in school administrators .835 -.319 -.149 .293 -.135 -.160 .712 -.272 -.127 .250 -.115 -.136
M2.n. Trust in religious leaders .695 -.139 .195 .322 -.150 -.260 .627 -.126 .176 .290 -.136 -.234
M3.a. Trust in family members .497 .144 .292 .304 -.076 .135 .531 .154 .312 .325 -.081 .144
M3.b. Trust in relatives .653 .310 .330 .620 .092 .065 .564 .268 .285 .536 .080 .056
M3.c. Trust in people in own village .798 .287 .084 .151 .079 -.131 .725 .261 .076 .138 .072 -.119
M3.d. Trust in people outside the village .680 .464 -.109 -.151 .270 -.494 .607 .414 -.097 -.135 .241 -.441
M3.e. Trust in people of same ethnic group .778 .485 .044 -.286 -.066 .059 .710 .442 .041 -.261 -.060 .054
M3.f. Trust in people outside ethnic group .782 .525 -.082 -.232 .035 -.175 .698 .469 -.074 -.208 .031 -.157
M3.g. Trust in people from same church/ mosque .692 .161 .137 .031 -.472 .437 .648 .151 .128 .029 -.442 .409
M3.h. Trust in people not from same church/ mosque .822 .500 -.162 -.342 -.241 .247 .677 .412 -.133 -.281 -.199 .204
Extraction Method: Principal Component Analysis.
a. 6 components extracted.
Factor Analysis
Factor Analysis - Rotated Component Matrix - February 4, 2020
Rotated Component MatrixaRotated Component Matrix, table, 3 levels of column headers and 1 levels of row headers, table with 13 columns and 36 rows
  Raw Rescaled
Component Component
1 2 3 4 5 6 1 2 3 4 5 6
K1a Lending money to family members -.027 .315 .028 -.029 -.087 -.010 -.055 .634 .057 -.059 -.174 -.020
K1b Lending money to relatives -.011 .316 .022 -.015 -.050 -.010 -.022 .631 .044 -.030 -.100 -.019
K1c Lending money to people in your own village -.008 .285 .033 .022 -.037 .012 -.017 .584 .069 .045 -.076 .025
K1d Lending money to people outside the village .012 .132 -.025 .019 .016 .015 .033 .363 -.069 .052 .045 .041
K1e Lending money to people from the same mosque/ church -.031 .137 -.007 .027 -.049 .018 -.085 .376 -.020 .074 -.133 .050
K2a Lending tools like axes, hoes etc. to family members -.037 .188 -.045 -.038 -.067 -.027 -.081 .413 -.099 -.084 -.147 -.059
K2b Lending tools like axes, hoes etc. to relatives outside the household .017 .131 -.057 -.042 -.010 -.063 .039 .306 -.133 -.098 -.024 -.148
L2 Participated in cooperative agricultural work .011 .213 -.007 .009 .075 .003 .023 .433 -.013 .019 .153 .005
L3.d. Participated last 12 months in cooperative work of weeding -.013 .128 .001 -.002 .062 .037 -.035 .339 .003 -.004 .164 .098
L3.e. Participated last 12 months in cooperative work of harvesting .017 .140 -.024 -.008 .065 .004 .042 .350 -.059 -.020 .163 .010
L3.f. Participated last 12 months in cooperative work of other agriculture work .087 .152 -.028 .036 -.013 -.058 .251 .436 -.081 .104 -.038 -.168
L6 Participation in other exchange work than agriculture .010 .267 -.037 -.041 -.024 -.015 .020 .534 -.073 -.082 -.048 -.030
L7 Participated in public works without payment during the last year -.105 -.184 .021 -.032 -.002 .060 -.265 -.462 .053 -.080 -.004 .150
M1 Most people can be trusted (1) or you cannot be too careful (0) .199 .114 .004 .085 .044 .015 .399 .229 .009 .170 .088 .030
