18th November 2020

Biomass Enhanced Carbon Capture and Storage (BECCS) experiments and modelling

Joseph G. Yao, Matthew E. Boot-Handford, Zili Zhang and Paul S. Fennell

Email: p.fennell@imperial.ac.uk

Bio4Fuels Days 2020, Norwegian University of Science and Technology

Outline

- Context
- Experimental Equipment

2

- Experimental Results
- Summary

Why Negative Emissions?

Socio-Technological Context

- Part of armoury of options to achieve net zero emissions by 2050
- Key focus of UK 2050 targets is on mitigation (reduction) options
 - e.g. Demand reduction, supply decarbonisation
- However, negative emissions technologies are important:
 - where mitigation is not happening fast enough
 - where alternative abatement costs are too high
 - where non fossil fuel alternatives are not available
 - where lifestyle changes are too painful
- Some approaches to CO₂ removal from the atmosphere could increase options available due to potential **flexibility** in location for deployment

BECCS and "GGR" technologies

System	State of Stored Carbon	Description	Published Cost Estimates
Afforestation & Reforestation	Biomass and soil organic carbon	Restoring cleared forests and planting new forests on suitable land	\$20-100/tCO ₂
Wetland Restoration	Biomass and soil organic carbon	Restoring damaged, carbon-dense wetlands such as peatlands and mangrove forests.	On the order of $10-100/tCO_2$ in some cases
Agricultural Soil Sequestration	Soil organic carbon	Adopting a range of practices on arable and grazing lands that enhance soil carbon levels, including reduced tillage and new cropping patterns.	\$0-100/tCO ₂ , and can be cost negative
BECCS	Pressurised CO ₂ in geological storage	Capturing CO_2 from biomass-fuelled power plants or industries and storing it in geological reservoirs.	$0-120/tCO_2$, but perhaps as little as $25/tCO_2$ in niches such as bioethanol production
Direct Air Capture (DAC)	Pressurised CO ₂ in geological storage	Capturing CO2 directly from the air using chemical sorbents and storing it in geological reservoirs.	Widely varying, from \$30-1000/tCO2, depending on system and assumptions
Enhanced Silicate Weathering	Dissolved bicarbonate and carbonate in groundwater or oceans	Spreading finely ground silicate mineral powder on land or ocean to accelerate natural reaction with atmospheric CO2	\$20-130/tCO2 assuming complete reaction
Ocean Liming	Dissolved bicarbonate and carbonate in oceans	Adding lime or other metal oxides / hydroxides to the ocean to convert dissolved CO2 to bicarbonate and drive drawdown from the atmosphere.	\$70-160/tCO2

Source: Lomax, G. et al, Energy Policy, 2015

BECCS

Imperial College LongeCCS becomes increasingly important

• Several sources indicate that BECCS will become increasingly important as a share of total generation capacity as the century progresses

Source: IPCC, Climate Change 2014: Mitigation of Climate Change, Chapter 7: Energy Systems

CO₂ Capture, utilisation and Storage (CCuS)

CO₂ utilisation

USA ONLY

Source	Annual CO2	Percentage of Total	
	production (MtCO2)	Emissions	
Power	2530	84.0%	
Refineries	154	5.1%	
Iron & Steel	82	2.7%	
Gas	77	2.6%	
Processing			
Cement	62	2.1%	
Ethylene	61	2.0%	
Ethanol	31	1.0%	
Ammonia	7.8	0.3%	
Hydrogen	6.8	0.2%	
Ethylene	1.2	0.0%	
Oxide			
TOTAL	3013	100%	

GLOBAL Global Annual CO2 Usage of CO2 used storage

	CO2 Usage	of CO2 used	storage	
Urea	65-146Mt^	Industrial	6 Months	
Methanol	6-8Mt	Industrial	6 Months	
Inorganic Carbonates	3-45Mt#	?	Decades	
Organic Carbonates	0.2Mt	?	Decades	
Polyurethanes	10Mt	?	Decades	
Technological	10Mt	?	Days to Years	
Food and drink	8Mt	?	Days to Years	
TOTAL	102 – 227Mt			
Notes: ^, # The demand for CO ₂ in I uncertain. Various sources ha differences.	Urea and Inorganion ve quoted figures	c Carbonate produc with orders of mag	tion is particularly gnitude	

Global ~ 10 x USA emissions

- Sources outweigh sinks by several orders of magnitude (more than a factor of 150).
- The storage of CO₂ is frequently short term especially for largest sinks; methanol and urea.

