Outline of the course: Genomic analyses with emphasis on single-step

Misztal, Lourenco, Andonov

Ulls väg 26, Ultuna-Uppsala, Sweden, VHC building, Tanngrisner 2 (floor 5)

Time: 9:00 – 17:00, meeting at the entrance hall at 8:45 every morning

Coffee break: 10:30 & 15:00, coffee/refreshments - provided by organizer

Lunch break: 12:00 – 13:00, you can bring our own food or go to one of nearby restaurants Social Diner: Thu. Sep 5, 19:00, provided by organizer (details will be given on the course).

Sep 2:

- 1. Introduction to BLUPF90 family of programs
 - 1. Animal model
 - 2. Multiple trait model
 - 3. Maternal models
 - 4. Genomic model
- 2. Exercise: use of programs for data sets with single and multiple traits.

Sep 3:

- 1. Introduction to genomic selection
 - 1. Basis of SNP data
 - 2. Simulation of genomic data
 - 3. Data manipulation and bash scripting in Linux
- 2. Exercise: Data simulation and manipulation

Sep 4:

- 1. Methods based on SNP estimation (SNP_BLUP, BayesX)
 - 1. Methods based on genomic relationships
 - 2. Creation and handling of genomic relationship matrices with preGSf90
 - 3. GBLUP, GREML and GGIBBBS using blupf90
- 2. Exercise: use of above programs with simulated data

Sep 5:

- 1. Theory of Single-step GBLUP
 - 1. Single-step for populations under selection: bias, inflation, accuracy
 - 2. Forming Single-step equations
 - 3. Quality control for G
 - 1. Calling rate
 - 2. Parental exclusions
 - 3. Distributions of diagonals of G
 - 4. Differences between matched G and A22
 - 4. Heritability of gene content
 - 5. Elimination of sex and "0" chromosomes
 - 6. Eigenvalues/eigenvectors population stratification
- 2. Validation methods
 - 1. R^2 for dairy bulls

- 2. Predictability for animals with records
- 3. Cross-validation when few genotyped animals with records (e.g., mortality or disease resistance)
- 4. Selection bias for in realized accuracies
- 3. Exercises: Single-step with simulated data set

Sep 6:

- 1. Course evaluation (obligatory for all participants)
- 2. Estimating SNP effects for GBLUP-based methods
- 3. Weighted GBLUP and ssGBLUP
 - 1. Linear weights
 - 2. NonlinearA weights
- 4. Genome-wide association (GWA) and p-values with postGSf90
- 5. Experiences and future with ssGBLUP
- 6. Exercises: Application of weighted ssGBLUP and GWA