M2.d. Trust in Traditional Authorities .179 -.179 .977 .220 .042 .150 .154 -.153 .836 .189 .036 .128
M2.e. Trust in group village headmen .267 -.080 1.035 .216 .097 .124 .223 -.067 .866 .181 .081 .104
M2.f. Trust in village headmen .241 -.030 .914 .480 .143 .032 .200 -.025 .757 .398 .119 .027
M2.j. Trust in police .313 .181 .632 .114 .913 .103 .245 .141 .494 .089 .713 .080
M2.k. Trust in traders .319 -.400 .086 .473 .974 .059 .241 -.302 .065 .357 .735 .045
M2.l. Trust in teachers .126 -.326 .439 .634 .243 .123 .115 -.298 .401 .580 .222 .112
M2.m.Trust in school administrators .195 -.293 .418 .723 .358 .036 .167 -.250 .356 .616 .305 .031
M2.n. Trust in religious leaders .230 -.085 .348 .744 -.004 .008 .208 -.077 .314 .671 -.004 .007
M3.a. Trust in family members .224 .254 .147 .502 -.002 .284 .239 .272 .158 .536 -.003 .303
M3.b. Trust in relatives .380 .480 .041 .782 .092 .175 .329 .415 .036 .676 .080 .151
M3.c. Trust in people in own village .648 .103 .241 .507 .138 .082 .590 .093 .220 .461 .126 .074
M3.d. Trust in people outside the village .932 -.057 .166 .203 .081 -.284 .833 -.051 .148 .181 .072 -.253
M3.e. Trust in people of same ethnic group .833 -.011 .273 .126 .052 .380 .760 -.010 .249 .115 .047 .347
M3.f. Trust in people outside ethnic group .937 -.081 .194 .173 .096 .136 .837 -.073 .173 .154 .086 .121
M3.g. Trust in people from same church/ mosque .301 -.052 .237 .391 .069 .795 .282 -.049 .222 .366 .064 .744
M3.h. Trust in people not from same church/ mosque .830 -.175 .207 .068 .203 .618 .683 -.144 .170 .056 .167 .509
Extraction Method: Principal Component Analysis.
Rotation Method: Varimax with Kaiser Normalization.a
a. Rotation converged in 8 iterations.
Factor Analysis
Factor Analysis - Component Transformation Matrix - February 4, 2020
Component Transformation MatrixComponent Transformation Matrix, table, 1 levels of column headers and 1 levels of row headers, table with 7 columns and 9 rows
Component 1 2 3 4 5 6
1 .561 -.081 .540 .498 .300 .221
2 .715 .273 -.577 -.111 -.181 .192
3 -.092 .542 .371 .175 -.720 .108
4 -.278 .302 -.444 .763 .205 -.097
5 .139 .619 .199 -.259 .402 -.573
6 -.264 .387 .030 -.242 .394 .752
Extraction Method: Principal Component Analysis.
Rotation Method: Varimax with Kaiser Normalization.
Log
Log - Log - February 4, 2020

FACTOR
  /VARIABLES K1a K1b K1c K1d K1e K2a K2b L2 L3d L3e L3f L6 L7 M1trust M2dTradAut M2eGVH M2fVH
    M2jPolice M2kTraders M2lTeacher M2mSchAdm M2nRelLead M3aFamil M3bRelatives M3cOwnVil M3dOutsideV
    M3eSameEthnic M3fOutsEthn M3gSameChM M3hNotSameChM
  /MISSING LISTWISE
  /ANALYSIS K1a K1b K1c K1d K1e K2a K2b L2 L3d L3e L3f L6 L7 M1trust M2dTradAut M2eGVH M2fVH
    M2jPolice M2kTraders M2lTeacher M2mSchAdm M2nRelLead M3aFamil M3bRelatives M3cOwnVil M3dOutsideV
    M3eSameEthnic M3fOutsEthn M3gSameChM M3hNotSameChM
  /PRINT UNIVARIATE INITIAL EXTRACTION ROTATION
  /PLOT EIGEN
  /CRITERIA FACTORS(5) ITERATE(25)
  /EXTRACTION PC
  /CRITERIA ITERATE(25)
  /ROTATION VARIMAX
  /METHOD=COVARIANCE.

