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Abstract
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1 Introduction

Since 1973 the oil price has shown high levels of volatility. Alternative explanations have re-
sorted to supply and demand factors and the role of speculation as possible causes explaining
the variation in prices. Empirical models have used mainly a stationary framework where
shocks are deemed to be mean reverting. However, there is evidence that the oil price can
be described by a random walk without drift (Hamilton, 2009). More generally, Dvir and
Rogoff (2014) have found cointegrating relationships between the oil price, production and
inventory levels using annual data from 1900.

There are good reasons to believe that commodity markets have been influenced by per-
manent demand shocks. For example, Aguiar and Gopinath (2007) have documented that
shocks to the growth rate of technology contribute more to the variability of output in emerg-
ing economies than in developed economies. It then seems feasible that the strong patterns
of growth in emerging economies have contributed significantly to the demand in the com-
modity market, especially during the recent boom. If shocks are permanent, it raises the
question of whether there is a permanent long-run relationship among the price of crude oil,
income and oil production. We provide evidence that this is indeed the case for these three
variables using quarterly data from the beginning of the 1970s.

We also find evidence that a long-run relationship in the oil market helps to predict
oil prices. Indeed, this result is based on our multivariate error correction framework, and
highlights the importance of accounting for long-run trends in the oil markets. In contrast,
Hamilton (2009) using a simple univariate autoregression finds that common macroeconomic
variables lack predictive power, and that the oil price can be approximated by a random
walk. We also find that a permanent shock to world GDP leads to a significant hump-shaped
response in oil prices. In contrast, price-demand specific shocks are entirely transitory. In
fact, and in line with previous studies, we find that most of the variation in oil prices are
derived from transitory shocks. We also provide evidence that the long run relationship does
not forecast oil production. We conjecture that oil production has become more inelastic
from 1973 onward.

We have extended the analysis to study the oil market using annual data from 1900 to
2016. We found that the long run relationship predicts the change in oil prices. Interestingly,
in the early period, we find evidence of predictability for oil production. We conjecture that
the differential response of production explains why shocks to income are mostly transitory
in the early period.

Finally, we have explored whether world GDP also has an impact on another commodity,
namely copper prices, on the period 1900-2016. We find indeed that the long run relationship
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predicts the copper prices and quantity. As a result, the response of the copper price to a
shock to income is mostly transitory.

Our article contributes to three branches of the literature on commodity markets. First,
our paper is relevant to the research on time series analysis of the oil price. Most papers
have used a stationary framework. Kilian (2009) identifies supply, aggregate demand and
specific oil demand shocks using data on world oil production growth, the index of real
economic activity based on dry cargo bulk freight rate and real price of oil. He finds that
aggregate demand shock generates long-term variation in the real price of oil, and the oil-
market specific demand shock creates the sharp rise and drop in the oil price. Later Kilian
and Murphy (2014) and Knittel and Pindyck (2016) use similar frameworks to study the role
of speculation. In contrast, we have studied the oil price using a non-stationary framework.
We are also able to link world GDP to commodity prices using annual data from the last
century.

Second, our paper is related to a paper in international macroeconomics. Our paper
builds on Aguiar and Gopinath (2007), and they find that shocks to growth in the emerging
economy tend to be important for understanding consumption patterns. Our contribution is
to assess the effect of income shock on the oil market through impulse responses and variance
decomposition analysis. We find that income shock has a permanent effect on oil price.

Similarly, our paper is related to the recent theoretical contributions of Dvir and Ro-
goff(2009; 2014). They employ an extended commodity storage model explaining the per-
sistence and volatility in the oil price. When aggregate demand has a persistent growth
component (emerging economies), storage amplifies the shock’s effect on the price. However,
the magnifying effect of inventory is diminished when supply becomes flexible. Dvir and
Rogoff (2014) find that cointegration among oil production, inventories, income and crude oil
price can be explained using the storage model with stochastic income growth and different
production scenarios. Our paper also uses a cointegration framework. We also show that the
impact of income shocks depends on the relative supply elasticity.

Finally, our model is related to the small but growing body of literature on the comove-
ment in commodity markets. Many papers have warned us about possible cointegration in
the crude oil market. Kaufmann et al. (2004) and Dées et al. (2007) detect cointegration
among crude oil price, days of forward consumption of oil stocks, OPEC production quota
and capacity utilization. They employ an error correction model for the world oil market.
The model includes three single equations, oil demand, oil supply and the function of price.
Lakuma (2013) studies the extent of market power in the American crude oil industry through
a vector error correction model for the demand and supply of oil for the period 2000–2012.
He also estimates the model using a single-equation method. Our paper differs in that we
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have used data from more than 100 years. In our model, we estimate the long-run elasticities
at equilibriums. We also show that the price is predictable using the long-run equilibrium
among oil price, oil production and world GDP.

