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Abstract 

Climate risk represents an increasing threat to poor and vulnerable farmers in drought-prone 

areas of Africa. This study assesses the maize and fertilizer adoption responses of food insecure 

farmers in Malawi, where Drought Tolerant (DT) maize was recently introduced. A field 

experiment, eliciting relative risk aversion, loss aversion and subjective probability weighting 

parameters of farmers, is combined with a detailed farm household survey that measured the 

intensity of adoption of different maize types and fertilizer use on the different maize types and 

recorded exposure to past and present drought and other shocks. More risk averse households 

were more likely to have adopted DT maize, less likely to have adopted other improved maize 

varieties and less likely to have dis-adopted traditional local maize. Exposure to past drought 
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shocks stimulated adoption of DT maize and dis-adoption of local maize. Over-weighting of small 

probabilities was associated with less use of fertilizer on all maize types. 

Key words: Drought risk, shocks, risk aversion, subjective probability weighting, loss aversion, 

technology adoption, adaptation, Cragg model, maize, Drought Tolerant maize, fertilizer use. 
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Introduction 

Climate risk and shocks are expected to increase with climate change (IPCC 2014; Li et al. 2009), 

a trend that may especially threaten poor and vulnerable populations in Sub-Saharan Africa that 

are still highly dependent on agriculture for their livelihoods. Cereal crops, notably maize (the 

most important food crop in many African countries), are sensitive to climatic variability and to 

droughts in particular. One research and policy response to this threat has been to develop and 

disseminate more drought-tolerant (DT) maize varieties2 (Burke and Lobell 2010; CIMMYT 2013; 

Magorokosho et al. 2010). Adaptation is the response to shocks and adoption of new technologies 

is part of such adaptation to climatic risk and change. This study investigates how exposure to 

shocks, household risk preferences and risk judgments affect the adoption of DT maize and other 

maize varieties as an adaptation strategy of farmers. The study tests the importance of Expected 

Utility Theory (EUT) or Prospect Theory (PT) (Kahneman and Tversky 1979) parameters in 

predicting household technology adoption responses, including the intensity of adoption of 

different types of maize, maize being the main staple food, and the intensity of fertilizer use on 

each of these types of maize. A field experiment is combined with a detailed household farm plot 

survey in Malawi in 2012, conducted just after the country experienced a severe dry spell during 

the growing season. 

Risk aversion has been found to hinder or delay adoption of new technologies, as uncertainty 

regarding new technologies can compel extra caution among more risk averse respondents in the 

adoption of less well-known technologies (Feder 1980; Liu 2013). This may even be the case if 

the objective risk of the new technology is lower than that of traditional technologies. However, 

                                                 
2 The Drought Tolerant Maize for Africa (DTMA) project has developed more than 160 drought tolerant maize 

varieties since 2007. Input requirements are the same as for non-DT commercial varieties. They perform as well as 

non-DT maize varieties under good rainfall conditions and produce yields that are 20-30% higher under moderate 

drought conditions (CIMMYT 2013). 



very few technology adoption studies have utilized good measures of risk preference. An exception 

is Liu (2013), the study that most closely resembles the present study. Her study is an ex post study 

of BT cotton in China after 100% adoption had been reached, and EUT and PT parameters 

identified ex post are used to explain the timing of BT cotton adoption. Our study is conducted at 

an earlier stage of the adoption process3 of DT maize in Malawi, and we study adoption/dis-

adoption as well as the intensity of adoption of different maize types.  

The objective of the present study is to assess how shock exposure, risk preferences and subjective 

probability weighting bias are associated with the adoption of drought tolerant (DT) and other 

improved (OIMP) maize, with possible dis-adoption of local (homegrown) maize varieties, and 

with adoption intensity of fertilizer use on each of these different types of maize (DT, OIMP and 

local maize). Adoption is measured by whether the type of maize is grown by individual 

households and the intensity of adoption by the area planted (measured by GPS) by a given type 

of maize at the farm level. Fertilizer use intensity is measured as kg of fertilizer applied to the areas 

planted with each type of maize. Shock exposure recall data were collected through the household 

survey and include drought shocks and other shocks (such as deaths and serious sickness in a 

family in the four years preceding the survey). Risk preferences were measured using artifactual 

field experiments that combine Expected Utility Theory (EUT) and Prospect Theory (PT). The 

constant relative risk aversion (CRRA) parameter was estimated based on EUT and a series of 

Holt and Laury (2002) Multiple Price List type experiments. Loss aversion (the lambda parameter) 

and subjective probability weights (the alpha parameter) were estimated based on the approach of 

Tanaka et al. (2010).  

Adoption decisions may have to be made before the state of nature is revealed4. Our study was 

carried out in six districts in Central and Southern Malawi in 2012, a year in which a large part of 

the study area was exposed to a severe dry spell during the early rainy season when most 

households had planted their maize and applied basal fertilizer to their crops. Holden and Fisher 

(2015) found that DT maize expanded substantially in Malawi in the 2006-2012 period and that 

the input subsidy program (FISP), which provides subsidized fertilizer and seeds, had been a major 

driver of this adoption process. They found that exposure to earlier shocks and risk aversion were 
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4 Where droughts in the form of dry spells occur during the rainy season. 



positively associated with adoption of DT maize. The present study expands on this work in three 

ways. First, we do not study only whether DT maize is adopted or not but also the intensity of 

adoption. Additionally, we compare DT maize with OIMP maize and local maize. Second, not 

only is relative risk aversion used to capture household preferences but also the PT parameters of 

loss aversion and subjective probability weighting. Third, we assess how the intensity of fertilizer 

use (fertilizer itself being a risky input) differs for DT, OIMP and local maize and is correlated 

with exposure to shocks and the EUT and PT parameters. We hypothesize that risk aversion 

(CRRA and loss aversion) are positively associated with DT maize adoption, including adoption 

intensity, and negatively correlated with OIMP adoption, including intensity of adoption. We also 

hypothesize that overvaluation of low probabilities (PT alpha parameter below one) is associated 

with higher probability of DT maize adoption, with lower probability and intensity of OIMP 

adoption and with lower intensity of fertilizer use on OIMP and local maize. The hypotheses build 

on the assumption that people perceive that DT maize produces higher yields in drought years5. 

Risk averse and loss averse persons should therefore favor DT maize. Subjective over-weighting 

of low probabilities should also favor DT maize adoption relative to other more risky maize 

varieties, including local maize, because more weight is given to the bad low-probability state of 

nature. The results have significant policy implications for Malawi and other drought prone areas 

throughout the world, as technological change will be an essential part of adaptation to climate 

change. 

2. Risk preferences and technology adoption: A brief literature review 

A large body of literature on risk preference characteristics, including studies in developing 

countries, has been developed. As survey based data have been found unsuitable for our purpose, 

we focus on field experimental approaches that started with the seminal work of Hans Binswanger 

(1980; 1981) in India, studies that were replicated in several other developing countries 

(Binswanger and Sillers 1983; Miyata 2003; Wik et al. 2004). These studies reveal that the large 

majority of rural dwellers in developing countries are risk averse and that they became more risk 

averse when stakes increased and when losses were introduced in the experiments. Risk aversion 

was less highly correlated with total wealth of the respondents. While this early work was founded 

on EUT, more recent work has expanded into Rank Dependent Utility (RDU) (Quiggin 1993) and 

                                                 
5 It is possible that such experience and knowledge had not reached all households at the time of the study. 



PT (Kahneman and Tversky 1979), with these approaches opening the way for subjective 

probability weighing and the latter also opening the way for differing valuations of gains and 

losses. The early studies of Binwanger (1980) and Wik et al. (2004) also revealed that losses were 

given more weight than gains in such experiments, as games with losses revealed significantly 

higher levels of risk aversion than games with gains only.  

Tanaka et al. (2010) and Liu (2013) build on PT and are, to our knowledge, the first to 

comprehensively test the relevance of PT versus EUT among poor people in developing countries 

by considering both subjective probability weighting and loss aversion in addition to the curvature 

of the utility function in their study in Vietnam.  

Fewer experimental studies in developing countries have assessed how risk preferences affect 

technology adoption, and many of those that exist have relied on less comprehensive experimental 

designs that did not allow for testing of alternative theories, such as the relative importance of EUT 

and PT, to explain technology adoption. Knight et al. (2003) studied farmer technology adoption 

in Ethiopia by dividing farmers into risk-averse and risk-neutral groups, based on a hypothetical 

question. They found that risk aversion is associated with a lower probability of technology 

adoption. Engle-Warnick et al. (2006) studied farmers’ technology adoption in Peru, 

distinguishing between ambiguity aversion and risk aversion, but did not find that any of these 

measures affected technology adoption in a probit model of adoption of a new technology. Hill 

(2009) used stated preference methods to assess the effects of risk aversion on technology adoption 

by coffee growers in Uganda. She found that higher risk aversion is correlated with less use of 

labor on the risky perennial crop. De Braun and Eozenou (2014) assessed the risk preferences of 

farmers in a hypothetical field experiment in Mozambique and examined whether such risk 

preferences were related to the adoption of new sweet potato varieties. However, they found no 

significant relationship. 

Liu (2013) and Liu and Huang (2013) are the only studies we have found that comprehensively 

assesses the relevance of EUT and PT to the adoption of specific technologies. In a study of 

adoption of BT cotton in China, Liu (2013) found that more risk averse and more loss averse 

farmers adopted BT cotton later, while farmers who overweight small probabilities adopted BT 

cotton earlier. The first results are consistent with the belief that BT cotton is risk increasing upon 

adoption but that, later, the farmers learned that BT cotton is less risky, with 100% adoption being 



reached at the time of the study. In a related study, Liu and Huang (2013) found that more risk 

averse farmers use more pesticide on cotton, while more loss averse farmers use less pesticide on 

cotton. Their finding is consistent with farmers placing more emphasis on loss aversion in the 

health domain than in the profit domain. This is the only study that we are aware of before our 

own study to combine a comprehensive field experiment, to reveal EUT, and PT parameters, to 

assess how these are related to the intensity of adoption of a technology.  

Our study is, to our knowledge, the first to comprehensively assess how EUT and PT parameters 

affect the adoption and intensity of adoption of agricultural technologies in Africa. Our study also 

assesses how drought shocks affect technology adoption and dis-adoption (adaptation). We are not 

aware of any earlier studies that have assessed how farmers’ EUT and PT parameters affect their 

adaptation to climate risk through technology adoption.  

3. Factors conditioning technology adoption 

Our context, in a nutshell, is food insecure and vulnerable smallholder farmers in Malawi who, to 

a large extent, rely on rain-fed agriculture as their main source of livelihood. The majority of these 

farmers are deficit producers of maize, which is their main staple food crop even after a large-scale 

input subsidy program was introduced in 2005 (Dorward and Chirwa 2011; Holden and Lunduka 

2013; 2014). A closer examination of factors that may condition maize technology adoption in our 

context reveals that the different types of risks and uncertainty they face are  related not only to 

weather but also to pests and disease, health risks and shocks, market risks (including access and 

price risk), and access to subsidized inputs. 

3.1. Weather risks and shocks 

The most relevant weather-related risks to crop production in Africa include rainfall risk (too much 

and too little rain) in the crucial stages of the crop cycle from before planting until after the harvest. 