Factor Analysis
Factor Analysis - Descriptive Statistics - February 4, 2020
Descriptive StatisticsDescriptive Statistics, table, 1 levels of column headers and 1 levels of row headers, table with 4 columns and 32 rows
  Mean Std. Deviation Analysis N
K1a Lending money to family members .43 .497 235
K1b Lending money to relatives .49 .501 235
K1c Lending money to people in your own village .39 .488 235
K1d Lending money to people outside the village .16 .365 235
K1e Lending money to people from the same mosque/ church .16 .365 235
K2a Lending tools like axes, hoes etc. to family members .71 .454 235
K2b Lending tools like axes, hoes etc. to relatives outside the household .76 .427 235
L2 Participated in cooperative agricultural work .41 .493 235
L3.d. Participated last 12 months in cooperative work of weeding .17 .377 235
L3.e. Participated last 12 months in cooperative work of harvesting .20 .401 235
L3.f. Participated last 12 months in cooperative work of other agriculture work .14 .348 235
L6 Participation in other exchange work than agriculture .52 .501 235
L7 Participated in public works without payment during the last year .80 .398 235
M1 Most people can be trusted (1) or you cannot be too careful (0) .46 .499 235
M2.d. Trust in Traditional Authorities 3.79 1.168 235
M2.e. Trust in group village headmen 3.69 1.196 235
M2.f. Trust in village headmen 3.70 1.207 235
M2.j. Trust in police 3.66 1.279 235
M2.k. Trust in traders 2.50 1.325 235
M2.l. Trust in teachers 3.85 1.095 235
M2.m.Trust in school administrators 3.71 1.173 235
M2.n. Trust in religious leaders 3.93 1.109 235
M3.a. Trust in family members 4.41 .936 235
M3.b. Trust in relatives 3.89 1.157 235
M3.c. Trust in people in own village 3.34 1.100 235
M3.d. Trust in people outside the village 2.72 1.120 235
M3.e. Trust in people of same ethnic group 3.13 1.096 235
M3.f. Trust in people outside ethnic group 2.79 1.120 235
M3.g. Trust in people from same church/ mosque 3.63 1.068 235
M3.h. Trust in people not from same church/ mosque 3.01 1.214 235
Factor Analysis
Factor Analysis - Communalities - February 4, 2020
CommunalitiesCommunalities, table, 2 levels of column headers and 1 levels of row headers, table with 5 columns and 34 rows
  Raw Rescaled
Initial Extraction Initial Extraction
K1a Lending money to family members .247 .100 1.000 .406
K1b Lending money to relatives .251 .093 1.000 .370
K1c Lending money to people in your own village .238 .074 1.000 .311
K1d Lending money to people outside the village .133 .016 1.000 .117
K1e Lending money to people from the same mosque/ church .133 .021 1.000 .156
K2a Lending tools like axes, hoes etc. to family members .207 .043 1.000 .210
K2b Lending tools like axes, hoes etc. to relatives outside the household .182 .026 1.000 .145
L2 Participated in cooperative agricultural work .243 .040 1.000 .163
L3.d. Participated last 12 months in cooperative work of weeding .142 .011 1.000 .074
L3.e. Participated last 12 months in cooperative work of harvesting .161 .018 1.000 .115
L3.f. Participated last 12 months in cooperative work of other agriculture work .121 .036 1.000 .295
L6 Participation in other exchange work than agriculture .251 .067 1.000 .269
L7 Participated in public works without payment during the last year .158 .050 1.000 .315
M1 Most people can be trusted (1) or you cannot be too careful (0) .249 .062 1.000 .249
M2.d. Trust in Traditional Authorities 1.365 1.090 1.000 .799
M2.e. Trust in group village headmen 1.430 1.221 1.000 .854
M2.f. Trust in village headmen 1.458 1.139 1.000 .781
M2.j. Trust in police 1.637 1.213 1.000 .741
M2.k. Trust in traders 1.755 1.439 1.000 .820
M2.l. Trust in teachers 1.199 .779 1.000 .650
M2.m.Trust in school administrators 1.376 .925 1.000 .672
M2.n. Trust in religious leaders 1.230 .667 1.000 .543
M3.a. Trust in family members .876 .451 1.000 .515
M3.b. Trust in relatives 1.338 1.024 1.000 .765
M3.c. Trust in people in own village 1.210 .755 1.000 .624
M3.d. Trust in people outside the village 1.254 .785 1.000 .626
M3.e. Trust in people of same ethnic group 1.200 .928 1.000 .773
M3.f. Trust in people outside ethnic group 1.254 .949 1.000 .757
M3.g. Trust in people from same church/ mosque 1.141 .748 1.000 .655
M3.h. Trust in people not from same church/ mosque 1.474 1.128 1.000 .765
Extraction Method: Principal Component Analysis.