The remainder of the paper proceeds as follows. In section 2 we provide evidence for
stochastic trends in the oil market. We show there is evidence for cointegration among world
GDP, oil production and the oil price. We also estimate a stable long-run relationship. In
section 3 we quantify the impact of shocks to world GDP on the price of oil. We show that
income shocks generate a permanent effect on the oil price.

2 Stochastic trends in the oil market

In this section, we present evidence of cointegration in the oil market. We show that the
latest period 1974:Q1–2016:Q4 is critical to the test for stochastic trends in our data. We
start by explaining that world GDP, oil production and oil prices are non-stationary time
series. We then establish that there is evidence for at least one cointegrating relationship
among the series. Finally, we estimate a long-run relationship for the oil market.

Data. We use quarterly data for the period 1974:Q1–2016:Q4. We use West Texas
Intermediate (WTI) price as the measure of crude oil price collected from FRED (2018). The
crude oil production is collected from EIA (2018). We employ world GDP as the measure of
global income. The world GDP series combines quarterly GDP index from Fagan et al. (2001)
for the period 1974:Q1–2010:Q4 and Global Financial Data for the period 2011:Q1–2016:Q4.
Nominal crude oil price and world GDP are deflated using the U.S. CPI obtained from the
U.S. Bureau of Labor Statistics (2018).

Unit root test. We start by performing a standard unit root test for the oil price, oil
production and world GDP. Using the augmented Dickey-Fuller (ADF) test (with a constant
in the regression) we cannot reject the null hypothesis of a unit root.1 Hence, no evidence
suggests that these variables are stationary. This result is robust to other unit root tests.2

We also find that this result is robust to different subsample periods: 1974:Q1–1994:Q4 and
1995:Q1–2016:Q4. Again, we cannot reject the null hypothesis of unit roots for all variables

1We use Bayesian information criteria to select the number of lags. We find four lags for the logarithm
value of world GDP, 12 lags for the logarithm value of world oil quantity and two lags for the logarithm value
of oil price. Similar results are obtained when using the Akaike information criterion. The p-value of the
ADF test statistic of unit-root log (Yt) is 41.5 percent, 93.5 percent for log (Qt), and 30.3 percent for log (Pt)

.
2In particular, we used the Phillips and Perron test (with intercept). Indeed, we find no evidence to

reject the null hypothesis that global GDP, world oil quantity and oil price are unit roots. The p-value of
the test statistic for the logarithm value of world GDP is 88.0 percent for nonstationary, 25.3 percent for the
logarithm value of world oil quantity, and 59.5 percent for the logarithm value of oil price.
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in different subsample periods.3

Cointegration test. Since variables are nonstationary, we can test for an equilibrium
relationship among the crude oil price, oil production and world GDP. To this end, we
implement a Johansen’s unrestricted cointegration rank test (trace test), which is based on
the estimates derived from an error correction model. In panel (a) Table 1 we show the results
of our cointegration test. In particular, we report the trace statistics for r = 0, 1, 2 where r

is the number of cointegrating relationships. We find that for the period 1974:Q1–2016:Q4
we reject the null hypothesis for r = 0 at both 1 percent and 5 percent significant level, with
the trace statistics of 59.5, and critical value of 26.8 at 1 percent significance level and 34.91
at 5 percent significance level. But we cannot reject the null hypothesis of r  1 at any
significance level, with test statistics of 19.3, critical value of 20.2 at 1 percent significance
level and 20.0 at 5 percent level. Thus, we conclude that there is at most one cointegrating
relationship among the series. We also implement the trace test for the sub-periods of the
sample: 1974:Q1–1994:Q4 and 1995:Q1–2016:Q4. As shown in Table 1, the cointegrating
relationship is very robust to the sub-sample period, such that we reject the null hypothesis
of r = 0, but we can not reject the null hypothesis of r  1 at both 1 percent and 5 percent
significance level. Hence, we confirm that there is at most one cointegrating relationship in
the sub-sample period 1974:Q1–1994:Q4 and 1995:Q1–2016:Q4.

The Long-run relationship in the oil market. Having determined the existence of
one cointegrating vector, we can estimate a long-run relationship among the crude oil price,
world oil production and global GDP. We estimate this relationship using a standard dynamic
OLS regression as in Stock and Watson (1993).4

In panel (b) we show the results of the dynamic OLS estimation. We see that the estimates
for world GDP and oil production are both significant. It is important to stress that the
estimates represent the long-run relationship among the variables. In this sense, there is no
claim about causality from any one variable to the other. The long-run relationship cannot
be interpreted as a “demand” or “supply” equation, rather it reflects different equilibrium
sequences over time, representing the “average” correlation between prices, global GDP and
global oil production. In any case, the structure of the oil market can eventually affect the
signs of parameters we find.

Having in mind that the long-run relationship is neither a “demand” nor “supply” equation,
there is a positive relationship between global production and oil prices. In particular, the

3We use BIC index to select the number of lags using in the test. For the period 1974Q1–1994Q4, we
use four lags for the logarithm value of world GDP, one lag for the world oil quantity and oil price. For the
period 1995Q1–2016Q4, we use two lags for the world GDP, seven lags for the world oil quantity and three
lags for oil price. See Appendix for details about the unit root test.

