

The recent trends in biological biogas upgrading

Bio4Fuels Days • Michal Sposob • 19.11.2020

Biogas - a mixture of methane (CH₄) and carbon dioxide (CO₂) generated during the anaerobic digestion process in which biodegradable organic matter is converted where dissolved oxygen and nitrate-N are excluded.

www.gov.uk/government/publications/anaerobic-digestion-strategy-and-action-plan

Biogas = 20-25 MJ/m³
(Bio)Methane = 50.4 MJ/m³

Upgraded biogas (biomethane) can be used in various applications:

- electricity, heat or steam generation
- household and industry
- injection into natural gas grid
- fuel for vehicles

Compound	Unit	AD gas
CH ₄	%	50-80
CO ₂		15-50
N ₂		0-5
O ₂		0-1
H ₂ S	ppm	100-20000
NH ₃		0-100
Total chlorine		0-100
Total fluorine		0-100

Chen, X. Y., Vinh-Thang, H., Ramirez, A. A., Rodrigue, D., & Kaliaguine, S. (2015). RSC Advances, 5(31), 24399-24448.

Angelidaki, I., Treu, L., Tsapekos, P., Luo, G., Campanaro, S., Wenzel, H., & Kougias, P. G. (2018). *Biotechnology Advances, 36*, 452-466. EBA Statistical Report 2017

Khan, I. U., Othman, M. H. D., Hashim, H., Matsuura, T., Ismail, A. F., Rezaei-Dasht Arzhandi, M., & Azelee, I. W. (2017). Energy Conversion and Management, 150, 277-294.

Currently upgrading methods are costly and energy intensive (pressure, chemicals or membranes).

Economically and energetically feasible if plant operational capacity exceeds c. 100-200 m³/h.

Upgrading for small and medium scale facilities is not economically feasible.

Losses of CO₂ and CH₄.

Angelidaki, I., Treu, L., Tsapekos, P., Luo, G., Campanaro, S., Wenzel, H., & Kougias, P. G. (2018). Biotechnology Advances, 36, 452-466.

The recent trends

The new methods are focused on CO₂ use instead of removal

→ methanation (hydrogenotrophic methanogenesis)/acetogenesis

Omar, B., Abou-Shanab, R., El-Gammal, M., Fotidis, I. A., Kougias, P. G., Zhang, Y., & Angelidaki, I. (2018). Water Research, 142, 86-95.

The recent trends *Chemoautotrophic*

$$4H_2 + CO_2 \rightarrow CH_4 + 2H_2O$$
 $\Delta G^0 = -130.7 \text{ kJ/mol } (hydrogenotrophic methanogenesis)$

$$CH_3CH_2COO^- + 3H_2O \rightarrow CH_3COO^- + HCO_3^- + H^+ + 3H_2$$

$$\Delta G_r^0 = 76.1 \text{ kJ/reaction}$$

$$3H_2 + 3/4HCO_3^- + 3/4H^+ \rightarrow 3/4CH_4 + 9/4H_2O$$

$$\Delta G_r^0 = -101.7 \text{ kJ/reaction}$$

$$CH_3CH_2COO^- + 3/4H_2O \rightarrow 3/4CH_4 + CH_3COO^- + 1/4HCO_3^- + 1/4H^+$$

$$\Delta G_r^0 = -24.6 \text{ kJ/reaction}$$

The recent trends *Chemoautotrophic*

H₂ production using surplus electricity from windmills or solar panels (grid stabilization).

Power to gas (P2G).

EU countries \rightarrow c. 26% of the electricity from wind is in a temporary surplus

Integration of biogas systems into the energy system

Technical aspects of flexible plant operation

IEA Bioenergy: Task 37

August 2020

Angelidaki, I., Treu, L., Tsapekos, P., Luo, G., Campanaro, S., Wenzel, H., & Kougias, P. G. (2018). Biotechnology Advances, 36, 452-466.

The recent trends *In-situ biomethanation*

H₂ is injected continuously or by pulses inside the biogas reactor.

 $^{\sim}89\%$ of CH₄ can be reached if operational parameters are monitored and controlled (esp. pH).

It allows existing biogas plants to be utilized for H₂ addition.

H₂ solubility is low gas-liquid mass transfer is limited

Anaerobic digesters are not designed to maximize the gas-liquid mass transfer.

Mulat, D. G., Mosbæk, F., Ward, A. J., Polag, D., Greule, M., Keppler, F., ... & Feilberg, A. (2017). Waste Management, 68, 146-156.

The recent trends *Ex-situ biomethanation*

Biogas/CO₂ and H₂ are introduced into an anaerobic reactor containing a mixed hydrogenotrophic culture.

This method has several advantages compared to the *in-situ* process:

- secures the stability of the conventional biogas process
- biochemical process is simpler (no degradation of organic matter)
- higher flexibility (another source of waste CO₂ can be supplied)
- Better resistance to impurities (e.g., H₂S, NH₃)

The recent trends

Bioelectrochemical systems (BES)

CO₂ can be metabolically reduced to CH₄ by using:

- electrons
- H₂ derived from cathode

$$2H_2O \rightarrow O_2 + 4H^+ + 4e^-$$

$$CO_2 + 8H^+ + 8e^- \rightarrow CH_4 + 2H_2O$$

$$CO_2 + 4H_2 \rightarrow CH_4 + 2H_2O$$

Aryal, N., Kvist, T., Ammam, F., Pant, D., & Ottosen, L. D. (2018). Bioresource Technology, 264, 359-369

Costs

Information about the costs of the new upgrading methods is limited.

The cost of the biological methanation is believed to be similar to chemical upgrading.

From an environmental/sustainability perspective, biological methanation is more sustainable than amine scrubbing.

Vo, T. T., Wall, D. M., Ring, D., Rajendran, K., & Murphy, J. D. (2018). *Applied Energy, 212*, 1191-1202. EA Energianalyse, SDU, 2016. Biogas Og Andre VE Braendstoffer Til Tung Transport.

Conclusions and remarks

The new methods for biogas upgrading:

- convert CO₂ rather than remove
- give a high CH₄ final volume
- convert surplus electricity
- have lower technical requirements

However:

- mass transfer limitations (CO₂ and H₂)
- stability of BES and in-situ
- capital and operational costs

Michal Sposob

Division of Environment and Natural Resources Bioresources and Recycling Technologies

michal.sposob@nibio.no

NIBIO_no

NIBIO.no

NIBIO_no

www.nibio.no