The distribution of rainfall is particularly important, and stochastic events such as no rain or too 

much rain can cause severe damage. In this study, we focus particularly on the effects of too little 

rain arriving during the crucial growth stages of the maize crop. Widespread occurrence of such 

dry spells varies across years and locations. There can also be local variation in the occurrence of 

dry spells, as rainfall can be highly localized. We therefore depend on information from the farmers 

themselves regarding the occurrence of such dry spells. Such events are highly salient for farmers, 

and we have asked them to recall whether they experienced dry spells that affected their crops in 



each of the last three years. The farmers had no difficulties recalling such events, and their answers 

are consistent across farms in given neighborhoods. Lagged drought dummy variables, therefore, 

are good indicators of recent drought experiences6. Data from the nearest weather stations do not 

provide accurate information on local variability. We utilize average rainfall from the weather 

stations as an indicator of expected rainfall in the area, which may also influence maize adoption 

decisions of farmers in the area.  

3.2. Market access risk and shocks 

Small farmers can face difficulties in accessing farm inputs such as maize seeds and fertilizers for 

several reasons, including poor market access (long distance and poor infrastructure), erratic and 

limited supply in thin and poorly developed markets, and policy interventions that affect access 

and prices, such as the distribution of targeted subsidized inputs in Malawi.  

Heterogeneity of input access is captured as follows. Dummy variables for the receipt of vouchers 

for subsidized fertilizer and maize seeds in the 2011/12 production season are included. The 

farmers can use these vouchers to obtain fertilizer and maize seeds at the nearest depot. While such 

access is partly random, it is also partly non-random, as such subsidies are targeted partly on the 

basis of unclear criteria and may be influenced by social networks in which the well-connected are 

likely to be more successful in obtaining subsidized inputs (Holden and Lunduka 2013; 2014; 

Ricker-Gilbert et al. 2011). The endogeneity of these variables has econometric implications that 

are discussed in relation to the estimation strategy. 

Whether households can obtain the preferred inputs at commercial outlets is another issue. A 

substantial share of farmers (33.7%) stated that they were unable to find their preferred maize 

varieties and therefore had to resort to second-best options. Such access constraints may distort 

observed adoption. A dummy variable was included to control for this.  

The affordability of input purchase depends on the availability of cash in the household. Farmers 

were asked how much money they had saved for purchases of fertilizer (the most expensive input). 

Having a non-agricultural business and access to formal employment may also improve cash 

availability in households, and dummy variables were included to capture such access/activity. 

                                                 
6 While the severity of such dry spells can vary from place to place and year to year, farmers’ notions of droughts of 

this nature appeared to be quite accurate and related to the drought having a significant negative impact on their crop 

yields. 



These variables also fall into the category of potentially endogenous variables, which require 

careful treatment if they are to be included as controls (see the estimation strategy). 

The implication of this uncertainty regarding access to maize technologies is that technology 

adoption itself becomes stochastic. This stochastic variation in technology adoption includes the 

outcome of the decision to adopt or not adopt and the degree of adoption. 

3.3. Exposure to shocks 

Households may have been exposed to several types of shocks in the recent past, and this may 

affect their production decisions, as there may be some learning from these shocks. The main types 

of shocks are droughts, and households may have gained insights into the performance of different 

maize varieties after such shocks. Shocks may also have affected farmers’ liquidity, their 

endowments, and the needs of households, and thus, they may have indirectly affected input 

decisions and technology choices. We asked households about their shock experiences during the 

last four years (2009-2012) and include a measure of the number of shocks households experienced 

in this period. It is possible that households have learned from the shocks and become more willing 

to adopt new technologies that make them better able to handle the types of uncertainties they face. 

It is also possible that the shocks have locked households into the use of inferior technologies that 

render their production more inefficient and may have made them more vulnerable (poverty trap). 

3.4. Risk preferences and maize variety preferences 

While it is usually thought that risk aversion makes households more hesitant to adopt new 

technologies, what if new technologies are risk-reducing? We assess the perceptions of households 

regarding the riskiness and other properties of different maize varieties. If DT maize is both higher 

yielding and more drought tolerant, why should farmers still prefer to grow traditional varieties? 

We find that preferences for local maize are related to its superior post-harvest pest resistance. 

This creates a trade-off between yield and pest resistance in the choice of varieties. We do not have 

quantitative data on the extent of post-harvest losses but also assess the degree of adoption of local 

maize and intensity of fertilizer use on local maize. Post-harvest loss expectations may compel 

more risk averse households to prefer local maize, but this may be countered by the higher yield 

risk of local maize. 



 

4. Theoretical framework: A state-contingent approach to technology adoption 

Analysis of decisions under risk and uncertainty has been a central focus of economics since von 

Neuman and Morgenstern (1944) introduced expected utility theory, with important contributions 

from Savage (1954), Arrow (1953), Debreu (1952), Pratt (1964), and Arrow (1965). Arrow (1953) 

and Debreu (1952) handled uncertainty as different states of nature and showed that essentially the 

same theory applied to a world with stochastic uncertainty as to a world of certainty when ex-ante 

preferences and technologies are clearly defined (O’Donnell et al. 2010). Sandmo (1972) showed 

that a risk averse firm facing price-risk will produce less than a firm not facing price risk. Risk and 

risk aversion both contribute to lower optimal production levels. However, his model did not 

include production risk or responses to stochastic shocks. Just and Pope (1978) introduced the 

stochastic production function approach. In their review article, Just and Pope (2002) demonstrate 

how weak data and wrong assumptions can lead to strongly biased estimates of levels of risk 

aversion. They conclude that our understanding of responses to risk and uncertainty remains 

limited and that this affects the quality of guidance that can be provided in policy analysis. Limited 

information about the actual constraints producers face and their heterogeneity (in preferences and 

constraints) has typically been ignored, and this has led to weak predictability of aggregate models 

(Just and Pope 2002).  

Furthermore, behavioral and experimental economics have brought into question whether people 

behave rationally, revealing systematic deviations in behavior from Expected Utility Theory 

(EUT) and suggesting that Prospect Theory (PT) may represent a better framework for predicting 

behavior. Thus far, most testing of theories has been conducted in laboratories at Western 

universities, although field experiments in developing countries have expanded rapidly in recent 

years. Nevertheless, knowledge regarding the performance of PT as an alternative to EUT in 

explaining smallholder farmer technology adoption behavior in developing countries remains very 

limited (Liu 2013). This study uses experimental parameters that allow for testing of the relevance 

of EUT versus PT in explaining technology adoption responses of poor farmers. To frame our 

analysis, we introduce a parsimonious model and expand from there. 

We assume, first, a risk neutral producer facing objective risk, then relax the assumptions of this 

simple model stepwise. Assume that only two states of nature are relevant, good and bad, with the 



probability of a bad year, pB, being fairly low. Assume a continuous concave production function 

q, q’>0, q’’<0, with one input, F. Input use is decided before the state of nature is revealed. The 

bad year produces a lower return; qB=θsq(F), where 0<θs<1, captures the sensitivity of the crop to 

the bad state of nature. Income is normalized to the price of the output, Pq=1, and the input price 

is PF. The producer maximizes income, assuming an interior solution: 

1)        max ( ) 1s F

B B
F
E Y E p q F p q F P F    

 
  

The first-order condition is: 

2)   ' 1 0,  where 's F
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Input use responses of the risk neutral producer to changes in the probability of a bad year outcome 

and the sensitivity of the crop to the bad state of nature are derived using the implicit function 

theorem: 
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This implies that the risk neutral producer also responds to risk and uses less input both as the 

probability of the bad state of nature increases and as the sensitivity of the crop to bad states of 

nature increases.  

If the producer is uncertain about the probability of a bad state of nature and therefore has a 

subjective probability rather than an objective probability (Savage 1954), the subjective 

probability may replace the objective probability in equation 1). However, people are commonly 

observed to overweight low probabilities and underweight high probabilities (Kahnemann and 

Tverrsky 1979; Wu and Gonzales 1999; Gonzales and Wu 1999). It is easy to see that a risk neutral 

producer who overweights the probability of a bad year and underweights the probability of a good 

year will use less of input F than a producer who does not do so and similarly for a pessimistic 

producer who has a higher subjective probability of bad year outcome.  



It is now worth referring to Feder (1980) who developed theoretical models based on EUT of input 

use under risk and uncertainty. Building on the Just and Pope (1978) production function with 

constant returns to scale and a per unit land function, q=z(F)+h(F)ε, the riskiness of input use 

depends on h(F)ε. With z’>0, z’’<0, h’>0, z(0)>0, h(0)>0, and a continuous twice differentiable 

strictly concave utility function, a land-constrained farmer maximizes the following expression: 

4) 
       

,
max ( )

subject to 

M A F

A F
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It is shown that the conditions for a maximum hold if (Feder 1980, p. 267): 

5)   '' '' ' / 'z h E U EU     

This implies that the marginal mean productivity (z’) must decline faster than the marginal 

contribution of the risky input (F) to the risk component (h). Feder (1980, p. 268) shows that in 

this model, optimal input use intensity (F*) is independent of risk aversion, the random risk factor 

(ε) and farm size. It is therefore not obvious how production risk and risk aversion affect input use. 

However, in the case of climatic risk, the probability of climatic shocks, such as droughts and 

floods, and the severity of such events are likely to increase. Our first simple model indicates that 

risk neutral producers may respond to such risks by lowering their input use, even though input 

use only weakly increases the risk (note that θm in this model is not directly influenced by F).  

Feder (1980) also uses his model to analyze the choice between a traditional low yielding and less 

risky crop and a modern high yielding and more risky crop. In the choice between these crops, a 

more risk averse farmer grows more of the traditional less risky crop. The more risky is the modern 

crop (higher ε while preserving the mean), the less a more risk averse producer grows of this more 

risky crop relative to a less risk averse producer. Lack of information about the modern crop may 

be one reason for higher uncertainty about its performance. Better access to information may 

reduce this risk and thus lead to higher adoption of such a crop. Feder (1980) also uses his 

theoretical model to assess the impact of changes in input and output prices and credit constraints. 

He shows that fertilizer use is negatively related to the cost of fertilizer, as would normally be 

expected. His model is constructed so that fertilizer use becomes a substitute for growing the more 

risky modern crop. More risk averse households therefore use more fertilizer and grow less of the 

more risky modern crop when there is a binding credit constraint. Higher production uncertainty 



of the modern crop has a similar effect. Better access to credit for fertilizer use, when there is a 

binding credit constraint, has a similar effect of stimulating fertilizer use intensity at the expense 

of the modern, more risky crop.  

The model of Feder (1980) does not explicitly model probabilities or the weightings of 

probabilities. It considers mainly mean-preserving risk and focuses on producers with concave 

utility functions. We are interested in the relevance of more general characteristics of the 

utility/value function while allowing for subjective probability weighting in testing how farm 

producers, facing climate risk, choose between crop technologies that vary in productivity and 

riskiness, where input use intensity may depend on preferences, risk/uncertainty perceptions and 

expectations, their resource endowments and access constraints. We are particularly interested in 

the fertilizer use intensity decision, which depends critically on whether such use is perceived to 

increase or reduce risk. It is possible that fertilizer use is considered more risky if used on a crop 

that is high yielding but riskier—for example, OIMP maize—while this may, to a smaller extent, 

be the case if fertilizer is used on DT maize.  

Let us now go back to and expand the equation 1) model towards a PT model by introducing 

subjective probability weights, w(pB), and a more general value function. The model then becomes: 

6)          max ( ) 1m F

B B
F
V Y w p V q F w p V q F V P F             

If we do not know the reference point or what the value function looks like below versus above 

the reference point, and the value function has a kink at the reference point (assuming loss averion 

according to PT), it becomes more challenging to predict input demand and technology choice.  