Factor Analysis
Factor Analysis - Total Variance Explained - February 4, 2020
Total Variance ExplainedTotal Variance Explained, table, 2 levels of column headers and 2 levels of row headers, table with 11 columns and 65 rows
  Component Initial Eigenvaluesa Extraction Sums of Squared Loadings Rotation Sums of Squared Loadings
  Total % of Variance Cumulative % Total % of Variance Cumulative % Total % of Variance Cumulative %
Raw 1 9.571 40.025 40.025 9.571 40.025 40.025 4.704 19.672 19.672
2 2.245 9.390 49.415 2.245 9.390 49.415 1.370 5.730 25.401
3 1.577 6.596 56.010 1.577 6.596 56.010 3.581 14.975 40.376
4 1.451 6.066 62.077 1.451 6.066 62.077 4.020 16.813 57.189
5 1.053 4.406 66.482 1.053 4.406 66.482 2.222 9.293 66.482
6 .938 3.921 70.403            
7 .901 3.766 74.170            
8 .766 3.201 77.371            
9 .632 2.643 80.014            
10 .540 2.258 82.272            
11 .510 2.133 84.405            
12 .470 1.967 86.372            
13 .434 1.817 88.188            
14 .388 1.624 89.812            
15 .356 1.488 91.301            
16 .295 1.235 92.536            
17 .282 1.179 93.715            
18 .260 1.088 94.803            
19 .206 .860 95.663            
20 .182 .762 96.425            
21 .159 .663 97.088            
22 .142 .592 97.681            
23 .111 .464 98.145            
24 .086 .358 98.503            
25 .085 .355 98.858            
26 .076 .320 99.177            
27 .061 .255 99.432            
28 .051 .214 99.646            
29 .045 .186 99.833            
30 .040 .167 100.000            
Rescaled 1 9.571 40.025 40.025 7.386 24.621 24.621 3.833 12.778 12.778
2 2.245 9.390 49.415 2.128 7.092 31.713 3.245 10.817 23.595
3 1.577 6.596 56.010 1.892 6.307 38.021 2.952 9.838 33.434
4 1.451 6.066 62.077 1.354 4.512 42.533 2.918 9.727 43.161
5 1.053 4.406 66.482 1.774 5.913 48.446 1.586 5.285 48.446
6 .938 3.921 70.403            
7 .901 3.766 74.170            
8 .766 3.201 77.371            
9 .632 2.643 80.014            
10 .540 2.258 82.272            
11 .510 2.133 84.405            
12 .470 1.967 86.372            
13 .434 1.817 88.188            
14 .388 1.624 89.812            
15 .356 1.488 91.301            
16 .295 1.235 92.536            
17 .282 1.179 93.715            
18 .260 1.088 94.803            
19 .206 .860 95.663            
20 .182 .762 96.425            
21 .159 .663 97.088            
22 .142 .592 97.681            
23 .111 .464 98.145            
24 .086 .358 98.503            
25 .085 .355 98.858            
26 .076 .320 99.177            
27 .061 .255 99.432            
28 .051 .214 99.646            
29 .045 .186 99.833            
30 .040 .167 100.000            
Extraction Method: Principal Component Analysis.
a. When analyzing a covariance matrix, the initial eigenvalues are the same across the raw and rescaled solution.