Process

• The use of CO₂ as a novel feedstock is a good idea if it is justified by the economics – but will not have significant climate benefit, particularly if the storage is short term.

BECCS (Bio Energy with Carbon Capture and Storage)

The Calcium Looping Cycle with in situ Biomass Combustion

J. C. Abanades, M. Alonso and N. Rodriguez, Experimental validation of in situ CO2 capture with CaO during the low temperature combustion of biomass in a fluidized bed reactor, International Journal of Greenhouse Gas Control, 2011, 5, 512-520.

Tars

Thick dark-coloured organic liquids composed of HCs (typically) heavier than benzene

- **Primary**: derivatives of cellulose, hemicellulose, lignin (oxygenated aromatics)
- Secondary: derivatives of 1^o tars (phenolic & olefins)
- Tertiary: methyl derivatives of aromatics
- **Condensed tertiary**: polyaromatic hydrocarbons (PAHs) without substituent

Problems:

- Causes **blockages downstream** (gas lines, filters etc)
- Fouling and slagging of heat exchangers
- Reduce overall combustion and thermodynamic efficiency of plant
- Difficult to remove!

Mild pressurisation of the carbonator

May allow higher temperatures for combustion and alleviate thermodynamic limitations on carbonation

EXPERIMENTAL WORK

Pressurised Spout-Fluidised Bed Reactor (FBR)

Standard Combustion vs in situ CO₂ Capture Setup

*CO₂ concentration chosen to match partial pressure of CO₂ inside reactor with the equilibrium partial pressure for carbonation/calcination at the operating temperature

Tar Recovery

Tar Gravimetric Yields

- Decreases with temperature
- Decreases with presence of CaO
- Decreases with total pressure (grey triangles)
- Not influenced by O₂ partial pressure (see red squares vs grey triangles)

Conditions: 0.3 g beechwood (212-300 μ m), 18.9 vol% O₂ in N₂, 25 g CaO/sand bed, Q=39-47 ml s⁻¹ (SATP)

SEC (Size Exclusion Chromatography)

Sand bed:

Inc in **O₂ partial pressure** => oxidise heavier tar species to I <u>lighter</u> tar species

No clear effect of T

CaO bed:

Smaller excluded peak = smaller portion of <u>heavier</u> tar species

No obvious difference in effects of T&P

10

*Note total pressure increased with constant O_2 vol%

Conditions: 0.3 g beechwood (212-300 µm), 18.9 vol% O₂ in N₂, 25 g CaO/sand bed, Q=39-47 ml s⁻¹ (SATP)

UVF (Ultra Violet Florescence)

CaO:

<u>Greater portion</u> of <u>more-</u> <u>conjugated</u> tar species at <u>lower temperatures</u>

High T+P: <u>Greater portion</u> of <u>more-</u> <u>conjugated</u> tar species

High T+P+CaO:

Destruction of <u>both 'less-</u> <u>conjugated'</u> and <u>'more</u> <u>conjugated'</u> tar species

20

*Note total pressure increased with constant O_2 vol%

Note: UVF gives proportion of less-conjugated to more-conjugated tar species

in situ CO₂ Capture at Different Pressures/Temperatures

Conditions: 0.1 g beechwood (212-300 μ m), 18.9 vol% O₂ in N₂, 25 g CaO/sand bed, Q=39-56 ml s⁻¹ (SATP)

in situ CO₂ Capture at constant partial P(O₂)

in situ CO₂ Capture for different biomass varieties

Conditions: 0.1 g biomass (212-300 μ m), 18.9 vol% O₂ in N₂, 25 g CaO/sand bed, Q=47 ml s⁻¹ (SATP)