We may consider a minimum subsistence requirement (γ) as a plausible reference point for small 

food insecure farmers. Such a subsistence constraint may become binding in the bad state of nature 

and contribute to loss aversion and emphasis on a technology choice that minimizes the chance of 

shortfall in bad states of nature. This may thus lead to a substantially higher marginal utility/value 

in the event that the bad state of nature is revealed7. With no substitution between states of nature 

                                                 
7 It is possible that such a bad state of nature makes people more desperate and therefore more willing to take risks, 

but the marginal utility of extra food is still likely to be very high. Survival threatening shocks may therefore have 

different implications for the shape and slope of the value function below a status quo level that is close to the 

minimum subsistence requirement of poor people.  



and limited or no fall-back options, the maximin strategy could be preferred by highly loss averse 

and vulnerable farmers. The relevant sub-model is then 

7)  
 

 

max ( )

subject to   0 and 0

m F
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m F

V Y V q F P F
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Given the choice between alternative crop technologies, the technology that produces the highest 

expected output in the bad year would be preferred. The farmer would prefer to use fertilizer only 

if the marginal return to fertilizer in the bad year is higher than the cost. In the extreme case of 

such a maximin strategy, the probability of a bad year and the subjective weighting of this 

probability do not matter.  

Partial adoption of a new technology requires that there is either a trade-off between expected 

return and expected risk8 or some other constraints to adoption, such as access constraints in the 

input markets, lumpiness or a high cost of the new technology, or heterogeneous farming 

conditions that make technology choice and performance more complex. Uncertainty about future 

states of nature may be another reason for partial adoption and heterogeneity in adoption (a 

portfolio approach to technology adoption). 

The questions of how exposure to shocks affects technology adoption and whether such shocks 

make poor people less risk averse, as predicted by PT9, have received little attention in the 

literature. The empirical evidence on the curvature of the value function in the loss domain is less 

clear than in the gain domain (Abdellaoui 2000; Fennema and van Assen 1999; Abdellaoui and 

Weber 2003). While we indicated above that extreme loss aversion could lead to a maximin 

strategy, uncertainty about how exposure to shocks affects the value function makes us less 

confident to predict how loss aversion is associated with technology choice and intensity of use. 

We have elicited loss aversion and assess its correlation with technology adoption and nevertheless 

propose a thesis regarding its impact on technology choice or intensity of adoption. 

The main hypotheses we want to test are therefore the following: 

                                                 
8 Also allowing for subjective beliefs about technology performance to deviate from real performance of the 

technologies. 
9 If such a shock is perceived as a loss that places them below the reference point. 



H1) Relative risk aversion is associated with a higher probability and a higher intensity of adoption 

of DT and LM maize and the opposite for OIMP maize. 

H2) Loss aversion is associated with a higher probability of DT maize adoption and a lower 

probability of OIMP maize adoption. 

H3) Subjective overweighting of low probabilities is associated with less adoption of OIMP maize 

and of fertilizer on OIMP and local maize.  

H4) Shock exposure in the form of droughts in previous years is associated with increased adoption 

of DT maize and dis-adoption of LM maize10. 

H5) Access to subsidized inputs enhances adoption of DT maize and intensity of fertilizer use for 

all types of maize11. 

This study focuses on the input decisions that were mostly made before the state of nature was 

revealed. However, the drought in the 2011/12 season came so early in the rainy season that it also 

affected the planting of maize and fertilizer use.  

We focus primarily on ex ante technology choice and intensity decisions and assume that a non-

separable farm household model is an appropriate framework for input use decisions at the 

household level, as input markets are imperfect (Ricker-Gilbert et al. 2011). Input demands for 

maize seeds and fertilizer are therefore captured by the two sets of equations below; 

1) Mi
M= Mi

M(Pi
Me, Pc

M, Ps
M, Si

M, Si
F, Rv, Ci, ®i, αi, λi, Xi, Ai, ϭv) 

2) Fi
M= Fi(Pi

Me, Pc
M, Ps

M, Si
M, Si

F, Rv, Ci, ®i, αi, λi, Xi, Ai, ϭv) 

where Mi
M represents the input investment by maize type, with the superscript M representing type 

of maize (three types: DT (drought tolerant), OIMP (other improved variety), LM (local maize)) 

for farmer i. Pi
Me is the unobserved expected price of maize for farmer i. Pc

M is the commercial 

price of maize seed by maize type, and Ps
M is the subsidized price of maize seed. Si

M is a dummy 

indicating whether the farmer has access to subsidized seed in the form of a maize seed voucher, 

Si
F is a dummy indicating whether the farmer has access to subsidized fertilizer in the form of a 

fertilizer and seed voucher(s), Rv is average rainfall in the area as an indicator of agronomic 

suitability to maize production. Ci is a vector of shock and risk variables, including contemporary 

and lagged exposure to drought shocks, access to preferred maize varieties and the number of 

                                                 
10 Shock exposure may have provided relevant experience regarding the performance of alternative maize technologies 

and may therefore stimulate adoption of DT maize, if it performed better than other maize types. 
11 This can be due to the more favorable input prices and a relaxation of a cash constraint (that we have not included 

in our simple model) as shown by Holden and Lunduka (2014). 



shocks that a farm household has been exposed to over the last three years. ®i represents the 

relative risk aversion coefficient, αi is the subjective probability weighting parameter, and λi is the 

loss aversion parameter for farmer i. Xi represents other household characteristics, Ai represents 

farm characteristics, and ϭv is a vector of village dummies. Similarly, fertilizer use intensity for 

each type of maize is a function of the same set of variables.  

5. Estimation strategy 

 5.1. Maize type adoption 

The focus is on the adoption (at the farm level) and the intensity of adoption of DT maize, OIMP 

maize and local maize and on fertilizer use intensity for different types of maize12. It is first 

necessary to say something about the structure of these input demand equations. The input 

demands are non-negative but can be zero for each maize type and fertilizer use on each maize 

type at the household level. Households may choose to grow more than one type of maize and 

choose to use fertilizer on more than one type of maize13. This is therefore an inter-related set of 

demand equations, where fertilizer demands for each maize type are conditional on households 

growing a given type of maize.  

The general model for adoption by maize type is as follows14: 
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Mi
M is either a dummy variable indicating whether the type of maize is grown by the household or 

a measure of the intensity of adoption of that type of maize. The intensity of adoption is measured 

as the area planted with that type of maize15. We tested censored tobit models versus double hurdle 

                                                 
12 Holden and Fisher (2015) analyzed determinants of farm plot level adoption of DT maize by assessing variables 

that were related to whether DT maize was planted on the plot. They did not assess the intensity of adoption.  
13 In Malawi, almost all households grow at least one type of maize, as maize is such a dominant crop and the preferred 

staple food in the country as a whole. 
14 Because we only use cross-sectional data, there is little price variation in the data, except the price differences 

between subsidized and commercially demanded inputs. We also lack a measure of farmers’ future expected maize 

price. This unobserved heterogeneity is controlled for with the input subsidy access dummies and village fixed effects. 

We attempt to control for differences in shadow wages (opportunity cost of time) by including formal employment 

and non-agricultural business dummies. Actual ex ante labor input in production is included as a control for labor 

supply (complementary input). 
15 Planted areas were measured with GPS during the survey and are therefore a reliable measure of the intensity of 

adoption.  



models and found double hurdle models to be appropriate in this case16. Models with log-

transformed input quantity variables are used as untransformed variables created more 

convergence problems. The variable icrra  is the relative risk aversion coefficient, estimated using 

a  structural model using  Holt and Laury’s (2002) Multiple Price List data17. Subjective probability 

weights (αi) and loss aversion (λi) were elicited using the approach of Tanaka et al. (2010)18. The 

next variables are the shock variables (drought shock dummies, number of shocks in last four years 

(NSi) and a dummy for farmers who failed to obtain their preferred maize variety (FGi)). The 

number of shocks includes shocks other than droughts, such as deaths or serious sickness in the 

family. Such shocks may affect both the ability and the willingness to adopt. Rvt is average annual 

rainfall. EXi are exogenous19 household characteristics such as (owned) farm size and sex of 

household head. Farm size may limit the intensity of adoption, as farm sizes are small due to high 

population density in the study areas. The following parenthesis in equation 5) contains variables 

that are more endogenous in character, and models are run both without and with them to assess 

the stability of the results and the potential importance of these endogenous variables. We were 

unable to find an IV strategy that would help identify these potential endogenous variables20. The 

key findings we present were very robust to alternative model specifications21, giving us 

confidence in our conclusions, which also fit well with theoretical expectations.  

                                                 
16 The results of the double hurdle models clearly demonstrate that different factors were important in the decision to 

adopt than in the intensity of adoption decision.  
17 Holt and Laury (2002) type hypothetical and monetary experiments were used. See the Appendix for the format of 

the field experiments and a structural model with a constant relative risk aversion coefficient utility function; 

   1 1
1 1

crra
U crra Y

 
    was used, combining the hypothetical and monetary experiments. See Holden (2014) for 

elaboration of the risk preference experiments.   
18 Three choice series were used to elicit three parameters: one for the curvature of the value function (sigma), one for 

the subjective probability weighting (alpha), and one for loss aversion (lambda), with sigma representing the curvature 

of the convex function below the reference point and the curvature of the concave value function above the reference 

point.  
19 Exogenous in the sense that they cannot easily be changed in the short run. 
20 While, e.g., Ricker-Gilbert et al. (2011) used age of household head as an instrument to access subsidized inputs 

(older persons may be better connected and therefore have superior access), this instrument did not work in our data. 

Additionally, we believe that age itself is likely to affect technology adoption, including intensity of adoption (and the 

results confirm this). 
21 These alternative specifications include varying the number of potentially endogenous variables. Here we only 

present the results without endogenous variables and with the full set of endogenous variables. Alternative 

specifications also include models with untransformed and log transformed variables, but models with log transformed 

models were preferred, due to their better distributional properties. The key results also remained robust across the 

alternative functional form specifications. The results are available upon request. 



 ENi includes household saving for purchases of fertilizer and dummies that indicate non-

agricultural business activity and off-farm formal employment. These variables may capture the 

liquidity situations of households, their opportunity cost of time, and their ability. It also includes 

ex ante labor allocation22 to this type of maize production. Labor is assumed to be a complementary 

input that is essential to the intensity of adoption (land preparation, planting and fertilization). Si
F 

is a dummy indicating whether the household received subsidized fertilizer (received at least one 

fertilizer voucher alone or to share with another household). Si
S is a dummy indicating whether the 

household received a maize seed voucher under the subsidy program that can be used to obtain a 

free seed package. It is assumed that access to subsidies stimulates use of these inputs, due to 

market imperfections (Ricker-Gilbert et al. 2011). M

iM  represents the intensity of adoption of 

other maize types. We assume that maize types are substitutes and therefore expect negative 

correlations in the intensity of adoption of alternative maize types, due to constrained access to 

land, labor and liquidity for input purchase. iipw is the inverse probability weight, included to 

control for attrition in the sample23. Village fixed effects were also used to control for cross village 

differences in market access, prices and the distribution of improved maize seeds through and 

outside the subsidy program. Average partial effects (APEs) were obtained for each of the hurdles 

of the double hurdle models for the key variables of interest, based on Burke (2009), and standard 

errors were derived using bootstrapping with 400 replications for key variables for one APE at the 

time24.  

