

The In's & Out's of Perennial Bioenergy Crops & Soil C Stocks

- Impacts on soil C stocks of LUC to the perennial bioenergy crop SRC willow and Miscanthus (Elum 2011 – 2015)
- Impacts of soil C stock of perennial bioenergy crop removal (MAGLUE 2015-2018)

Impacts on soil C stock of LUC **to**Bioenergy cropping

- Surface soil C stocks (0-30 cm) were negatively correlated with carbon stocks in the reference /paired sites
- No impact on soil C stock over 0-1m soil profile

Rowe et al., 2016, doi.org/10.1111/gcbb.12311

Reference soil C stock (t C ha-1)

The In's & Out's of Perennial Bioenergy Crops & Soil C Stocks

- Impacts on soil C stocks of LUC to the perennial bioenergy crop SRC willow and Miscanthus (Elum project 2011 – 2015)
- Impacts of soil C stock of perennial bioenergy crop removal (Maglue 2015-2018)

MAGLUE

Impacts on soil C stock of Bioenergy crop removal and reversion

- SRC willow reversion (2)
- Miscanthus tillage (1)

Commercial Paired fields

9 x Deep (0-1 m) cores per field

15 x Surface soil (0-30 cm) Per field

Soil C stock calculated on equivalent soil mass (ESM) bases to account differences in bulk density

Impacts on soil C stock of Bioenergy crop removal and reversion

Ideally each site would have 2 paired counterfactuals

- Retained bioenergy crop
- Arable control

SRC sites x 2

 All bioenergy crop removed only arable controls

Miscanthus sites

- 1x Retained bioenergy crop & arable control
- 1x Retained bioenergy control

Impacts on soil C stock of Bioenergy crop **removal and reversion**

Comparison to Arable control

Comparison to retained bioenergy

Impacts on soil C stock of Bioenergy crop removal and reversion

Carbon Balance Impacts

Changes in soil C stock compared to arable.

• $-33.38 \pm 5.33 \,\mathrm{Mg}\,\mathrm{C}\,\mathrm{ha}^{-1}$

Life time carbon offset provided for Miscanthus

• 35-137 Mg C_{offset} per ha⁻¹

Impacts on soil C stock of Bioenergy crop removal and reversion regeneration

Image: FWC Fish and Wildlife research Institute, https://www.flickr.com/photos/myfwc/4949117702/in/photostream/lightbox/

Impacts on soil C stock of Bioenergy crop removal and reversion regeneration

Lincolnshire commercial Miscanthus planting.

Two fields Planted 2006

Mis-D was disked in 2013

Soil sampling conducted in 2016

Archived soil samples from 2011

Impacts on soil C stock of Bioenergy crop removal and reversion regeneration

MAGLUE

Impacts on soil C stock of Bioenergy crop removal and reversion regeneration

Conclusions & Next Steps

• IN's

 Planting bioenergy crops on low C soil and maximising the life span of the crops offer the greatest potential to increase soil C storage.

Out's

- Soil C stock can be impacted by crop removal but overall carbon balance will depends on full life cycle and following mangerment
- In regards to soil C conservation, regenerative tillage of Miscanthus may offer better option than removal and replanting.

Next

 Scenario based temporal landscape scale modelling is required to predict long term impacts for regional/national soil C storage of bioenergy crop rotations – beyond the field.

Questions

Dr. Rebecca Rowe Rebrow@ceh.ac.uk