Factor Analysis
Factor Analysis - Scree Plot - February 4, 2020
Scree Plot Component Number: 30
Eigenvalue: 0.0400 Component Number: 29
Eigenvalue: 0.0446 Component Number: 28
Eigenvalue: 0.0512 Component Number: 27
Eigenvalue: 0.0609 Component Number: 26
Eigenvalue: 0.0765 Component Number: 25
Eigenvalue: 0.0848 Component Number: 24
Eigenvalue: 0.0856 Component Number: 23
Eigenvalue: 0.1110 Component Number: 22
Eigenvalue: 0.1416 Component Number: 21
Eigenvalue: 0.1586 Component Number: 20
Eigenvalue: 0.1822 Component Number: 19
Eigenvalue: 0.2058 Component Number: 18
Eigenvalue: 0.2601 Component Number: 17
Eigenvalue: 0.2819 Component Number: 16
Eigenvalue: 0.2954 Component Number: 15
Eigenvalue: 0.3559 Component Number: 14
Eigenvalue: 0.3883 Component Number: 13
Eigenvalue: 0.4344 Component Number: 12
Eigenvalue: 0.4704 Component Number: 11
Eigenvalue: 0.5099 Component Number: 10
Eigenvalue: 0.5400 Component Number: 9
Eigenvalue: 0.6319 Component Number: 8
Eigenvalue: 0.7655 Component Number: 7
Eigenvalue: 0.9006 Component Number: 6
Eigenvalue: 0.9377 Component Number: 5
Eigenvalue: 1.0535 Component Number: 4
Eigenvalue: 1.4506 Component Number: 3
Eigenvalue: 1.5772 Component Number: 2
Eigenvalue: 2.2454 Component Number: 1
Eigenvalue: 9.5708 Component Number: 29
Eigenvalue: 0.0446 Component Number: 28
Eigenvalue: 0.0512 Component Number: 27
Eigenvalue: 0.0609 Component Number: 26
Eigenvalue: 0.0765 Component Number: 25
Eigenvalue: 0.0848 Component Number: 24
Eigenvalue: 0.0856 Component Number: 23
Eigenvalue: 0.1110 Component Number: 22
Eigenvalue: 0.1416 Component Number: 21
Eigenvalue: 0.1586 Component Number: 20
Eigenvalue: 0.1822 Component Number: 19
Eigenvalue: 0.2058 Component Number: 18
Eigenvalue: 0.2601 Component Number: 17
Eigenvalue: 0.2819 Component Number: 16
Eigenvalue: 0.2954 Component Number: 15
Eigenvalue: 0.3559 Component Number: 14
Eigenvalue: 0.3883 Component Number: 13
Eigenvalue: 0.4344 Component Number: 12
Eigenvalue: 0.4704 Component Number: 11
Eigenvalue: 0.5099 Component Number: 10
Eigenvalue: 0.5400 Component Number: 9
Eigenvalue: 0.6319 Component Number: 8
Eigenvalue: 0.7655 Component Number: 7
Eigenvalue: 0.9006 Component Number: 6
Eigenvalue: 0.9377 Component Number: 5
Eigenvalue: 1.0535 Component Number: 4
Eigenvalue: 1.4506 Component Number: 3
Eigenvalue: 1.5772 Component Number: 2
Eigenvalue: 2.2454 Component Number: 1
Eigenvalue: 9.5708 0 2 4 6 8 10 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

