

PROGRESS ON PULVERIZED BIOMASS GASIFICATION IN A 25 KW ENTRAINED FLOW REACTOR 1

Roger Khalil, Morten Seljeskog, Jørn Bakken

Content

- Introduction
- Challenges with the SINTEF EF reactor
- Results
- Conclusions
- Future work

Introduction-Why Entrained flow gasification?

- Allows for the conversion of biomass and other low-value feedstocks to an energy carrier
 - Syngas, Hydrogen, Biofuels (through FT)
- Contribute to the mitigation of green house gas emissions in a different energy sectors (Heating, Electricity generation, transport fuels)
 - Can be a short-term solution for GHG mitigation in aviation sector
- Allows large scale production of energy carriers, which is a must for energy intensive sectors such as aviation transport

Challenges with the SINTEF reactors

- The SINTEF reactor is a lab scale reactor that is designed with full flexibility, allowing the total control of all inputs and outputs
- A complexity that is necessary for the detailed parametric study of the Entrained flow gasification
- However, with large complexity challenges arise

Challenges with the SINTEF reactors?

- Sampling system, temperature ELPI
- Cooling water regulator
- Feeding system stability
- Pressure regulation
- Sampling system to gas analysis (dirty syngas)
- Reactor leakage

- Reactor temperature/overheating
- Syngas burner
- Blockage of syngas pipe prior to burner
- Feeder error due to faulty installation
- Buggs in the logging system
- Hot syngas sampling and sampling under pressurized conditions

Satisfactory CC (CGE)

Results

- Have run a number of experiments where results have been compared to a reference experiment performed at the "RISE" gasifier, a 250 kW thermal input setup (the grey dot in the figure)
- As can be seen the conditions are still not optimal
- However, we have been working systematically in order to improve the gasifier cold gas efficiency (CGE)
- Parameters that have been varied:
 - Lambda, particle size (P1> P2> P3), residence time (has been varied through changes in thermal input and changes in reactor pressure (yellow dots)

PSD of fuels tested

- P1 was prepared by grinding pellets in a hammermill with a 0.75 mm sieve installed
- P2 is P1 sieved with a mesh size 0.63 mm
- P3 is P1 grinded once more in an attritor type mill
 - The mill was operated in a batch mode at 460 rpm for 10 minutes. The mill container was filled with 3 liters of P1 particles in addition to 20 kg of 6 mm balls of steel

Top (TC35), Middle (TC34) and Bottom (TC33)

Conditions of performed experiments

				Burner velocity			
		Input		(m/s)		Reactor T	
Exp. #	PSD	(kW)	I	(oxidant)	(fuel)	(°C)	Residence time (s)
1	P1	12.7	0.38	8.1	2.3	1155	2.7
2	P1	19.0	0.38	15.6	2.3	1163	1.8
3	P1	10.7	0.54	12.2	2.3	1152	2.3
4	P1	15.5	0.57	21.8	2.3	1162	1.6
5	P2	11.0	0.53	12.2	2.3	1157	2.2
6	P2	16.1	0.55	21.9	2.3	1163	1.5
7	P2	21.3	0.56	31.2	2.3	1165	1.1
8	P3	16.2	0.54	21.7	2.3	1185	2.9
9	P3	10.1	0.57	12.2	2.3	1185	4.4
10	P3	10.7	0.54	12.2	2.3	1186	4.9
VAFF	P1	108.8	0.64	37.6	1.8	1164	8.0

() SINTEF

Results-CC

SINTEF

Results-CO & CO/H2 ratio

Sampling at high pressure

- Continuous gas sampling for both FTIR and GC
- Sampling just at the exit of the gasifier
- Hot gas cleaning
- Temperature regulation (ideally at 180 C)
- Safety?
- More information can be obtained
 - Can perform a hydrogen balance
 - Can measure minor species (nitrogen species such as HCN & NH3)

Conclusions

- Have looked at the EF gasification of pulverized biomass in 2 different reactors (different scales)
- Studied parameters:
 - Particle size
 - Lambda
- Carbon conversion/Cold gas efficiency still not satisfactory

- To improve CC/CGE, future experiments will investigate:
 - Residence time through increased pressure
 - Burner geometry for increase velocity/turbulence at the entrance of the burner
 - Steam gasification

Teknologi for et bedre samfunn