  5.2. Intensity of fertilizer use by maize type 

Household level intensity of fertilizer use in kg of fertilizer by maize type was estimated for the 

three maize types. Some households had only one maize type, others had two, while hardly any 

had all three types25. To handle possible attrition bias and possible bias related to selection into 

maize type, inverse probability weights (IPWs) were generated for households having a given 

                                                 
22 By ex ante labor allocation, we mean labor allocated before the state of nature (in the form of drought in this case) 

is revealed. 
23 It is constructed from the baseline household data, including all households in the initial survey in 2006. The baseline 

survey contained 450 households, of which only 350 were found and re-interviewed in 2012. From these, we were 

able to obtain high quality data from field experiments and the survey, including measurement of maize plots for 282 

households after removal of outlier observations. 
24 The margins command in Stata 13 does not work for craggit models. Obtaining the bootstrapped standard errors 

was a time-consuming process. 
25 See Holden and Fisher (2015) for the details on the classification of maize varieties into these three maize types. 



maize type, using probit models with baseline household characteristics. The fertilizer intensity 

models were then weighted with these IPWs. Fertilizer intensity models were estimated for each 

maize type as censored tobit models26. 
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The dependent variables are in log-form and are left censored27. Variables are otherwise specified 

as in equation 5), with two exceptions. With the recursive nature of input use in the study area, 

planting of seeds takes place before application of fertilizers, which therefore is conditional on the 

choice of maize type. Selection into maize type is therefore controlled for by jointly controlling 

for attrition and sample selection by constructing joint inverse probability weights, ipwi
M. Average 

marginal effects for this model were calculated using the delta method with the margins command 

in Stata 13 (presented in Table 5). 

6. Descriptive statistics 

The survey contained separate questions on preferences for improved versus local maize in 

situations without and with access to fertilizer. Local maize was preferred by 16.5% of the 

respondents in the case of good fertilizer access and by 47.9% in the case of poor or no fertilizer 

access. The most common reason given for the preference for local maize was that local maize 

was considered to be less prone to pest attack after harvest, while other post-harvest properties 

such as poundability, “flour lasts long” and good taste were also mentioned. Pest resistance was 

cited by 41.4% of respondents stated as the most important reason for preference for local maize. 

Low yield, noted by 56.5% of the farmers, was the most important reason farmers did not prefer 

local maize. High yield (71.7%) and early maturity/drought tolerance (26.3%) were cited as the 

most important characteristics of improved maize varieties28. 

Exposure to shocks may affect technology adoption. We asked the farm households whether they 

have been affected by any shocks in each of the last four years, i.e., from 2009 to 2012, and to rank 

shocks by severity. Table 1 shows the distribution of the most severe shocks they perceived they 

                                                 
26 Double hurdle models were also tested but failed to converge.  
27 To enable us to take logs for observations with no fertilizer use, we added one to the fertilizer quantities (measured 

in kg by maize type). 
28 We did not have questions that specifically asked farmers to compare DT and OIMP maize varieties. 



had been affected by in 2011-12. We observe that the drought shock dominated (reported as the 

most severe shock by 51% of the respondents experiencing a shock), followed by livestock 

death/theft, large rises in food prices, crop disease/pests, and deaths/illness of family members. 

We constructed a simple measure of shock exposure in the form of a count of the number of shocks 

the households had been exposed to in the 2009-2012 period and tested how this may affect their 

technology adoption in terms of maize type and fertilizer use. 

Table 1. Most severe shock in 2011/12, type of shock, for those experiencing shocks in this year 

Shock type, shock 1, 2012 Freq. Percent Cum. 

Lower yields due to 

drought/flood 123 50.62 50.62 

Crop disease/pests 14 5.76 56.38 

Livestock death/theft 35 14.40 70.78 

Household business failure 2 0.82 71.60 

Loss of paid employment 1 0.41 72.02 

Non-payment of salary 2 0.82 72.84 

Large rise in price of food 19 7.82 80.66 

Death of head 2 0.82 81.48 

Death of working hh members 1 0.41 81.89 

Illness/accident of hh member 11 4.53 86.42 

Death of other family member 10 4.12 90.53 

Dwelling damaged/destroyed 8 3.29 93.83 

Theft 6 2.47 96.30 

Other 9 3.70 100.00 

Total 243 100.00  
Note: Based on the sample of 282 households with good quality data. 

Artifactual field experiments that combined the approaches of Holt and Laury (2002) (with a 

hypothetical and monetary part) and the Tanaka et al. (2010) approach were used to elicit Prospect 

Theory parameters. The Holt and Laury approach contained four hypothetical series with high 

stakes choices between more or less risky crop varieties (framed in line with the technology 

adoption issues we are interested in). These were introduced to the respondents first, followed by 

four incentivized lower stake monetary series; see the Appendix for details. A structural model 

with constant relative risk aversion was used to predict the relative risk aversion parameter 

(CRRA) for each respondent, based on the four hypothetical and four monetary series29. The 

                                                 
29 Separate estimation of the hypothetical and monetary series resulted in substantially higher CRRA in the high stakes 

hypothetical series than in the lower-stake monetary series. The payments in the monetary series were substantial and 

equivalent to the average input expenditure of a household in a year. The potential payout in the monetary series varied 

from 0.3 to 12.6 daily wage rates (DWR) in the case of bad and good outcomes for the riskier option and from 3.2 to 



Tanaka et al. approach requires three choice series to elicit three parameters, one for the subjective 

probability weighting (alpha parameter) based on the formula     1/ exp ln 1/w p p


 , one for 

loss aversion (lambda parameter) and one for the curvature of the value function (sigma parameter) 

based on the following function:  v x x  for gains and    v x x


    for losses. We use only 

the first two of these in combination with the CRRA parameter in this study30. The distributions 

of the three preference parameters are presented in Figure 1 a), b) and c). Most respondents have 

a CRRA parameter between one and two. A substantial share have an alpha parameter below one, 

indicating that they overweight low probabilities and underweight high probabilities. The loss 

aversion parameter indicates high levels of loss aversion compared with findings of other studies 

(Tanaka et al. 2010 in Vietnam; Liu (2013) in China). Summary statistics for the key variables are 

presented in Table 2.  

                                                 
6.3 DWR for the less risky option. This compares to the hypothetical series, where the riskier option had hypothetical 

payouts of 13.3 to 732 DWR, and the less risky option had a hypothetical payout of 183 to 366 DWR (Holden 2014). 

All respondents received a payout in the monetary experiments but did not know from which series. This was 

determined randomly, after all series had been played. The CRRA parameter used in the following analysis was 

derived by combining the hypothetical and monetary series.  
30 We consider the CRRA parameter to be more accurate, as it is derived from eight series. The alpha and sigma 

parameters are elicited jointly, which can potentially lead to correlated measurement errors that are likely to be less 

problematic under our approach. 



  

 

Figure 1. a) Relative risk aversion coefficient distribution, b) subjective probability weight (alpha 

parameter) distribution, c) loss aversion (lambda parameter) distribution.  
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Table 2. List of variables 

Variable Obs Mean Std. Dev. Min Max 

Planted DT maize, dummy 282 .507 .501 0 1 

Planted OIMP maize, dummy 282 .397 .490 0 1 

Planted local maize (LM), dummy 282 .553 .498 0 1 

Maize area, local maize, ha 282 .279 .340 0 1.86 

Maize area, DT maize, ha 282 .320 .479 0 3.26 

Maize area, OIMP maize, ha 282 .245 .622 0 8.45 

Total fertilizer on DT maize, kg 282 35.82 64.71 0 500 

Total fertilizer on OIMP maize, kg 282 27.38 62.03 0 500 

Total fertilizer on local maize, kg 282 28.07 56.34 0 400 

Fertilizer use on OIMP maize, dummy 282 .298 .458 0 1 

Fertilizer use on DT maize, dummy 282 .394 .489 0 1 

Fertilizer use on local maize, dummy 282 .426 .495 0 1 

Relative risk aversion coefficient 279 1.73 .291 .986 2.21 

Subjective probabilty weight 278 .877 .213 .25 1.4 

Loss aversion coefficient 278 4.61 2.97 .07 10.32 

Number of shocks last 4 years 282 1.61 .867 0 4 

Drought 2012, dummy 282 .780 .415 0 1 

Drought 2011, dummy 282 .174 .380 0 1 

Drought 2010, dummy 282 .085 .292 0 2 

Average rainfall, mm 282 899.8 92.2 

786.2

6 1014.9 

Failed to get preferred variety, dummy 282 .337 .473 0 1 

Farm size in ha 282 1.24 1.50 .086 19.18 

Sex of respondent, male=1 281 .587 .493 0 1 

Age of household head, years 282 43.24 14.51 21 85 

Savings for fertilizer purchase, MK 282 3853 144 0 

16000

0 

Non-agricultural business, dummy 280 .461 .499 0 1 

Formal employment, dummy 281 .146 .354 0 1 

Received fertilizer coupon (FISP) 282 .557 .498 0 1 

Received seed coupon (FISP) 282 .582 .494 0 1 

 

 

  



7. Results 

7.1. Maize type adoption 

The results of the double hurdle models for adoption and intensity of adoption of the three types 

of maize are presented in Table 3, with average partial effects (APEs) presented in Table 4. The 

first three models in Table 3 exclude endogenous variables, while the last three models include 

endogenous variables. The APEs in Table 4 are only for the models that include the endogenous 

variables in Table 3.  

As can be seen, the results for the key exogenous variables of interest are remarkably consistent 

across the specifications without and with endogenous variables and may indicate that omitted 

variable bias and endogeneity bias are not significant problems31. The first hurdle (to adopt or not 

to adopt) results show that relative risk aversion (CRRA) is positively correlated with adoption of 

DT maize and local maize, both being significant at the 1% level in both specifications (APEs are 

significant at the 5% level in Table 4), while relative risk aversion is negatively correlated with 

adoption of OIMP maize varieties (significant at the 5% level in both Tables 3 and 4). This is likely 

to reflect the fact that DT maize, due to its drought tolerance, and LM maize, due to its resistance 

to post-harvest pest risk, are considered safer options and are given higher priority by more risk 

averse households. Table 4 indicates that a farmer with CRRA=2 is 32.9% more likely to plant DT 

maize than a farmer with CRRA=1, while he is also 36.3% more likely to plant local maize and 

28.8% less likely to plant OIMP maize.  

Furthermore, loss aversion is also significantly positively (at the 5% level in both specifications) 

correlated with adoption of DT maize. More loss averse households were therefore more likely to 

adopt DT maize. They may place greater weight on the expectation that DT maize will result in 

smaller losses in drought years. However, a one unit higher lambda (loss aversion parameter) is 

associated with only a 2% higher probability of planting DT maize (Table 4). 

                                                 
31 Additional variations in the specifications, such as bootstrapped models to correct standard errors for possible 

heteroscedasticity, were also tested. Bootstrapped models in Stata 13 do not allow weighting with IPWs to correct for 

attrition bias and were therefore not preferred. However, the results were remarkably similar to the included results. 

The results from the alternative specifications are available upon request. Alternative double hurdle models to the 

craggit command in Stata (dhreg and bootdhreg commands) were also tested but did not allow weighting. They 

produced similar results.   