4This method generates asymptotically efficient estimators for cointegrating vectors. To estimate the long
run relationship we start by determining the number of lags and leads using AIC and BIC tests. The tests
suggest using one lagged and one lead variable.
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Table 1: Johansen’s Cointegration Test for Different Periods

(a) Johansen’s test of cointegration
Cointegrating rank H0:

rank(⇧)=r

r = 0 r  1 r  2

Trace statistics: 1974Q1–2016Q4 59.52 19.31 6.89
Trace statistics: 1974Q1–1994Q4 49.66 19.88 9.23
Trace statistics: 1995Q1–2016Q4 36.50 12.72 3.90
Critical value 5% 34.91 19.96 9.24
Critical value 1% 26.81 20.20 12.97

(b) Long run relationship:
logPt = ↵0 + ↵y log Yt + ↵q logQt + controlst + ✏t

coeff. se.
↵y -1.434 (0.292)
↵q 3.914 (0.692)
↵0 -7.505 (3.033)

Note: Table (a) shows the Johansen test of vector cointegration for different cointegration ranks. This vector
includes the logarithm value of world GDP, log Yt, world oil production, logQt, and crude oil price, logPt, for
the period 1974:Q1–2016:Q4. ⇧ is the coefficient for the lagged vector in the VEC model. Table (b) shows
the dynamic OLS estimates for the long-run relationship among variables for the period 1974:Q1–2016:Q4.
The controlst variable contains one lag and one lead of the differences of the right-hand side variables.
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elasticity of oil price with respect to oil production is 3.9, whereas the elasticity of oil price
with respect to global activity is -1.4.

3 Quantifying the Impact of Income Shocks on the Oil

Price.

In this section, we use a simple three equation autoregression framework to quantify the
effect of income shocks on the oil price. We borrow the identification scheme from Cochrane
(1994) and estimate a model with world GDP as an exogenous variable. Consistent with the
work of Aguiar and Gopinath (2007), we find that shocks to world GDP are permanent. We
find significant predictability of the long-run relationship in the oil price. However, we do not
find predictability in quantity production. We show that income shocks generate a persistent
response in the oil price. Moreover, shocks to oil prices are mostly transitory in line with
many papers in the literature (Hamilton, 2009 and Kilian, 2009). We conjecture that the
response of oil production is critical to understand this result. As production becomes more
inelastic, the persistent GDP shock creates the high volatility and persistent impact on the
oil price.

3.1 Vector error correction model (VECM)

Let Yt = [yt, qt, pt] be a vector containing the logarithm values of our three variables world
GDP, oil production and oil prices. 4Yt denotes the vector of differences [4yt,4qt,4pt].
Let ↵̂ be the estimated long-run parameters we obtain in the previous section. Then we use
this vector of parameters to estimate the following VECM:

4Yt = c+ �↵̂Yt�1 +
JX

j=1

Aj4Yt�j + ut (1)

where c is the vector of constant estimates and � is the vector of speed of adjustment coeffi-
cients [�y, �q, �p]0.

In Table 2 panel (a), we show the estimates of our VECM. In the case of the equation for
prices, we obtain a significant coefficient of -0.073 for the speed of adjustment (related to the
lagged error term). The value of this coefficient implies that each quarter oil prices change
in order to correct 7 percent of long-run price misalignments. This value implies that the
half-life 5 of past misalignments is 9.4 quarters, for example after 9.4 quarters movements in

5The half-life is equal to ln(2)/�.
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Table 2: The Estimates of VEC Model and Variance Decomposition

(a) Vector autoregression
RHS variable

LHS const. LR term 4yt�1 4qt�1 4pt�1 R

2

4yt coeff 0.003 - 0.436 - - 19%
s.e. (0.001) (0.069)

4qt coeff 0.003 0.001 0.743 -0.164 0.015 7.2%
s.e. (0.028) (0.004) (0.273) (0.077) (0.011)

4pt coeff -0.570 -0.073 3.158 -1.266 0.182 11.8%
s.e. (0.183) (0.024) (1.792) (0.501) (0.074)

(b) Variance decomposition
Variance of

Due to 4Yt 4Qt 4Pt 4Yt � Et�14Yt 4Qt � Et�14Qt 4Pt � Et�14Pt

y shock 100 6.37 1.85 100 3.14 0.76
q shock 0 92.71 4.71 0 96.86 0.49
p shock 0 0.92 93.45 0 0 98.76

Note: Table (a) shows the estimates of the VEC model as in equation (1). Table (b) shows the variances of
global GDP, world oil production and oil price growth.

prices reduce half of the long-term disequilibrium. The significance of �p also shows that oil
price growth is predictable using the long-run relationship in the oil market. Interestingly,
the R2 is around 12 percent, which is larger than a simple univariate autoregression with
four lags (AIC selected) with a R2 of 5.6 percent. This comparison highlights the predictive
effect of the long-run relationship.