{"copyright":"(C) Copyright IBM Corp. 2011","grammar":[{"elements":[{"data":{"$ref":"dSource"},"style":{"outline":{"r":0,"b":0,"g":0},"fill":{"r":0,"b":157,"g":100},"stroke":{"width":3.3333333}},"position":[{"field":{"$ref":"fVariable1"}},{"field":{"$ref":"fVariable"}}],"type":"line"},{"data":{"$ref":"dSource"},"style":{"symbol":"circle","outline":{"r":0,"b":157,"g":100},"size":6.6666665,"fill":{"r":119,"b":119,"g":118}},"position":[{"field":{"$ref":"fVariable1"}},{"field":{"$ref":"fVariable"}}],"type":"point"}],"coordinates":{"style":{"outline":{"r":0,"b":157,"g":100},"fill":{"r":255,"b":255,"g":255}},"dimensions":[{"scale":{"padding":{"left":"5%","right":"5%"}},"axis":[{"tickStyle":{"padding":5.0,"fill":{"r":0,"b":157,"g":100},"font":{"size":"8pt","weight":"normal","family":"sans-serif"}},"gridStyle":{"fill":{"r":0,"b":157,"g":100}},"lineStyle":{"fill":{"r":0,"b":157,"g":100},"stroke":{"width":0.6666667}},"titleStyle":{"padding":6.0,"fill":{"r":0,"b":157,"g":100},"font":{"size":"12pt","weight":"bold","family":"sans-serif"}},"title":["Eigenvalue"],"markStyle":{"fill":{"a":0,"r":0,"b":157,"g":100},"stroke":{"width":1.3333334}}}]},{"scale":{"padding":{"left":"5%","right":"5%"}},"axis":[{"tickStyle":{"padding":5.0,"fill":{"r":0,"b":157,"g":100},"font":{"size":"12pt","weight":"normal","family":"sans-serif"}},"lineStyle":{"fill":{"r":0,"b":157,"g":100},"stroke":{"width":0.6666667}},"titleStyle":{"padding":6.0,"fill":{"r":0,"b":157,"g":100},"font":{"size":"12pt","weight":"bold","family":"sans-serif"}},"title":["Component Number"],"markStyle":{"fill":{"a":0,"r":0,"b":157,"g":100},"stroke":{"width":1.3333334}}}]}]}}],"data":[{"id":"dSource","fields":[{"id":"fVariable","label":"Component Number","categories":[]},{"min":0.0399737509867418,"max":9.570802493011337,"id":"fVariable1","label":"Eigenvalue"}],"rows":[[0,9.570802493011337],[1,2.245355387972992],[2,1.57720825988975],[3,1.450582263681228],[4,1.053457346316275],[5,0.9376855481423746],[6,0.9005888669360474],[7,0.7655093631698154],[8,0.6319165148907427],[9,0.5400454140793908],[10,0.5099362323002994],[11,0.4703792635617538],[12,0.4343847214755815],[13,0.3883098194590851],[14,0.3559191840224681],[15,0.2954129027304115],[16,0.2819333653284069],[17,0.2601379008400377],[18,0.2057525059131212],[19,0.1822244930535127],[20,0.1585582772998798],[21,0.1415818427699833],[22,0.1110270131220416],[23,0.08556529630587456],[24,0.08484453130115507],[25,0.07648372543201241],[26,0.06092258476950938],[27,0.05122500664134239],[28,0.04458745392942624],[29,0.0399737509867418]]}],"size":{"width":850.0,"height":500.0},"style":{"outline":{"a":0.0,"r":0,"b":0,"g":0},"fill":{"r":255,"b":255,"g":255}},"titles":[{"backgroundStyle":{"outline":{"a":0.0,"r":0,"b":0,"g":0},"fill":{"a":0.0,"r":0,"b":0,"g":0}},"style":{"padding":3.0,"fill":{"r":0,"b":157,"g":100},"font":{"size":"12pt","weight":"bold","family":"sans-serif"}},"type":"title","content":["Scree Plot"]}],"version":"6.0"}

Factor Analysis
Factor Analysis - Component Matrix - February 4, 2020
Component MatrixaComponent Matrix, table, 3 levels of column headers and 1 levels of row headers, table with 11 columns and 36 rows
  Raw Rescaled
Component Component
1 2 3 4 5 1 2 3 4 5
K1a Lending money to family members -.068 .067 .240 .051 .175 -.138 .135 .483 .103 .353