 



Table 3. Double hurdle models by maize type and area planted to maize type without and with 

endogenous variables 

 Models without endogenous variables Models with endogenous variables 

Hurdle 1: Planted type of 

maize DT maize 

OIMP 

maize Local maize DT maize 

OIMP 

maize Local maize 

Relative risk aversion coeff. 1.378*** -0.986** 1.132*** 1.239*** -1.127** 1.134*** 

 (0.425) (0.454) (0.432) (0.452) (0.467) (0.433)     

Subjective probabilty weight -0.362 0.117 -0.123 -0.604 0.154 -0.089     

 (0.408) (0.427) (0.391) (0.442) (0.439) (0.399)     

Loss aversion coeff. 0.069** 0.026 -0.020 0.076** 0.024 -0.021     

 (0.030) (0.033) (0.029) (0.032) (0.033) (0.029)     

Number of shocks last 3 years 0.128 0.118 -0.341**** 0.192* 0.118 -0.322***  

 (0.096) (0.097) (0.095) (0.099) (0.104) (0.099)     

Drought 2012, dummy -0.089 0.260 0.175 -0.076 0.270 0.140     

 (0.284) (0.282) (0.287) (0.311) (0.290) (0.288)     

Drought 2011, dummy 0.890*** -0.375 -0.385 0.926*** -0.390 -0.395     

 (0.284) (0.298) (0.265) (0.307) (0.298) (0.265)     

Drought 2010, dummy 0.824* -0.574 -0.010 0.871* -0.575 -0.013     

 (0.470) (0.373) (0.308) (0.485) (0.393) (0.305)     

Failed to get preferred variety,  -0.279 0.088 0.221 -0.266 0.059 0.242     

dummy (0.205) (0.212) (0.185) (0.213) (0.219) (0.186)     

Log of Farm size in ha 0.075 0.459 0.279 0.148 0.367 0.258     

 (0.247) (0.288) (0.250) (0.264) (0.291) (0.253)     

Sex of respondent -0.112 0.045 0.101 -0.168 0.019 0.130     

 (0.185) (0.184) (0.180) (0.198) (0.192) (0.182)     

Average rainfall, mm 0.002 0.001 0.002 0.001 0.001 0.002     

 (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)     

Age -0.008 -0.010 0.023**** -0.013** -0.006 0.023**** 

 (0.006) (0.006) (0.006) (0.006) (0.007) (0.006)     

Received subsidized fertilizer     0.227 -0.181 0.154     

voucher    (0.208) (0.226) (0.192)     

Received subsidized seed     0.678*** 0.124 -0.078     

voucher    (0.216) (0.231) (0.211)     

Log of savings for fertilizer     -0.005 0.045* 0.005     

purchase    (0.025) (0.024) (0.024)     

Non-agricultural business,     -0.305* 0.446** -0.044     

dummy    (0.184) (0.191) (0.173)     

Formal employment, dummy    0.159 -0.009 -0.057     

    (0.284) (0.291) (0.260)     

Village FE Yes Yes Yes Yes Yes Yes 

Constant -6.024*** 1.989 -4.004** -5.457*** 2.160 -4.290**   

 (1.925) (1.917) (1.953) (1.930) (1.903) (2.029)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 3, continued… 

Hurdle 2: Area planted by maize 

type 

DT maize OIMP 

maize 

Local 

maize 

DT maize OIMP 

maize 

Local 

maize                 

Relative risk aversion coeff. -0.057 -0.357*** 0.046 -0.068 -0.188** 0.035     

 (0.092) (0.119) (0.061) (0.080) (0.084) (0.054)     

Subjective probabilty weight 0.216** 0.191** 0.042 0.257*** 0.244** 0.054     

 (0.094) (0.094) (0.057) (0.082) (0.097) (0.048)     

Loss aversion coefficient -0.007 0.020*** 0.000 -0.003 0.013* 0.000     

 (0.008) (0.008) (0.005) (0.008) (0.007) (0.004)     

Number of shocks last 3 years 0.022 -0.009 -0.032* 0.011 -0.014 -0.023     

 (0.021) (0.026) (0.020) (0.021) (0.021) (0.017)     

Drought 2012, dummy 0.048 -0.021 0.070 -0.015 0.033 0.074**   

 (0.098) (0.074) (0.049) (0.086) (0.061) (0.035)     

Drought 2011, dummy 0.032 0.037 -0.052 0.023 -0.004 -0.024     

 (0.059) (0.044) (0.044) (0.043) (0.036) (0.032)     

Drought 2010, dummy -0.082 0.041 -0.043 -0.083 0.050 -0.045     

 (0.070) (0.077) (0.054) (0.054) (0.056) (0.036)     

Failed to get preferred variety,  -0.080* -0.019 -0.009 -0.032 -0.028 0.035     

dummy (0.049) (0.042) (0.033) (0.047) (0.032) (0.023)     

Log of Farm size in ha 0.582**** 0.565**** 0.362**** 0.496**** 0.533**** 0.388**** 

 (0.094) (0.101) (0.046) (0.111) (0.086) (0.034)     

Sex of respondent in household -0.055 0.038 -0.017 -0.038 0.046 -0.011     

 (0.036) (0.044) (0.030) (0.032) (0.041) (0.024)     

Average rainfall, mm 0.000 0.001*** 0.000 0.000 0.001 -0.000     

 (0.001) (0.000) (0.000) (0.000) (0.000) (0.000)     

Received subsidized fertilizer     -0.015 0.063 0.025     

voucher    (0.035) (0.043) (0.022)     

Received subsidized seed     0.013 -0.057 -0.024     

voucher    (0.046) (0.039) (0.026)     

Log of savings for fertilizer     0.006 -0.000 0.003     

purchase    (0.005) (0.005) (0.003)     

Non-agricultural business,     0.001 0.022 -0.021     

dummy    (0.034) (0.034) (0.022)     

Formal employment, dummy    0.021 -0.044 0.006     

    (0.056) (0.038) (0.027)     

Log of OIMP maize area    -0.097  -0.107     

    (0.133)  (0.093)     

Log of local maize area    -0.036 -0.206**                  

    (0.092) (0.097)                  

Log of DT maize area     -0.119 -0.012     

     (0.079) (0.063)     

Log of pre-state of nature labor     0.123****   

input on DT maize    (0.035)   

Log of pre-state of nature labor      0.142****                  

Input on OIMP maize     (0.023)                  



Log of pre-state of nature labor       0.120**** 

Input on LM maize      (0.016)     

Village FE Yes Yes Yes Yes Yes Yes 

Constant -0.556 -0.772* -0.029 -0.858** -0.870** -0.330     

 (0.541) (0.449) (0.277) (0.437) (0.354) (0.226)     

Sigma constant 0.197**** 0.188**** 0.146**** 0.174**** 0.150**** 0.116**** 

 (0.018) (0.018) (0.010) (0.014) (0.015) (0.008)     

Wald chi2 90.549 9263.163 56.858 110.142 8671.206 59.098     

Prob > chi2 0.000 0.000 0.001 0.000 0.000 0.002     

Number of observations 277 277 277 276 276 276     

Note: *, **, ***, *** indicate that coefficients are significant at 10, 5, 1, and 0.1% levels, respectively. Standard errors 

in parentheses. Models weighted with inverse probability weights to correct for attrition bias, based on baseline survey 

household characteristics. Models estimated using Craggit command in Stata 13. The table gives average marginal 

effects.  

  



Table 4. Average partial effects (APEs) with bootstrapped standard errors for key variables 

Maize type DT  OIMP  LM  

 

Hurdle 1: Growing maize 

type 

APE Bootstr. 

SE 

APE Bootstr. 

SE 

APE Bootstr. 

SE 

Relative risk aversion 

coefficient 

0 .329**   0.132  -0.288**  0.132 0.363**  0.146 

Subjective probabilty weight 

(alpha) 

-0.160 0.125 0.039 0.126 -0.035  0.135 

Loss aversion coefficient 

(lambda) 

 0.020**  0.009 0.006   0.009 -0.007 0.011 

Number of shocks last 3 years  .051*  0.031  0.030   0.031 -0.104***  0.034 

Drought 2011, dummy 0.246** 0.100 -0.099 0.092 -0.121  0.102 

Drought 2010, dummy  0.232   0.383 -0.147 0.189 -0.005  0.117 

Log of Farm size in ha   0.039  0.088 0.094   0.081 0.086  0.091 

Age of household head  -0.003* 0.002 -0.001 0.002 0.007****  0.002 

Received subsidized seed 

voucher 

 0.180***  0.061  0.032  0.067 -0.027  0.073 

Non-agricultural business, 

dummy 

-0.072  0.055 0.098*  0.055  -0.014   0.059 

Hurdle 2: Log of planted area to maize 

type 

     

Relative risk aversion 

coefficient 

 0.080  0.061  -

0.235*** 

0.075  0.164** 0.065 

Subjective probabilty weight 

(alpha) 

 0.046  0.062 0.090 0.072  0.010  0.064 

Loss aversion coefficient 

(lambda) 

 0.005     0.005  0.010* 0.005 -0.003  0.005 

Number of shocks last 3 years  0.021   0.015 0.009 0.018 -0.052***   0.018 

Drought 2011, dummy  0.039  0.040 0.003 0.044  -0.039  0.045 

Drought 2010, dummy -0.009  0.125  -0.012  0.111 -0.018   0.054 

Log of Farm size in ha  0.202***  0.066 0.218*** 0.064 0.208****  0.043 

Age of household head -0.001 0.001 -0.0004 0.001  

0.004****  

0.001 

Received subsidized seed 

voucher 

 0.027  0.035  -0.034 0.040 -0.024   0.033 

Non-agricultural business, 

dummy 

 -0.009 0.027 0.032  0.030  -0.029  0.027 

Note: Average partial effects for the models in Table 3 including endogenous variables. Bootstrapped standard errors 

based on 400 replications programmed based on Burke (2009). *, **, ***, *** indicate that coefficients are significant 

at 10, 5, 1, and 0.1% levels, respectively. 

  



 

The lagged drought exposure dummy variables are significantly positively correlated with 

adoption of DT maize in both model specifications in Table 3, while the APE in Table 4 is only 

significant for the one year lagged drought variable. The one year lagged drought dummy is 

significant at the 1% level in both specifications in Table 3, and the APE is significant at the 5% 

level in Table 4. Farmers exposed to drought in 2011 were 24.6% more likely to plant DT maize 

in 2012. The two year lagged drought dummy is significant at the 10% level in Table 3 and 

insignificant in Table 4. The APE in Table 4 for DT maize is, however, positive and has a value 

close to that of the one year lagged drought APE.   

On the other hand, the variable for the number of shocks that households have been exposed to 

over the preceding four years is significant (at the 0.1% and 1% levels) and has a negative sign in 

the LM models in Table 3. Additionally, the APE is significant at the 1% level in Table 4. Exposure 

to one extra shock (of any kind) is associated with a 10.4% lower probability of planting local 

maize and a 5.2% higher probability of planting DT maize32. This is consistent with higher shock 

exposure triggering dis-adoption of local maize. The parameters for this variable are positive for 

DT and OIMP maize but are significant at the 10% level only in the case of DT maize when 

endogenous variables are included. The drought shocks are also included in the count of the 

number of shocks. This may imply that it is drought shocks in particular that stimulate DT maize 

adoption, while the number of shocks is more important than drought shocks per se to the dis-

adoption of local maize.  

Among the other exogenous variables, only age was significant in the models for LM maize in 

both specifications, where it had a positive sign and was significant at the 0.1% level in both 

models in Tables 3 and 4. Older household heads are more likely to continue to grow local maize. 

An increase in the age of the household head by 10 years is associated with a 7% higher probability 

of planting local maize. Age was negatively associated with adoption of DT maize but was 

significant (at the 5% level) only in the specification that included endogenous variables, while 

the APE was significant (at the 10% level) only in Table 4. An increase in age by 10 years is 

                                                 
32 This is after we have controlled for lagged drought shock with the dummy variables. 



associated with a 3% lower probability of planting DT maize. This may be because older people 

are more skeptical about the adoption of new technologies, such as DT maize.  

Among the endogenous variables included in the second set of models, the dummy for having 

received a maize seed voucher under the subsidy program was positively associated with adoption 

of DT maize (significant at the 1% level in Tables 3 and 4). The recipient of a seed voucher from 

the subsidy program in 2012 was associated with an 18% higher probability of planting DT maize. 