Now, in the case of the short-run equation for quantities, we obtain a speed of adjustment
coefficient of 0.001. This coefficient is not statistically different from zero. Hence, quantities
do not adjust in order to correct past misalignments. Even in the case where we disregard
the significance level, the speed of adjustment in oil quantities is only 0.1 percent, which
implies a half-life of 300 quarters. Overall, we conclude that prices respond to past long-run
misalignments, but quantities do not react or react extremely slow.

Impulse Responses. We now show impulse response functions to a one standard de-
viation shock of world GDP. We use a Cholesky decomposition scheme with the following
ordering {y, q, p}. Hence, we assume that world GDP does not respond contemporaneously
to shocks to neither world production nor oil prices. In Figure (1) we plot the response of
the level of the variables to shocks to world GDP. In panel (a) we plot the response of world
GDP and the oil price. We observe that the response of world GDP is almost flat, suggesting
that the shock has a permanent effect on world GDP. In contrast, the response of oil prices
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is hump-shaped and significative. One could interpret a shock to GDP as shocks to global
demand, and the delay response of the oil price suggests lagged supply adjustment induced
by capacity investment and relatively inelastic oil supply. Overall, a one percent shock to
world GDP generates a permanent increase in oil prices of 2.4 percent. In panel (b) we see
that the impact of world GDP on oil quantities is permanent. In this case a one percent
increase in world GDP leads to a permanent increase in oil quantities of 0.9 percent. All in
all, we find evidence that shocks to world GDP are permanent and have a permanent impact
on both oil prices and quantities, although the impact on oil prices is twice as large as the
impact on quantities.

Oil price shock. In Table 2, we found that the speed of adjustment coefficient of oil
quantities is small and not statistically different from zero. Thus, quantity is not predictable
using the long-run relationship of world GDP, price of oil and world oil quantity in the error
correction model, which is consistent with the view that in the long run oil production is
relatively inelastic. As a result, most of the predictability comes from the auto-regressive
term and lagged differences of GDP growth. In Figure 1 panel (c) we show that an oil price
shock of one percent has a small impact on quantities, which is both small (0.2 percent) and
not statistically different from zero after four quarters. The response of oil prices to this
shock, as seen in Figure 1 panel (d), is statistically different from zero, relatively large (14.6
percent) and transitory. After 30 quarters the effect is no longer statistically different from
zero.

Beveridge and Nelson decomposition. We now compare our long-run relationship
with a trend component derived using a Beveridge and Nelson decomposition following Bev-
eridge and Nelson (1981). The trend is computed after all transitory shocks have eventually
disappeared. Figure 2 shows that the Beveridge and Nelson trend component is very similar
to the long-run relationship used in our vector autoregression specification.6 The decompo-
sition shows a steady increase in the permanent component after 1985. We also can see that
most of the run-up in the price starting in 2000 is due to transitory shocks.

3.2 The importance of accounting for the long run behavior

To analyze the importance of accounting for the cointegrating vector we compare our bench-
mark model with a simple vector autoregression model. In particular, we re-estimate the
model using a vector autoregression with the same three variables but this time without the
error correction term.

In Figure 3 we plot impulse response functions to an oil price shock. The solid line
6The long-run relationship is computed as the predicted oil price in long run. That is ↵̂y log Yt+ ↵̂q logQt,

where ↵̂y and ↵̂q are the dynamic OLS estimates from Table 1.
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Figure 1: Responses of GDP and Oil Price to Structural Shocks

Note: Panel (a)–(d) show the cumulated responses using estimated parameters in equation (1). Panel (a)
shows the response of oil price to one-standard-deviation oil price shock (the solid line) and GDP shock (the
dashed line) respectively. Panel (b) shows the response of oil production to one-standard-deviation GDP
shock. Panel (c) shows the response of oil production to one-standard-deviation oil price shock. Panel (d)
shows the response of oil price to one-standard-deviation oil price shock. The dot lines denote the bootstrap
one-standard-error bands.
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Figure 2: Beveridge-Nelson Oil Price Trend and Long-Run Relationship of Oil

Note: The figure plots the Beveridge-Nelson components of the oil price. The solid line denotes the oil price
data. The dashed line represents Beveridge-Nelson trend of oil price, computed using estimates from the
VECM in equation (1). The dot line denotes the long-run relationship of ↵̂y log Yt + ↵̂q logQt where ↵̂y and
↵̂q are the DOLS estimates from panel (b) Table 1, Yt and Qt denotes the data on world GDP and global oil
production.

represents the impulse response of our benchmark estimation, whereas the dotted line plots
the impulse response in the estimation without the error correction term. We see that
the response is almost permanent. Essentially, the model is similar to the behavior of an
autoregressive model of the change in the oil price. In contrast, when the error correction
mechanism is present, an oil price shock has no permanent effect. In this case, the reduction
of the price to the pre-shock level is induced by the long-run relationship among the variables.
Basically, comparing these two responses highlights the importance of the adjustment factor
in term of the propagation of the price shock.