Summary

- Basic Idea Validated, with potential issues.
- Tar yield lowered by presence of CaO, high temperatures and total pressure. O₂ partial pressure has no effect
- CaO helps crack heavier tars into lighter tars. Higher P₀₂/inclusion of CaO found to crack less-conjugated tar species more readily than more-conjugated tar species. Increase in P₀₂, T and CaO together cracks more-conjugated tar species as well.
- Although higher CO₂ partial pressures can be achieved at high P, rate of in situ CO₂ capture appears to be limited by rapid combustion kinetics at high O₂ partial pressures, especially at higher operating pressures and temperatures. May be better to use two reactors.
- Initial tests show **no constraint** with **biomass species**
- **Pressurised operation feasible** but not necessary optimal

Acknowledgements

We gratefully acknowledge the EPSRC for the PhD Studentship

Engineering and Physical Sciences Research Council

Thank you for listening!

Questions?

jgy108@ic.ac.uk p.fennell@ic.ac.uk

-26

Back up slides

Supporting Slide 1: MIP Pore size distribrution

-28

Sample (CaO) Properties

•	Measurement	Average	Standard Deviation	
	BET Surface Area (m ² /g)	19.4	0	3.28
	Envelope Density (g/cm ³)	1.5	7	0.05
	Skeletal Density (g/cm ³)	3.1	5	0.10
	Porosity <10 μm	0.5	0	0.01

Equipment (PFD)

Heating Tape

Concentration Profile

Full Concentration Profile

Reaction Profile

Biomass Type	Ultimate Analysis (wt%) ^{daf}					Proximate Analysis (wt%)			
	с	H*	N	\mathbf{O}^{\dagger}	s	Fixed Carbon ^{daf}	<u>Volatiles</u> ^{daf}	Moisture	Ash ^{db}
Beech wood	49.3	5.5	0.3	44.9	<0.04	14.7	85.3	5.9	0.6
Miscanthus	48.6	6.1	0.1	45.1	0.1	14.3	85.7	5.5	1.1
Olive stone	51.9	7.2	0.5	40.4	0	21.2	78.8	5.6	0.5
Orange peel	44.0	7.1	0.9	48.0	0	21.6	78.4	5.1	3.6
Pine wood	51.7	7.0	0	40.9	0.4	13.4	86.6	5.9	1.5
Rice husk	50.0	6.8	1.0	41.6	0.6	19.3	80.7	5.9	17.7

💑 dry, ash-free basis

🖔 dry basis

*not including H in the moisture

Carbon Balance

	Fluidising	bed material		Pressure (bara)	O ₂ Partial Pressure (kPa)	Tar Yield		Combi	
Operation	Sand (g)	CaO (g)	Temperature (°C)		r ressure (kr a)	(g tar/g biomass)	σ	Carbon Recove ry (%)	σ
	50	-	650	1.5	28.35	0.247	0.008	109	12
	50	-	650	3	28.35	0.110	0.012	87	7
	50	-	650	3	56.70	0.087	0.024	97	12
	50	-	650	5	28.35	0.089	0.029	67	9
Combustion	50	-	650	5	94.50	0.105	0.031	105	16
	50	-	750	1.5	28.35	0.168	0.018	120	19
	50	-	750	5	28.35	0.047	0.005	89	26
	50	-	750	5	94.50	0.073	0.017	100	4
	25	25	650	1.5	28.35	0.012	0.001	78	3
	25	25	650	5	94.50	0.012	0.004	80	15
Capture	25	25	750	1.5	28.35	0.014	0.001	64	22
	25	25	750	5	94.50	0.011	0.001	81	10

Affect of pressure on tars

When the external pressure of inert gas is raised above atmospheric pressure, volatile and tar yields initially tend to diminish rapidly, up to about 5 bars. With increasing pressure, this trend slows down and appears to level off above 40 bars. Compared with atmospheric pressure results, the overall decline in total volatiles may be as much as ~10–12%. The effect was first reported and explained by Howard and co-workers [cf. Howard, 1981], in terms of the partial suppression of volatile release by the physical effect of increasing external pressure.

R. Kandiyoti, A. A. Herod and K. D. Bartle, in *Solid Fuels and Heavy Hydrocarbon Liquids*, Elsevier Science Ltd, Oxford, 2006, DOI: http://dx.doi.org/10.1016/B978-008044486-4/50003-9, pp. 36-90

-35