This is consistent with the findings of Holden and Fisher (2015) that the input subsidy program 

has contributed to the adoption of DT maize. Saving for fertilizer purchases and having non-

agricultural business income were positively associated with adoption of OIMP maize, and this 

may indicate that liquidity can constrain adoption of OIMP maize seeds, which were more likely 

to be distributed independently of the input subsidy program.  

Next, we examine factors associated with the intensity of adoption of different types of maize. 

Intensity of adoption is measured as the land area (log-transformed) planted with a specific type 

of maize.  The second hurdle results in Tables 3 and 4 demonstrate that factors that affect the 

intensity of adoption differ from those that affect the first stage adoption decision.  

Relative risk aversion is negatively associated with intensity of adoption of OIMP maize but not 

significantly related to intensity of adoption of DT maize. For local maize, only the APE in Table 

4 is significant (at the 5% level) and has a positive sign. A farmer with CRRA=2 is planting an 

area of OIMP maize that is 23.5% smaller than a farmer with CRRA=1, while he plants an area of 

local maize that is 16.4% larger.  

The subjective probability weight (alpha) parameter is significantly and positively correlated with 

the intensity of adoption of DT and OIMP maize (both being significant at least at the 5% level in 

both specifications in Table 3), although for the APEs, the variable is not significant. The APEs of 

the alpha parameter are also small and therefore appear to have little impact on the intensity of 

adoption. More loss averse individuals, on the other hand, exhibit significantly (at the 1% and 10% 

levels in Table 3 and at the 10% level in Table 4) higher levels of adoption intensity of OIMP 

maize, a result that is somewhat surprising. Here also, the APE is low: a one unit increase in the 

lambda loss aversion parameter is associated with a 1% increase in the area of OIMP maize.  



Few of the other exogenous variables were consistent (in terms of sign and significance levels) 

across the two specifications (without and with endogenous variables). The exception is farm size, 

which is highly significant (at the 0.1% level) and has a positive sign in all models. The intensity 

of adoption responded almost equally to a change in farm size for all maize types. A 10% increase 

in farm size is associated with a 2.0% increase in the area of DT maize, a 2.2% increase in the area 

of OIMP maize and a 2.1% increase in the area of local maize. This illustrates that the intensity of 

adoption is constrained by the (small) farm sizes in the study areas.  

Few of the endogenous variables are also significantly correlated with the intensity of adoption. 

The exceptions are the ex ante labor input variables, which were strongly positively correlated 

with intensity of adoption for all three maize types. This demonstrates the complementarity of land 

and labor in this hoe-based farming system. The negative signs for the intensity of adoption of 

alternative maize types indicate that they are substitutes, but the lack of statistical significance 

(with one exception) also indicates that growing one maize type does not necessarily rule out 

growing other types.  

We summarize by assessing the results in relation to our hypotheses. The findings related to 

relative risk aversion mostly support hypothesis H1), which states that “Relative risk aversion is 

associated with a higher probability and a higher intensity of adoption of DT and LM maize and 

the opposite for OIMP maize.” None of the empirical evidence provides a basis for rejecting parts 

of the hypothesis. Hypothesis H2) states that “Loss aversion is associated with a higher probability 

of DT maize adoption and a lower probability of OIMP maize adoption.” We found that loss 

aversion was positively correlated with adoption of DT maize but not negatively related to 

adoption of OIMP maize. On the contrary, loss aversion was positively associated with the 

intensity of OIMP maize adoption. Hypothesis H2) may therefore be rejected in the case of OIMP 

but not in the case of DT maize. The first part of hypothesis H3 states that “Subjective 

overweighting of low probabilities is associated with less adoption of OIMP maize …” We found 

no support for this hypothesis, and it can therefore be rejected. The elicited subjective probability 

weights were not significantly associated with either adoption or intensity of adoption of any of 

the maize types. Hypothesis H4) states that “Shock exposure in the form of droughts in previous 

years is associated with increased adoption of DT maize and dis-adoption of LM maize.” The 

results support this hypothesis, which therefore cannot be rejected. The first part of hypothesis H5) 



states that “Access to subsidized inputs enhances adoption of DT maize …” The results strongly 

support this hypothesis. The input subsidy program appears to have been instrumental in 

promoting adoption of DT maize.  

 

7.2. Fertilizer use intensity by maize type 

Fertilizer use intensity by maize type is analyzed using censored tobit models that are conditional 

on the type of maize being planted by households. To correct for attrition and sample selection 

bias related to planting specific types of maize, inverse probability weights from probit models for 

planting each type of maize were used, with the baseline household sample and characteristics as 

right-hand side variables. Input variables were log-transformed. Table 5 presents the results for 

models both without and with a set of endogenous variables, as in the case of maize type adoption. 

However, in the case of intensity of fertilizer use, double hurdle models did not work, and censored 

tobit models appeared to be most appropriate.  

Table 5 shows that the key variables produced quite similar results in the cases without and with 

the endogenous variables. Relative risk aversion had a negative sign in all models but was 

significant only in the first model with OIMP maize. The subjective probability weight (alpha 

parameter), however, is positively significant in five of six models. The highest levels of 

significance are found in the DT maize models (significant at the 1% and 0.1% levels), while the 

parameters are larger in magnitude and significant at the 1% and 5% levels in the case of OIMP 

maize. This indicates that fertilizer use intensity is significantly lower for farmers who overweight 

low probabilities more and particularly so for the improved maize varieties. Figure 2 illustrates the 

actual distribution of fertilizer use33 on OIMP, DT and LM maize for respondents with alpha<0.75 

versus respondents with alpha>0.75. We see that fertilizer use distributions are much lower for the 

first group and particularly so for the OIMP maize.  

There are no strong shock effects on fertilizer use intensity, but average rainfall is associated with 

a higher intensity of fertilizer use on OIMP maize, while for DT maize, farmers apply more 

fertilizer in areas with lower average rainfall. The latter may be because they believe it is less risky 

to apply fertilizer to DT maize in such areas. Male-headed households tended to use less fertilizer 

on LM maize than female-headed households. The latter result is in line with females having a 

                                                 
33 Untransformed fertilizer use, to get a better idea of the actual amounts used. 



stronger preference for local maize, which may be related to its superior post-harvest and food 

qualities. 

Table 5. Censored tobit models for intensity of fertilizer use by maize type without and with 

endogenous variables. 

 Models without endogenous variables Models with endogenous variables 

RHS variables 

Fertilizer 

on DT 

Fertilizer 

on OIMP  

Fertilizer 

on LM 

Fertilizer 

on DT 

Fertilizer 

on OIMP  

Fertilizer 

on LM 

Relative risk aversion coefficient -0.433 -3.235*** -0.587 -0.811 -1.413 -0.761     

 (0.816) (1.063) (0.904) (0.653) (0.973) (0.776)     

Subjective probabilty weight 2.054*** 3.613*** 1.297 2.082**** 2.912** 1.292*    

 (0.754) (1.192) (0.818) (0.571) (1.126) (0.736)     

Loss aversion coefficient -0.022 0.051 0.010 0.012 0.004 -0.009     

 (0.065) (0.066) (0.067) (0.055) (0.056) (0.059)     

Number of shocks last 3 years -0.018 -0.254 -0.304 0.222 -0.101 0.047     

 (0.158) (0.250) (0.270) (0.140) (0.232) (0.246)     

Drought 2012, dummy 0.109 -0.740 0.017 -0.171 -0.841 -0.207     

 (0.662) (0.684) (0.615) (0.512) (0.563) (0.593)     

Drought 2011, dummy -0.262 1.011* 0.157 -0.220 0.598 0.527     

 (0.434) (0.583) (0.625) (0.313) (0.559) (0.573)     

Drought 2010, dummy 0.220 -0.959 -0.591 0.266 -0.748 -0.562     

 (0.334) (0.817) (0.711) (0.319) (0.878) (0.583)     

Average rainfall, mm -0.009** 0.011*** -0.003 -0.009*** 0.007** -0.003     

 (0.004) (0.003) (0.004) (0.003) (0.003) (0.003)     

Failed to get preferred variety, dummy -0.559 0.196 -0.227 -0.006 0.367 -0.017     

 (0.366) (0.418) (0.449) (0.307) (0.366) (0.403)     

Log of Farm size in ha 0.769 0.398 0.022 -0.873* -1.174 -0.894     

 (0.525) (0.771) (0.544) (0.513) (0.818) (0.759)     

Sex of respondent in household -0.367 0.241 -0.935** 0.071 0.207 -0.714*    

 (0.304) (0.427) (0.421) (0.244) (0.403) (0.361)     

Received subsidized fertilizer voucher   1.958**** 1.254*** 1.920**** 

    (0.331) (0.473) (0.427)     

Received subsidized seed voucher    -0.475 -0.519 -0.104     

    (0.351) (0.473) (0.384)     

Log of savings for fertilizer purchase    0.078** -0.004 0.074*    

    (0.030) (0.054) (0.044)     

Non-agricultural business, dummy    -0.074 1.079*** -0.152     

    (0.301) (0.388) (0.341)     

Formal employment, dummy    -0.317 0.009 0.009     

    (0.375) (0.445) (0.613)     

Log of DT maize area    2.439****                   

    (0.589)                   

Log of OIMP maize area     3.278***                  

     (1.220)                  



Log of local maize area      3.539**   

      (1.475)     

Log of pre-state of nature labor DT    0.249   

    (0.156)   

Log of pre-state of nature labor OIMP    -0.328  

     (0.286)  

Log of pre-state of nature labor LM      0.235     

      (0.231)     

Village FE Yes Yes Yes Yes Yes Yes 

Constant 12.220*** -4.561 7.266* 10.512*** -3.561 3.836     

 (4.171) (3.501) (4.134) (3.258) (3.323) (3.817)     

Sigma constant 1.563**** 1.738**** 1.943**** 1.225**** 1.496**** 1.634**** 

 (0.156) (0.171) (0.166) (0.112) (0.141) (0.132)     

Log likelihood -338.241 -266.369 -379.935 -294.977 -246.207 -345.089     

Prob > F 0.000 0.000 0.009 0.000 0.000 0.000     

Number of observations 136 98 144 136 98 143     

Left-censored obs. 20 19 32 20 19 32 

Note: Dependent variable: log(kg Fertilizer+1). *, **, ***, *** indicate that coefficients are significant at 10, 5, 1, and 

0.1% levels, respectively. Standard errors in parentheses. Models weighted with inverse probability weights to correct 

for attrition bias and sample selection into maize type, based on baseline survey household characteristics. The models 

are conditional on each maize type being grown by the household. The coefficients are average marginal effects. 

 

 

Figure 2. Subjective probability weights and fertilizer use intensity on OIMP, DT and local 

maize 

0

.0
0

2
.0

0
4

.0
0

6
.0

0
8

.0
1

K
d

e
n

si
ty

 F
e
rt

ili
ze

r 
o
n

 O
IM

P
 m

a
iz

e

0 100 200 300 400 500
Fertilizer use in kg

Alpha < 0.75 Alpha > 0.75

OIMP maize

Subjective Probability Weights (alpha)  and Fertilizer Use

0

.0
0

2
.0

0
4

.0
0

6
.0

0
8

K
d

e
n

si
ty

 F
e
rt

ili
ze

r 
o
n

 D
T

 m
a
iz

e

0 100 200 300 400 500
Fertilizer use in kg

Alpha < 0.75 Alpha > 0.75

DT maize

Subjective Probability Weights (alpha) and Fertilizer Use

0

.0
0

2
.0

0
4

.0
0

6
.0

0
8

.0
1

K
d

en
si

ty
 F

er
til

iz
e

r 
on

 lo
ca

l m
ai

ze

0 100 200 300 400
Fertilizer use in kg

Alpha < 0.75 Alpha > 0.75

Local maize

Subjective Probability Weights (alpha) and Fertilizer Use



With regard to the included endogenous variables, receipt of a voucher for subsidized fertilizer is 

positively and significantly related (at the 1% and 0.1% levels) to intensity of fertilizer use for all 

three types of maize. Saving for fertilizer purchases is significant (at the 5% and 10% levels) and 

positive in the models for DT and LM maize, while the dummy for non-agricultural business is 

significant (at the 1% level) and positive in the OIMP maize model. This result suggests that a 

liquidity constraint may limit fertilizer use intensity, an outcome consistent with the strongly 

significant result for the fertilizer subsidy variable and with the findings of Holden and Lunduka 

(2014). Area planted for each maize type is strongly and positively related to the intensity of 

fertilizer use, indicating that land and fertilizer are also complementary inputs in production, while 

labor use is less closely related to fertilizer use intensity. This may be because fertilizer application 

requires little labor. 