4 Further Analysis

In this section, we perform three additional analyses that complement our benchmark es-
timation. First, we compare our estimation with a stationary estimation framework. In
particular, we compare with the standard VAR specification as in Kilian (2009). Interest-
ingly, we show that both models capture similar short-run responses of oil prices to oil-specific
demand shocks. The main differences are the response of prices to oil supply shocks. Sec-
ond, we test the robustness of our estimates to a different sample period. Since there is
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Figure 3: Responses of Oil Price to GDP and Oil Price Shocks: VEC Model and VAR

Note: Panel (a) and (b) show the impulse responses of oil price to one-standard-deviation of GDP and oil
price shocks in VEC model and VAR model. The dashed line denotes the impulse responses in the VEC
model, the benchmark case, in equation (1). The solid line denotes impulse responses in the VAR model of
the vector [4logYt,4logQt,4logPt]. In the VAR model we assume 4Yt is exogenous and exclusive, such
that 4logYt =

PN
i=1 ai4logYt�i + a0 where ai, i = 0, 1, 2, ... are the coefficients. We employ N = 1 in the

VAR model selected using AIC index. The dot lines denote the bootstrap one-standard-error bands for the
impulse responses in the VAR model.
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a structural break in the time series in 1973, we re-estimate our model using annual data
from 1900 to 1973. We find production responses are key to the response of the model to
exogenous income shocks. Finally, we also employ our empirical model to study the effect of
income shocks on the copper market. We find similar effects in terms of predictability and
the importance of transitory shocks.

4.1 Stationary vector autoregression

Now we compare our estimation from our error correction specification to a three-variable
VAR specification similar to Kilian (2009), but on a quarterly frequency.7 Our version of
his estimation includes the change in oil production, an index of real economic activity
constructed in Kilian (2009) and the level of the real price of oil. We include only one lag in
the estimation which is different from the 24 lags specification in Kilian (2009).8

Since both models are non-nested, we compare the effect of oil demand and oil production
shocks on oil prices. Figure 4 panel (a) compares the response of oil prices to a one stan-
dard deviation oil-demand or price shock. Notice that both impulse responses are strikingly
similar. Recall that in our estimation the oil-demand shocks are mostly transitory which is
consistent with the VAR framework. In panel (b) we show the response of oil price to an oil
production shock. In the Kilian (2009) model, we see there is no significant impact of the
production shock on the oil price.

4.2 Yearly Regressions

Our benchmark scenario uses quarterly data from 1973 to 2016, which is a period of high oil
price volatility. In Figure 5 we plot world production of crude oil and the real oil price for
the period 1900–2016. We observe that production grows consistently through most of the
century to abruptly change its trend in 1973. As a result, the price changes follow a regime
of high levels and volatility.9

We estimate our vector autoregression to check the relative importance of permanent
versus transitory shocks in the first period of relative price stability. In particular, we include
the annual observations for the period 1900–1973. The test for non-stationarity shows that
global GDP and world oil production are both unit roots. Interestingly, the null hypothesis

7The model in Kilian (2009) is estimated using monthly observations from 1973.1 to 2007.2
8We also check that the estimates are robust for a number of lags.
9The annual observations for the oil price are collected from BP (2018). We use the US CPI to deflate

the oil price. World oil production is from Bouda Etemad and Toutain (1998) for the period 1900–1964,
and BP (2018) for the period 1965–1973. World GDP is computed using global GDP per capita and world
population from Database (2018). There are discontinuous data in 1900–1949. We interpolate the series
assuming constant annual growth rate.

13



Figure 4: Responses of Oil Price to Oil Price Shock and Oil Production Shock: VEC Model
and Stationary Framework

Note: Panel (a) and (b) show the impulse responses of oil price to the one-standard-deviation oil price shock
and oil production shock in the VEC model and the stationary framework. The dashed line denotes the
impulse responses in the VEC model, the benchmark case, in equation (1). The solid line denotes impulse
responses in a stationary framework, the VAR model similar to Kilian (2009), on a quarterly frequency. One
lag is employed the VAR model. The dot lines denote the bootstrap one-standard-error bands for the impulse
responses in the VAR model.
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Figure 5: World Production of Oil and Crude Oil Price 1900–2016

Note: Panel (a) and (b) show the annual observation of world oil production and crude oil price for the
period 1900–2016. Panel (a) plots the world production of oil. The solid line is the annual series collected
from Bouda Etemad and Toutain (1998) for the period 1900–1964 and BP (2018) for the period 1965–1973.
The dashed line is annual average computed using quarterly observation of world oil production collected
from EIA (2018). Panel (b) plots the crude oil price. The solid line plots the annual series for the period
1900–1973 collected from BP (2018). The dashed line is annual average computed using quarterly observation
of world oil production collected from FRED (2018) for the period 1974–2016.

of a unit root for real oil price at 5 percent significance level is rejected. We also find at least
one cointegration relationship among the series for the period 1900–1973.

