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E-Bio-Fuel Circular Economy
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High performance electrochemical CO, reduction cells
based on non-noble metal catalysts
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Our vision: E-Bio-Fuel Circular Economy

 The project aim is to develop a new paradigm for value-added low-carbon transport fuel production through
multifunctional electrosynthesis for integrated, co-valorisation of biomass fermentation products
and the captured CO.,.

« The novelty of the project lies in the proposed electrosynthesis unit, as an enabler to the synergetic
integration of anodic carboxylic acid (CA) upgradation (to energy dense liquid alkanes biofuel) with the
cathodic CO, valorisation (to produce methanol as drop-in fuel) to maximise emission reduction, energy
use and added value.

« The ultimate goal is to intensively reduce emissions and increase the sustainability of the road transport
sector, whilst enhancing renewable energy security.
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Electrochemistry and experiment:

Basic electrochemical characterisation are carried out in a batch reactor (IKA ElectraSync 2.0).
Main products are then detected by Gas Chromatography Mass Spectrometry (GCMS).

Initial results show a promising concentration of the desired compounds.
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Computational model assumptions:

- Laminar flow
- Inlet CO,at 20 C and 1 atm e —
- Produced gases dissolve completely in the liquid T

: |
(bubble mechanics neglected) co;EI{) k5 channe ;:j) CO4H,
- Electrochemical reactions occur at the electrode S e I T
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Side reaction at the cathode:
2H,0 + 2e- — H, + 20H-

At the anode:
20H — 0.50, + H,0 + 2e-

Model schematic
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Computational model validation:

- The model was validated by comparing
current density vs applied voltage with
experiments [1].
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Model results vs experiments for pH = 10.0

[1] D. T. Whipple, E. C. Finke, and P. J. A. Kenis, “Microfluidic Reactor for the Electrochemical Reduction of Carbon Dioxide: The Effect of pH,” Electrochem.

Solid-State Lett., vol. 13, no. 9, p. B109, 2010.
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Half-cell reaction replacement:
Selection criteria

- At least one reaction from each group (Carboxylic
acids, alcohols, aldehydes, etc.)

- Include recent progress in CO, electroreduction
reactions and biomass oxidation for fuel production

- The resultis 20 anodic and 10 cathodic reactions

Conditions

Reac. Reaction
No
1 A0H = 0, + 2H,0 + de Pt, 1M, 6CE1C
2 HCOO —» CO; + H' + 22 Pd, 1M, 6C£1C
3 2 CH:CO0 —» CHiCH; + 200, + 2o 1M, pH = 4, 348K
4 2propicnate = CiHyp + 200, + 2e Pt, 1M, pH=7
5 methanol + 2 Hy0 3 HCO5 + 7 H* +6e pH=7
6 ethanol + 5 H;0 = 2HCO; + 14 H + 12e pH=7
7 C3Hs05 + 80OH- = 3HCOOH + 5H,0 + 8e 298 K, 1 bar
3 CaHgOs + 20H = C3H;0; + 2H,0 + 2e 298 K, 1 bar
9 Ph-CH-OH-CH; = Ph-C=0-CH. + 2e + 0.2 mM TEMPOQ, 0.5 M
2H MNAHCO,
10 Ho o Pt, 0.3 M NaClO,, pH=
o_ | 10to13,20C
\
HMF
+G60H -
[ s}
o]
Ho" N o
FDCA
+4H,0 + e
11 HO o pH<7.0, NiFe LDH
o_ |
\/
HMF
+40H -
s s}
fa]
Ho" N o
FDCA
+ 2H,0 + 4e
12 NH, INI Ag0, NaOH
(j g ) O)
= +
CO;+4H" + 42
13 CiHysOp + 20H = CoHys0; + Ho0 + 22 298K, 1 bar
14 CHy+ 20H =+ CHy0H + H,0 + 26 293 K, 1 bar
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Mass transfer: "sE
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Cell energy efficiency:

Energy Content of the products [mlf)]le] X Cell Fuel Producction [m(S)le]
Ne = k
Vlcell [?]]
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kinetics.

- Replacing the anodic half-cell can result
in up-to ~88.0 % increase in cell energy
efficiency.

Energy efficiency %

o O

Energy efficiency
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Environmental aspects:

CO, reacted [mgle]

mole
S ]

Xco, =

CO, fed [

- Using organic solvents result in higher
overall CO, removal rate, due to the lack
of hydrogen evolution reaction (HER) at
the cathode (e.g. reactions 16-20).

- Some reactions produce CO, which will
result in negative values (e.g. reactions
3&4). This value can also become zero
when using other materials at the
cathode (e.g. reactions 25 — 30).

- Replacing the anodic reactions can
result in up to ~50% increase in CO,
removal rate.

Carbon dioxide removal %

100

-20

-40

Anodic half-cell — water as solvent
B Anodic half-cell = DMF as solvent
Cathodic half-cell — water as solvent
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Environmental aspects:
kgs of waste produced 10000
E — factor = -
kgs of desired product

1000

E fa

100

- The overall E-factor is high due to the
design of the studied continues-flow
reactor. A large amount of solvent and 10
reactant is flushed in the system leaving
a large environmental footprint. This
Issue can be mitigated by optimizing the
cell and recycling the solvent.

1

B Cathodic half-cell
Anodic half-cell
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Economical analysis:

£ £ £
added value = value of products — value of reactants( )
mole mole

mole

Added value changes over a wide
range and can reach up to
~20,000 £/mole if the product is
purified to 99.9% or ~1000 £/mole i |—| H

if the product is purified to 80%. - — —— -

Product added value (£/mole)




Conclusions and further work
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An electrolytic cell was studied for electrosynthesis of biofuels via
co-valorisation of bio-fermentation products and captured CO.,,.

Evaluate competing anodic and cathodic reactions using criteria

such as cell energy efficiency, current efficiency, CO, removal rate,
E factor and product added value.

then optimized for each of the above scenarios.

The cell design (e.g. electrolyte flow-rate and cell dimensions) is I

Design a multi-criteria decision analysis framework to evaluate e-
bio-fuel production technologies (Additional PhD student has been
recruited at Heriot-Watt University).
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