We can now assess the remaining hypotheses regarding fertilizer use intensity. The second part of 

hypothesis H3) states that “Subjective overweighting of low probabilities is associated with less 

use of fertilizer on OIMP and local maize.” Our findings reveal such an effect for all types of 

maize, but it was strongest for OIMP maize, which may be perceived as the riskiest type of maize 

to which fertilizer is applied. The hypothesis, therefore, cannot be rejected. Finally, hypothesis 

H5) states that “Access to subsidized inputs enhances the intensity of fertilizer use on all types of 

maize.” This hypothesis is strongly supported by the results.  

7.3. Robustness checks 

We have demonstrated that the key preference and shock variables are robust to the model 

specifications both without and with the endogenous variables34 in the models with log 

transformed input variables. The key results are also very similar in models with untransformed 

variables and with specifications in which the number of included endogenous variables is altered. 

This was the case for the maize type adoption models and the fertilizer intensity models. While we 

used IPWs to correct for attrition bias, the models without IPWs produced very similar results. We 

                                                 
34 Another specification that was tested was to include the dummies for use of other maize types in each of the first 

hurdle models for each maize type. These dummy variables were highly significant and with a negative sign showing 

that the different maize types are close substitutes. Including these dummy variables did not change the other results 

in any major way. The most important difference was that the coefficient for relative risk aversion for OIMP maize 

became insignificant but remained negative while the coefficient for loss aversion became significant at 10% level 

and with a positive sign. Adding the same maize type dummies also in the second stage models lead to even smaller 

changes. Their coefficients are also negative there but only the coefficient for local maize in the models for OIMP 

maize is significant. The results are available upon request.  



do not have a good measure of household income, as the off-farm income data are weak and do 

not include consumption data that would have allowed us to create a measure of total consumption 

expenditure. Farm size (land) is the best wealth indicator we have. The off-farm income access 

dummies and savings variables, together with the input subsidy access variables, revealed that 

poverty and liquidity constraints can constrain adoption of both fertilizer and improved maize 

seeds. However, controlling for these factors did not change the way relative risk aversion and 

subjective probability weighting affected technology adoption and the intensity of adoption. 

7.4. Correlation versus causality 

We have relied on cross-sectional survey data and must therefore be cautious in drawing causal 

conclusions from our results. However, the fact that the preference parameters were derived 

through field experiments and that we could draw on a natural experiment in the form of a 

significant drought shock in 2012 along with less severe lagged drought shocks and other shocks 

give us reasons to argue that we can draw some causal implications from the findings. The fact 

that DT maize adoption was a relatively new phenomenon, with an increase in the adoption rate 

from 2% to 45% between 2006 and 2012, also indicates that we may have reason for confidence 

in a causal relationship from risk preference parameters and shocks to technology adoption. This 

does not rule out that there may be an element of reverse causality or correlation and therefore 

some bias in the estimates. The robustness checks that were implemented, however, indicate that 

such biases are small in our data.   

 

8. Conclusion 

Climate change is likely to increase climate risk, and more severe and more frequent droughts are 

likely to occur in some parts of the world, including the southern part of Africa in which Malawi 

is situated. Malawi has a population and an economy that is highly dependent on rain-fed 

agriculture, with maize the main staple crop that is susceptible to drought. International efforts 

have resulted in the development of improved high-yielding and more drought-tolerant maize 

varieties. This study has investigated the adoption decisions of poor smallholder farmers in Malawi 

with regard to different maize types and fertilizer use on these maize types. Field experiments were 

used to elicit risk preference prospect theory parameters. These were combined with detailed 

household-farm plot data, with farmers’ fields measured using GPS. This allowed for a detailed 

investigation of factors associated with the adoption and intensity of adoption of different maize 



types. To our knowledge, this is the first study of its kind to include such a detailed investigation 

of how drought shocks, risk preferences and prospect theory parameters affect the adoption and 

intensity of adoption of alternative maize technologies and fertilizer use. The findings have 

substantial policy relevance. 

First, the study shows that more risk averse farmers (with higher relative risk aversion coefficients 

– CRRA) are more likely to adopt DT maize but also to grow traditional local maize and less likely 

to grow other improved maize types. A more risk averse farmer, with CRRA=2, compared with a 

less risk averse farmer, with CRRA=1, was 32.9% more likely to have adopted DT maize but 

36.3% more likely to grow local maize and 28.8% less likely to grow other improved maize types. 

The average CRRA in the sample was 1.73. The same pattern was found for intensity of maize 

type adoption for OIMP and local maize but to a smaller degree for DT maize.  

Second, lagged drought shock exposure was strongly associated with DT maize adoption, as 

exposure to drought in 2011 was associated with a 24.6% higher probability of planting DT maize 

in 2012. Furthermore, households with exposure to a larger number of diverse shocks over the last 

four years were more likely to have dis-adopted local maize and adopted DT maize. This 

demonstrates that shock exposure stimulates movement towards new technologies that are more 

suitable to risky environments.  

Third, the prospect theory (PT) experiments revealed high levels of loss aversion (average 

lambda=4.61) and the dominance of an inverted S-shaped subjective probability weighting 

function, with an average alpha=0.877. The PT parameters were, to a smaller extent, more highly 

correlated with maize technology adoption than the relative risk aversion coefficient. On the other 

hand, the subjective probability weight (alpha) was strongly correlated with the intensity of 

fertilizer use on different types of maize, particularly so for the more risky OIMP maize.  

Finally, adoption of DT maize was associated with the input subsidy program (FISP) in Malawi, 

which distributes vouchers for improved maize seeds. Households that had received a voucher for 

improved maize seeds in 2012 were 18% more likely to grow DT maize than other households. 

However, such access did not significantly affect the intensity of adoption of DT maize. 

Households that had received fertilizer vouchers through the subsidy program used more fertilizer 

on all maize types, while other evidence indicates that liquidity access constrained fertilizer use. 

Fertilizer subsidies therefore appear to counteract irrational behavior in the form of subjective 



overweighting of low probabilities, behavior that is associated with lower fertilizer use and low 

fertilizer use due to binding liquidity constraints. The latter finding is consistent with the findings 

of Holden and Lunduka (2014), while the first result indicates that irrational behavior also plays a 

significant role.  

The fairly rapid adoption of DT maize in Malawi indicates that maize farmers’ adjustment costs 

are fairly low, as the technology is highly divisible (Quiggin and Horowitz 2003). Some learning 

may enhance the potential of DT maize varieties, as the level of technical efficiency is found to be 

low in smallholder maize production in Malawi after controlling for drought and land quality 

(Holden and O’Donnell 2015). The findings have an important implication for the identification 

of the productivity impacts of DT maize versus other maize varieties from farm survey data. Impact 

studies that use survey data and do not control for the effects of risk preferences and subjective 

probability weighting on adoption and intensity of adoption of the maize varieties as well as 

fertilizer use will get biased estimates of these impacts. 
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Appendix. Field experiment design: Risk preference experiments 

Instructions to enumerators: Arrange the experiment for all households in a village within one 

day.  Use school or another facility where a large room with tables and chairs are available. Ensure 

that the area is protected from interference by other people and prevent that those who have played 

interact with those that have not played the experiments. With four enumerators you may 

interview/play with four respondents at the same time such but ensure that those who play cannot 

communicate or observe each other. All games should be played with the head of the household.   

They should get a participation amount (MK 1000) that they have to be prepared to lose (some of) 

in the experiments). There is a large number of tasks to be evaluated by each of the respondents. 

You have to take the time that is needed for them to think about each task such that they understand 

it and make proper selection based on their own preferences. Explain to them that a lottery will be 

used to identify which of the series of games that they will play that will be real and give them a 

real payout. 

Risk preference experiments: Overview 

First four series: Choice between alternative maize varieties. Two types of years: Bad years 

(drought) and good years (no drought). Varying probability of bad year (number of bad 

years out of 10) & varying yield outcome levels for varieties in good and bad years (in 

kg/ha). When they choose the Variety they do not know what type of year they will get 

(good or bad), only the chance (in number of years out of ten) of a bad year. Based on this 

they should choose their preferred variety. Lotteries come in series, where your task is to 

identify the switch point in each series where typically only one variable (e.g. the 

probability of good or bad years) changes at the time. Rational behavior implies that there 

will be only one switch point in each of the series (or in some cases they will not switch at 

all). If they switch back and forth this is an indication that they have not understood the 

game or answer carelessly. Your task is to make sure that they understand and make careful 

(preferred choices).  You therefore need to be patient, especially in the beginning to make 

them understand. Demonstrate the probabilities with fingers or cards (use 10 playing 

cards). Demonstrate the outcomes with money. . Such demonstration methods should be 

standardized  across enumerators in initial testing of the experiments.   

After careful completion of the whole interview and making of choices, there will be a 

random sampling of the series and game in the series that will give the actual payout. After 

this the household head will be given her/his reward based on the outcome of this sampling 

and actual choices made.  After that they are asked to go home and not talk to other 

households who have not yet been interviewed or played the game. It is important that they 

respect this. 

Risk of starting point bias: Randomize the task you start with in each series (pull a card). 

After the first response move towards the end point in the direction you expect a switch to 

check whether you get it. Narrow in on the switch point by moving to the middle between 

the last prospects if there was a switch, continue halfway forward otherwise. 



Instructions to players (household heads): 

We have rewarded you with an initial payment of MK 1000 for coming to play the game. 

You are likely to win more but may also expect to lose some of the MK 1000 in the games 

to be played. Rewards depend on outcomes in lotteries and choices made by you during 

the game. If you make careful decisions you are more likely to get preferred rewards over 

less preferred rewards. The experiments include choices of maize varieties with different 

outcomes in drought years and years with good rainfall, alternative lotteries with money, 

lotteries with payments at different points in time, and lotteries with maize seeds (2 kg 

bags) and fertilizers (5 kg bags). 

The rewards will vary in the different lotteries which come in series.  

At the end a lottery will be used to identify which of the choice series will be for real 

payout. After you have received your reward(s) you should go home and not talk to 

anybody who have not yet played the game. That is very important.  