We then estimate equation (1) as in our benchmark estimation. Table 3 shows that as
in the benchmark case the long-run relationship forecasts the change in the oil price. The
adjustment parameter in the short-run price equation is 0.422. This means that every year 40
percent of the misalignment is corrected, and that the half-life of the error term in the short-
run price equation is 1.6 years (six quarters). It is faster than the half-life of ten quarters in
the estimation that goes from 1973 to 2016.

Now, in the case of the short-run equation for oil quantity, we see that the speed of
adjustment is positive and statistically different from zero. The value is 0.08, which implies
that the half-life of the error term in this equation is 8.7 years (35 quarters). This speed of
adjustment is smaller than the one found in the price equation. Despite this fact, the speed
of adjustment in oil quantities is much faster than the one found in the model estimated for
the period 1973-2016. In particular, in the period 1900-1973 the half-life of 35 quarters is
almost one-tenth of the 300 quarters half-life found in the period 1973 to 2016.

In order to compare the way in which global GDP shocks are transmitted to oil prices
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Table 3: Estimates of VEC Model and DOLS for Period 1900–1973

(a) Vector autoregression1900–1973 annual data
RHS variable

LHS const. LR term 4yt�1 4qt�1 4pt�1

4yt coeff 0.016 - 0.463 - -
s.e. (0.004) (0.106)

4qt coeff -0.799 0.080 0.201 -0.090 0.013
s.e. (0.422) (0.039) (0.239) (0.124) (0.040)

4pt coeff 4.557 -0.422 0.357 0.129 -0.052
s.e. (1.233) (0.114) (0.699) (0.361) (0.118)

(b) DOLS estimates for long-run relationship
coeff. se.

↵y -0.419 (0.136)
↵q 0.066 (0.058)
↵0 10.640 (2.287)

Notes: Table (a) shows the estimates of the VEC model using annual data for the period 1900–1973. Table
(b) shows the DOLS estimations for the long-run relationship for the same period.

and quantities, we compare the responses of oil price and world oil quantity in two different
subsamples. As shown in Figure 6 panel (a), in the 1900-1973 period a 1 percent shock to
GDP generates an increase in prices of 3 percent. After two years the impact on prices is
zero, hence this shock has a transitory effect on oil prices. In the second sample, from 1973 to
2016, this shock has a positive impact on prices, but its effect is permanent. In particular, the
price of oil increases permanently by 3 percent. Now, in Figure 6 panel (b), we see that the
impact on quantities is, in both samples, permanent. In this case, however, the responses are
entirely different: in the 1973-2016 period quantities increase permanently by 0.8 percent. By
contrast, in the period 1900-1973 quantities react much more in the face of the same shock.
In this case, the quantities increase permanently by 2.5 percent. The collective behavior of
prices and quantities in the face of a world GDP shock are coherent with a different market
structure in each period. In particular, we conjecture that, in the first period, oil supply was
much more elastic than in the second sample.

4.3 Copper

We found that we can identify the effect of world GDP on the price of oil once we account
for the long run relationship in the market. In this section, we check whether we can identify
a similar effect in the copper market. We use a three variable autoregression estimation
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Figure 6: Response of Oil Price and Production to Structural Shocks for Different Periods

Note: Panel (a)–(d) show the impulse response of oil price and oil production to one-standard-deviation
of GDP shock and oil price shock. The dashed lines denote the annual average of impulse responses in
the benchmark case for the period 1974–2016. The solid lines denote the impulse responses in the model
using annual data for the period 1900–2016. The estimates are shown in Table 3. When computing the
impulse responses, the estimates of autoregressive terms 4yt�i, 4qt�i and 4pt�i are fixed to zero if they
are not estimated significantly. The dot lines denote the bootstrap one-standard-error bands for the impulse
responses in the case using data for the period 1900–1973.
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Figure 7: Copper Price and Mine Production

Note: Panel (a) and (b) show the annual data on world copper mine production and copper price for the
period 1900–2016. The world copper mine production is collected from USGS (2018). The copper price is
from Global Financial Data (2018), deflated using U.S. CPI obtained from the U.S. Bureau of Labor Statistics
(2018).

again for world GDP, copper production and the real price of copper from 1900 to 2016. We
use world copper production from USGS (2018).10 The copper price is collected from Global
Financial Data (2018)11, and it is deflated using U.S. CPI from the U.S. Bureau of Labor
Statistics (2018).

Our unit root test indicates that world copper production is non-stationary, but we do not
find evidence to reject the null hypothesis that the real price of copper has a unit root. The
Johansen’s cointegration test indicates that the time series of world GDP, copper production
and the price of copper are cointegrated. We can reject the null hypothesis of at least two
cointegrating relationships (r = 2) at 1 percent significance level.