K1b Lending money to relatives -.044 .075 .213 .068 .188 -.089 .149 .425 .136 .375
K1c Lending money to people in your own village -.007 .059 .200 .082 .155 -.014 .122 .409 .167 .317
K1d Lending money to people outside the village .000 .057 .055 .064 .072 .000 .157 .150 .176 .197
K1e Lending money to people from the same mosque/ church -.029 .029 .116 .062 .042 -.080 .079 .318 .170 .115
K2a Lending tools like axes, hoes etc. to family members -.105 .062 .127 .047 .100 -.231 .137 .279 .102 .221
K2b Lending tools like axes, hoes etc. to relatives outside the household -.070 .075 .041 .032 .115 -.164 .175 .097 .076 .269
L2 Participated in cooperative agricultural work .013 .056 .060 .087 .159 .027 .114 .122 .176 .322
L3.d. Participated last 12 months in cooperative work of weeding .009 .021 .030 .049 .082 .023 .056 .080 .131 .217
L3.e. Participated last 12 months in cooperative work of harvesting .002 .054 .018 .055 .110 .004 .134 .045 .138 .276
L3.f. Participated last 12 months in cooperative work of other agriculture work .023 .107 .073 .065 .119 .065 .308 .210 .186 .343
L6 Participation in other exchange work than agriculture -.067 .107 .139 .059 .169 -.134 .214 .277 .119 .338
L7 Participated in public works without payment during the last year -.036 -.123 -.080 -.066 -.151 -.090 -.308 -.201 -.166 -.379
M1 Most people can be trusted (1) or you cannot be too careful (0) .163 .156 .030 .050 .087 .327 .313 .060 .099 .174
M2.d. Trust in Traditional Authorities .798 -.487 .273 -.376 -.017 .683 -.417 .234 -.321 -.015
M2.e. Trust in group village headmen .880 -.446 .297 -.385 .106 .736 -.373 .249 -.322 .088
M2.f. Trust in village headmen .921 -.435 .285 -.089 .112 .763 -.361 .236 -.074 .092
M2.j. Trust in police .855 -.249 -.323 -.049 .560 .668 -.195 -.252 -.038 .438
M2.k. Trust in traders .799 -.148 -.826 .308 .049 .603 -.112 -.624 .232 .037
M2.l. Trust in teachers .750 -.343 -.076 .194 -.234 .685 -.313 -.069 .177 -.214
M2.m.Trust in school administrators .835 -.319 -.149 .293 -.135 .712 -.272 -.127 .250 -.115
M2.n. Trust in religious leaders .695 -.139 .195 .322 -.150 .627 -.126 .176 .290 -.136
M3.a. Trust in family members .497 .144 .292 .304 -.076 .531 .154 .312 .325 -.081
M3.b. Trust in relatives .653 .310 .330 .620 .092 .564 .268 .285 .536 .080
M3.c. Trust in people in own village .798 .287 .084 .151 .079 .725 .261 .076 .138 .072
M3.d. Trust in people outside the village .680 .464 -.109 -.151 .270 .607 .414 -.097 -.135 .241
M3.e. Trust in people of same ethnic group .778 .485 .044 -.286 -.066 .710 .442 .041 -.261 -.060
M3.f. Trust in people outside ethnic group .782 .525 -.082 -.232 .035 .698 .469 -.074 -.208 .031
M3.g. Trust in people from same church/ mosque .692 .161 .137 .031 -.472 .648 .151 .128 .029 -.442
M3.h. Trust in people not from same church/ mosque .822 .500 -.162 -.342 -.241 .677 .412 -.133 -.281 -.199
Extraction Method: Principal Component Analysis.
a. 5 components extracted.