 

  



Choice series 1 (Chose between Variety 1 and Variety 2 when probability of drought 

varies) 

  Variety 1 (Lottery A)  Variety 2 (Lottery B)  

  Yields in 
kg/ha 

  Yields in kg/ha   

 
Task 

Probabilit
y of bad 
year, % 

Bad 
year 

Goo
d 
year 

Expecte
d yield 

Choic
e 

Bad 
year 

Good 
year 

Expecte
d yield 

Choic
e 

11 10 1000 2000 1900  100 4000 3610  
12 20 1000 2000 1800  100 4000 3220  
13 30 1000 2000 1700  100 4000 2830  

14 40 1000 2000 1600  100 4000 2440  
15 50 1000 2000 1500  100 4000 2050  

16 60 1000 2000 1400  100 4000 1660  
17 70 1000 2000 1300  100 4000 1270  
18 80 1000 2000 1200  100 4000 880  

 

Choice series 2(Chose between Variety 3 and Variety 2 when probability of drought varies) 

  Variety 3 (Lottery A)  Variety 2 (Lottery B)  

  Yields in kg/ha  Yields in kg/ha  
Task Probabilit

y of bad 
year, % 

Bad 
year 

Good 
year 

Expect
ed 
yield 

Choic
e 

Bad 
year 

Good 
year 

Expected 
yield 

Choic
e 

21 10 1000 1500 1450  100 4000 3610  
22 20 1000 1500 1400  100 4000 3220  
23 30 1000 1500 1350  100 4000 2830  
24 40 1000 1500 1300  100 4000 2440  
25 50 1000 1500 1250  100 4000 2050  
26 60 1000 1500 1200  100 4000 1660  
27 70 1000 1500 1150  100 4000 1270  
28 80 1000 1500 1100  100 4000 880  

   



Choice series 3(Chose between Variety 3 and Variety 4 when probability of drought varies) 

  Variety 3 (Lottery A)  Variety 4 (Lottery B)  

  Yields in kg/ha   Yields in kg/ha   
Task Probabilit

y of bad 
year, % 

Bad 
year 

Good 
year 

Expected 
yield 

Choic
e 

Bad 
year 

Good 
year 

Expected 
yield 

Choic
e 

31 10 1000 1500 1450  500 4000 3650  
32 20 1000 1500 1400  500 4000 3300  
33 30 1000 1500 1350  500 4000 2950  
34 40 1000 1500 1300  500 4000 2600  
35 50 1000 1500 1250  500 4000 2250  

36 60 1000 1500 1200  500 4000 1900  
37 70 1000 1500 1150  500 4000 1550  
38 80 1000 1500 1100  500 4000 1200  
39 90 1000 1500 1050  500 4000 850  

 

Choice series 4(Chose between Variety 3 and Variety 5 when probability of drought varies) 

  Variety 3 (Lottery A)  Variety 5 (Lottery B)  

  Yields in kg/ha   Yields in kg/ha   
Task Probabilit

y of bad 
year, % 

Bad 
year 

Good 
year 

Expecte
d yield 

Choic
e 

Bad 
year 

Good 
year 

Expecte
d yield 

Choic
e 

41 10 1000 1500 1450  800 4000 3680  
42 20 1000 1500 1400  800 4000 3360  
43 30 1000 1500 1350  800 4000 3040  
44 40 1000 1500 1300  800 4000 2720  
45 50 1000 1500 1250  800 4000 2400  
46 60 1000 1500 1200  800 4000 2080  
47 70 1000 1500 1150  800 4000 1760  
48 80 1000 1500 1100  800 4000 1440  
49 90 1000 1500 1050  800 4000 1120  

 

  



Instructions to players: The following experiments involve money (MK) rather than maize yields. 

Here is a chance of winning real money in these experiments. One of the experiments will be 

chosen for real payout. Your choices will affect a potential payout from the experiments. You 

should therefore make careful judgment and decisions. The game for payout will be sampled after 

you have responded to a series of lottery choices. 

 

Choice series 5: Chose between Lottery A and Lottery B when probability of bad outcome varies 

  Lottery A  Lottery B  

  Outcome in MK  Outcome in MK   
Task Probabi-

lity of bad 
outcome, 
% 

Bad  Good  Expecte
d  

Choic
e 

Bad  Good  Expecte
d  

Choic
e 

51 10 1000 2000 1900  100 4000 3610  
52 20 1000 2000 1800  100 4000 3220  
53 30 1000 2000 1700  100 4000 2830  
54 40 1000 2000 1600  100 4000 2440  
55 50 1000 2000 1500  100 4000 2050  
56 60 1000 2000 1400  100 4000 1660  
57 70 1000 2000 1300  100 4000 1270  
58 80 1000 2000 1200  100 4000 880  

59 90 1000 2000 1100  100 4000 490  

 

Choice series 6: Chose between Lottery A and Lottery B when probability of bad outcome varies 

  Lottery A  Lottery B  

  Outcome in MK  Outcome in MK  
Task Probability 

of bad 
outcome, % 

Bad  Good  Expecte
d  

Choice Bad  Good  Expected  Choice 

61 10 1000 1500 1450  100 4000 3610  
62 20 1000 1500 1400  100 4000 3220  

63 30 1000 1500 1350  100 4000 2830  
64 40 1000 1500 1300  100 4000 2440  
65 50 1000 1500 1250  100 4000 2050  
66 60 1000 1500 1200  100 4000 1660  
67 70 1000 1500 1150  100 4000 1270  
68 80 1000 1500 1100  100 4000 880  
69 90 1000 1500 1050  100 4000 490  

 Choice series 7: Chose between Lottery A and Lottery B when probability of bad outcome varies 



  Lottery A  Lottery B  

  Outcome in MK  Outcome in MK  
Task Probabilit

y of bad, 
% 

Bad  Good  Expected  Choice Bad  Good  Expected  Choic
e 

71 10 1000 1500 1450  500 4000 3650  
72 20 1000 1500 1400  500 4000 3300  
73 30 1000 1500 1350  500 4000 2950  
74 40 1000 1500 1300  500 4000 2600  
75 50 1000 1500 1250  500 4000 2250  
76 60 1000 1500 1200  500 4000 1900  
77 70 1000 1500 1150  500 4000 1550  

78 80 1000 1500 1100  500 4000 1200  
79 90 1000 1500 1050  500 4000 850  

 

Choice series 8: Chose between Lottery A and Lottery B when probability of bad outcome varies 

  Lottery A  Lottery B  

  Outcome in MK  Outcome in MK  
Task Probabilit

y of bad, % 
Bad  Good  Expecte

d  
Choic
e 

Bad  Good  Expected  Choic
e 

81 10 1000 1500 1450  800 4000 3680  

82 20 1000 1500 1400  800 4000 3360  
83 30 1000 1500 1350  800 4000 3040  
84 40 1000 1500 1300  800 4000 2720  
85 50 1000 1500 1250  800 4000 2400  
86 60 1000 1500 1200  800 4000 2080  
87 70 1000 1500 1150  800 4000 1760  
88 80 1000 1500 1100  800 4000 1440  
89 90 1000 1500 1050  800 4000 1120  

 

  



Prospect theory series: In each of the following series probabilities stay constant across tasks but 

vary across prospects. Prospect A is kept constant within a series but good outcome is increasing 

with task number in Prospect B. Identify the switch point like in earlier series (expect switch from 

Prospect A to Prospect B at some point).  

PT1  Prospect A   Prospect B    

Task Probability 
of bad 
outcome, 
% 

Bad Good Expected 
yield 

Choice Probability 
of bad 
outcome, 
% 

Bad Good Expected 
yield 

Choice 

P1 60 1000 4000 2200  90 500 7000 1150  

P2 60 1000 4000 2200  90 500 10000 1450  

P3 60 1000 4000 2200  90 500 13000 1750  

P4 60 1000 4000 2200  90 500 16000 2050  

P5 60 1000 4000 2200  90 500 19000 2350  

P6 60 1000 4000 2200  90 500 22000 2650  

P7 60 1000 4000 2200  90 500 25000 2950  

P8 60 1000 4000 2200  90 500 28000 3250  

P9 60 1000 4000 2200  90 500 35000 3950  

P10 60 1000 4000 2200  90 500 50000 5450  

 

PT2  Prospect A   Prospect B 

Task Probability 
of bad 
outcome, 
% 

Bad Good Expecte
d yield 

Choice Probability 
of bad 
outcome, 
% 

Bad Good Expecte
d yield 

Choic
e 

P11 10 1500 2000 1950  30 250 2500 1825  

P12 10 1500 2000 1950  30 250 2750 2000  

P13 10 1500 2000 1950  30 250 3000 2175  

P14 10 1500 2000 1950  30 250 3250 2350  

P15 10 1500 2000 1950  30 250 3500 2525  

P16 10 1500 2000 1950  30 250 3750 2700  

P17 10 1500 2000 1950  30 250 4000 2875  

P18 10 1500 2000 1950  30 250 4500 3225  

P19 10 1500 2000 1950  30 250 5000 3575  

P20 10 1500 2000 1950  30 250 6000 4275  

 

  



Payment for Risk preference games: Use 6 cards (1-6) to identify which of the 6 series with 

money above should be selected for payout. Then allow households to pick a card out of 10 to 

identify which of the tasks in the selected series will be used for payout. You use the Prospect they 

have chosen for that task, prospect A or B. For that chosen Prospect you identify the probability 

of Good and Bad outcomes and assign card numbers to each, e.g. 40% probability of Good 

outcome in PT1 game implies that you assign cards 1-4 to Good and cards 5-10 to Bad outcome. 

After that you shuffle the cards and ask the farmer to pull one card. If the card is 1-4 you pay them 

the Good outcome of MK 4000 for PT1 and you give them MK 1 000 if the card number they pick 

is above 4. 

 

Payment in risk preference experiments: 

Series chosen for payout (Respondent pulls 1 out of 6 cards):________________ 

Task chosen for payout (Respondent pulls 1 of 9 or 10 cards:________________ 

Identify whether the Respondent had chosen Prospect A or B for that Task: Prospect 

chosen:__________ 

Allocate cards according to probabilities in Task chosen, and ask respondent to pull a card 

to assess whether the number is associated to the Bad or Good Outcome.  

Card pulled:_________ 

Card implies: 1=Win, 0=Loss 

Amount won:__________ 

Signature for amount received:________________  



Loss Aversion (money) 

 The household head has been given 1000 MK that s/he will have to risk all or some of in 

the following game.  

 Instructions to players: You have a choice between participating in two lotteries. Each 

of them has a 50% chance of winning, and 50% chance of losing (by tossing a coin). 

First choice: “Lottery A will give you MK 1250 extra if the coin toss lands on Head, 

and you have to give back MK 200 if it lands on Tail. Lottery B will give you MK 1500 

extra if coin lands on Head but you will lose all the MK 1000 if it lands on Tail. Do 

you choose Lottery A or Lottery B?  

 Instructions to instructors: Introduce each of the seven lottery choices in a similar way 

as above to determine the switch point from Lottery A to Lottery B. Tick the preferred 

lottery (A or B) in each row. Only one of these seven games will be randomly sampled and 

played for real (by selecting one card out of seven numbered from 1 to 7. For the selected 

task you see whether they chose Prospect A or B. For the prospect they chose you toss the 

coin to identify whether they win or lose.  

 There should typically be one switch point where they switch from Lottery A to Lottery B 

(consistent behavior) but always choosing one of the lotteries would also be consistent. 

 

  Prospect A    Prospect B   

Task Probability 
of bad 
outcome, 
% 

Win Loss Expecte
d yield 

Choic
e 

Probabilit
y of bad 
outcome, 
% 

Win Loss Expected 
yield 

Choic
e 

L1 50 1250 -200 525  50 1500 -1000 250  

L2 50 200 -200 0  50 1500 -1000 250  
L3 50 50 -200 -75  50 1500 -1000 250  
L4 50 50 -200 -75  50 1500 -800 350  
L5 50 50 -400 -175  50 1500 -800 350  
L6 50 50 -400 -175  50 1500 -700 400  

L7 50 50 -400 -175  50 1500 -550 475  

 

Mark the play that was sampled to be real: Game no:______ 

Outcome of the game: Amount lost:_____________ Amount won:_________ 

 

Signature of player:_________________________ 