In Table 4 we compare the estimation for copper and oil in different periods. In panel (a)
we compare the estimations for the period 1900-1973. We observe that for both copper and oil
quantities and prices are predicted by the long run relationship. In particular, the estimates of
the speed of adjustment rates for quantities for both oil and copper are statistically different
from zero. For oil, it is estimated at 0.08 with a standard error of 0.04, and -0.137 with
a standard error of 0.035 for copper. These estimates imply a half-life of 8.66 years for
oil production and 5.06 years for copper production. Similarly, we find significant speed of

10We employ world mine production.
11We employ high-grade copper price.
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Table 4: Estimates in the VEC Model for Oil and Copper for Different Periods

(a) 1900–1973 (b) 1900–2016
Oil Copper Oil Copper

Speed adj. �q 0.080 -0.137 -0.021 -0.058
(0.039) (0.035) (0.013) (0.023)

t1/2 in production (years) 8.66 5.06 33.01 11.95

Speed adj. �p -0.422 -0.223 -0.155 -0.190
(0.114) (0.056) (0.053) (0.049)

t1/2 in price (years) 1.64 3.11 4.47 3.65

Note: Table shows the estimates of the adjustment rates in the VEC model for oil and copper in different
time: 1900-1973 and 1900–2016. The half-life values are computed as ln(2)/�.

adjustment parameters for oil prices. We find a stronger adjustment for oil with an estimate
of -0.42 and -0.22 for copper. The half-life for the copper price is 3.11 years, and for oil price
it is 1.64 years. In other words, the copper price takes twice as much time as the oil price to
reduce half of the long-term disequilibrium.

In panel (b) we compare our estimation using the data for the period 1900–2016. Extend-
ing our estimation to include the latest period should shed light on the effect of the period
1974–2016. We observe that the estimate for adjustment parameter for oil price is small at
-0.02 and insignificant. For the copper price, the adjustment parameter is estimated at -0.058
(which implies a half-life of about 12 years) which is smaller than for the whole period. In
the case of oil, the fact that the speed adjustment parameters turn out to be insignificant is
consistent with the previous analyses that it suggests a structural break in the year 1973 and
the conjecture of an inelastic oil supply for the period 1974–2016. To the oil market, we do
not find a dramatic break in the model for copper in the year 1973, although there is some
evidence that the copper supply has adjusted quantities less strongly.

In Figure 8, we compare the impulse response functions for the copper price in the period
1900-2016 with our benchmark estimation for oil price in the period 1974-2016. In panel (a)
we observe that the response of copper price to a GDP shock is mostly transitory, mainly
explained by the significant response of quantity to the shock. In contrast, the response of
oil price is permanent due to a relative inelastic response of supply. In panel (b) we plot the
transitory component of the prices to a price shock. Interestingly, both copper and oil prices
show a significant transitory component with similar persistence. The response for copper
price shows a higher level of the impact over time than for the oil price.
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Figure 8: Responses of oil and copper price to GDP and price shock

Note: Panel (a) and (b) plot the impulse responses of oil and copper price to one-standard-deviation GDP
and price shock. The dashed lines denote the annual average of impulse responses of oil in the benchmark case
for the period 1973–2016. The solid line denotes the impulse responses of copper in the model using annual
data for the period 1900–2016. The estimates are shown in Table 4. When computing the impulse responses,
the estimates of autoregressive terms 4yt�i, 4qt�i and 4pt�i are fixed to zero if they are not estimated
significantly. The dot lines denote the bootstrap one-standard-error bands for the impulse responses in the
case for copper.

20



5 Conclusions

In this paper, we have shown how world GDP affects commodity prices. We have focused
on explaining the effect on the oil price. We have identified the effect of income shocks
on the oil price. We use a simple error correction model and found that for the period of
1973–2016, world GDP has had a permanent effect on the oil price. We also find that the long
run relationship predicts the oil price. In contrast, the long run relationship cannot predict
quantity production. Consistent with previous studies, most of the variation in oil price is
due to transitory shocks. Our conjecture is that since production is relatively inelastic, the
permanent shocks to income are transmitted to prices.

We have also extended the analysis to study the oil market using annual data from 1990
to 2016. We found that, still, the long run relationship predicts the change in oil prices.
Interestingly, in the early period, we find evidence of predictability for oil production. We
conjecture that the differential response of production explains that shocks to income are
mostly transitory in the early period.

After that, we explored whether world GDP also has an impact on another commodity,
namely copper prices, on the period of 1900–2016. We find indeed that the long run relation-
ship predicts the copper prices and quantity. As a result, the response of the copper price to
a shock to income is mostly transitory.

From the discussion in section 4, we find that a permanent shock to global activity is
transmitted differently to both oil prices and quantities in different samples, and it depends
on the way in which the oil market is structured. Developing a model which can account for
this differentiated response goes beyond the scope of this paper, but is a natural extension
of the research agenda.
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Appendix

A Unit root tests

This section shows different tests of unit roots for global GDP, world crude oil production
and price of oil.