Factor Analysis
Factor Analysis - Rotated Component Matrix - February 4, 2020
Rotated Component MatrixaRotated Component Matrix, table, 3 levels of column headers and 1 levels of row headers, table with 11 columns and 36 rows
  Raw Rescaled
Component Component
1 2 3 4 5 1 2 3 4 5
K1a Lending money to family members -.037 .289 -.020 .032 -.118 -.074 .581 -.039 .065 -.238
K1b Lending money to relatives -.021 .292 -.008 .027 -.081 -.041 .582 -.016 .054 -.162
K1c Lending money to people in your own village -.013 .258 .033 .037 -.068 -.026 .529 .067 .077 -.139
K1d Lending money to people outside the village .012 .119 .024 -.023 .000 .032 .327 .067 -.063 .001
K1e Lending money to people from the same mosque/ church -.031 .120 .037 -.006 -.064 -.086 .329 .101 -.017 -.174
K2a Lending tools like axes, hoes etc. to family members -.049 .178 -.037 -.041 -.079 -.107 .391 -.082 -.091 -.175
K2b Lending tools like axes, hoes etc. to relatives outside the household -.005 .143 -.057 -.051 -.005 -.012 .336 -.133 -.120 -.011
L2 Participated in cooperative agricultural work .009 .193 .011 -.001 .047 .018 .392 .022 -.001 .096
L3.d. Participated last 12 months in cooperative work of weeding -.002 .098 .010 .003 .029 -.004 .260 .027 .008 .076
L3.e. Participated last 12 months in cooperative work of harvesting .017 .126 -.006 -.020 .044 .041 .314 -.016 -.049 .110
L3.f. Participated last 12 months in cooperative work of other agriculture work .058 .178 .018 -.022 .005 .166 .510 .052 -.064 .015
L6 Participation in other exchange work than agriculture .000 .250 -.037 -.032 -.050 -.001 .499 -.075 -.064 -.100
L7 Participated in public works without payment during the last year -.075 -.208 -.013 .015 -.016 -.189 -.524 -.034 .037 -.040
M1 Most people can be trusted (1) or you cannot be too careful (0) .187 .134 .082 .006 .051 .374 .268 .164 .011 .103
M2.d. Trust in Traditional Authorities .234 -.209 .253 .963 .011 .201 -.179 .216 .824 .009
M2.e. Trust in group village headmen .312 -.103 .240 1.026 .063 .261 -.086 .200 .858 .052
M2.f. Trust in village headmen .238 .000 .460 .916 .176 .197 .000 .381 .759 .146
M2.j. Trust in police .373 .110 .104 .649 .794 .292 .086 .081 .507 .620
M2.k. Trust in traders .338 -.353 .413 .103 1.010 .255 -.266 .311 .078 .762
M2.l. Trust in teachers .140 -.293 .624 .438 .305 .128 -.267 .570 .400 .279
M2.m.Trust in school administrators .177 -.219 .675 .426 .457 .151 -.186 .576 .363 .389
M2.n. Trust in religious leaders .178 .012 .705 .352 .122 .161 .010 .636 .318 .110
M3.a. Trust in family members .258 .206 .567 .138 -.038 .276 .221 .605 .148 -.041
M3.b. Trust in relatives .349 .500 .796 .048 .122 .302 .433 .688 .041 .105
M3.c. Trust in people in own village .613 .191 .492 .241 .206 .558 .174 .447 .219 .188
M3.d. Trust in people outside the village .796 .194 .083 .176 .275 .711 .173 .074 .157 .246
M3.e. Trust in people of same ethnic group .906 -.026 .220 .241 -.010 .827 -.024 .201 .220 -.009
M3.f. Trust in people outside ethnic group .929 .018 .183 .177 .142 .830 .016 .163 .158 .126
M3.g. Trust in people from same church/ mosque .505 -.263 .609 .189 -.131 .473 -.247 .570 .177 -.122
M3.h. Trust in people not from same church/ mosque .986 -.273 .228 .161 .058 .812 -.225 .188 .132 .048
Extraction Method: Principal Component Analysis.
Rotation Method: Varimax with Kaiser Normalization.a
a. Rotation converged in 8 iterations.
Factor Analysis
Factor Analysis - Component Transformation Matrix - February 4, 2020
Component Transformation MatrixComponent Transformation Matrix, table, 1 levels of column headers and 1 levels of row headers, table with 6 columns and 8 rows
Component 1 2 3 4 5
1 .592 -.061 .520 .532 .304
2 .713 .307 -.051 -.597 -.197
3 -.100 .487 .246 .358 -.752
4 -.362 .350 .695 -.412 .306
5 -.010 .737 -.428 .252 .458
Extraction Method: Principal Component Analysis.
Rotation Method: Varimax with Kaiser Normalization.