We perform augmented Dicky-Fuller (ADF) test and Phillip & Perron (PP) test for the
logarithm values of world GDP, global oil production and crude oil price. The tests are
performed for different periods, 1974Q1–2016Q4, 1974Q1–1994Q4 and 1995Q4–2016Q4. The
test results are shown in the Table 5. We find that from both tests we can not reject the null
hypothesis of the unit root for each series in different test periods.

24



T
ab

le
5:

U
ni

t
ro

ot
te

st
s

(a
)

A
ug

m
en

te
d

D
ic

ky
-F

ul
le

r
te

st
19

74
Q

1–
20

16
Q

4
19

74
Q

1–
19

94
Q

4
19

95
Q

1–
20

16
Q

4
N

o.
la

gs
D

F
st

at
.

p
-v

al
ue

N
o.

la
gs

D
F

st
at

.
p
-v

al
ue

N
o.

la
gs

D
F

st
at

.
p
-v

al
ue

l
o
g
(
Y
)

4
-1

.7
25

0.
41

5
4

-1
.0

70
0.

65
8

2
-1

.4
32

0.
52

5
l
o
g
(
Q
)

12
-0

.1
64

0.
93

5
1

-1
.7

87
0.

39
5

1
-1

.1
76

0.
62

0
l
o
g
(
P
)

2
-2

.0
28

0.
30

3
1

-1
.2

49
0.

59
3

1
-1

.7
10

0.
42

3

(b
)

P
hi

lli
ps

&
Pe

rr
on

te
st

19
74

Q
1–

20
16

Q
4

19
74

Q
1–

19
94

Q
4

19
95

Q
1–

20
16

Q
4

Z
(
↵
)

st
at

.
p
-v

al
ue

Z
(
↵
)

st
at

.
p
-v

al
ue

Z
(
↵
)

st
at

.
p
-v

al
ue

l
o
g
(
Y
)

-4
.1

02
0.

88
0

-7
.1

06
0.

70
0

-5
.8

00
0.

77
8

l
o
g
(
Q
)

-1
5.

06
8

0.
25

3
-9

.8
72

0.
53

7
-1

6.
67

7
0.

13
8

l
o
g
(
P
)

-9
.0

72
0.

59
5

-7
.5

75
0.

67
3

-7
.8

93
0.

65
5

N
ot

es
:

T
ab

le
(a

)
sh

ow
s

th
e

au
gm

en
te

d
D

ic
ky

-F
ul

le
r

(A
D

F
)

te
st

of
lo

ga
ri

th
m

va
lu

es
of

w
or

ld
G

D
P,

gl
ob

al
oi

lp
ro

du
ct

io
n

an
d

cr
ud

e
oi

lp
ri

ce
fo

r
di

ffe
re

nt
pe

ri
od

s.
T

he
nu

m
be

r
of

la
gs

us
ed

in
th

e
te

st
s

is
se

le
ct

ed
us

in
g

B
IC

.W
e

pe
rf

or
m

au
gm

en
te

d
D

ic
ky

-F
ul

le
r

te
st

w
it

h
co

ns
ta

nt
.

T
he

nu
ll

hy
po

th
es

is
of

th
e

A
D

F
te

st
st

at
es

th
at

th
e

te
st

se
ri

es
is

a
un

it
ro

ot
.

T
ab

le
(b

)
sh

ow
s

th
e

P
hi

lli
ps

&
P
er

ro
n

(P
P

)
te

st
of

un
it

ro
ot

s.
T

he
te

st
re

gr
es

si
on

is
es

ti
m

at
ed

w
it

h
in

te
rc

ep
t.

Fo
ur

tr
un

ca
ti

on
la

g
pa

ra
m

et
er

s
ar

e
us

ed
in

th
e

te
st

fo
r

th
e

pe
ri

od
19

74
Q

1–
20

16
Q

4.
T

hr
ee

tr
un

ca
ti

on
la

g
pa

ra
m

et
er

s
ar

e
us

ed
in

th
e

te
st

fo
r

th
e

su
b-

pe
ri

od
s

19
74

Q
1–

19
94

Q
4

an
d

19
95

Q
5–

20
16

Q
4.

T
he

nu
ll

hy
po

th
es

is
of

th
e

P
P

te
st

st
at

es
th

at
th

e
te

st
se

ri
es

is
a

un
it

ro
ot

.

25


	HH WP 9_18 front page
	IncomeShocks_v13
	Introduction
	Stochastic trends in the oil market
	Quantifying the Impact of Income Shocks on the Oil Price.
	Vector error correction model (VECM)
	The importance of accounting for the long run behavior 

	Further Analysis
	Stationary vector autoregression
	Yearly Regressions
	Copper

	Conclusions
	Appendices
	Unit root tests



