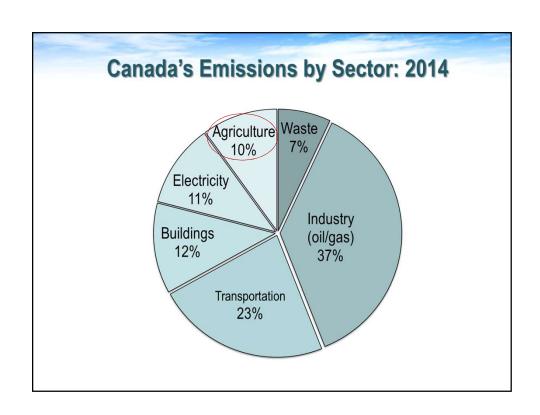
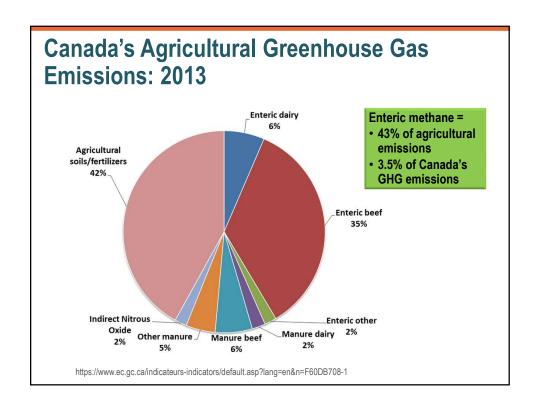
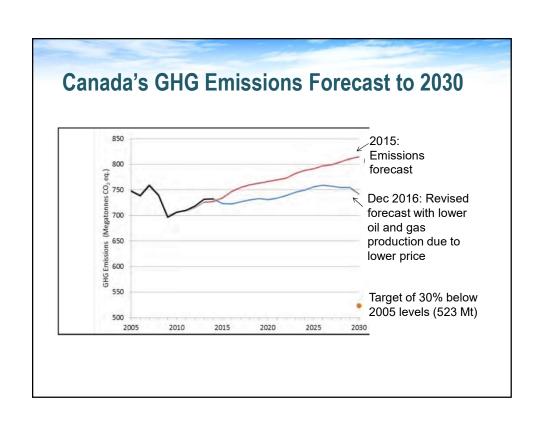

Reducing the Greenhouse Gas Emissions from Beef and Dairy Production: A **Canadian Perspective**

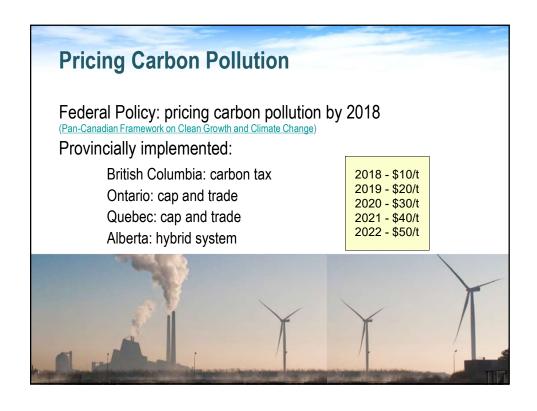
Karen Beauchemin, PhD

Research Scientist, Sustainable Production Systems Lethbridge Research and Development Centre Agriculture and Agri-Food Canada

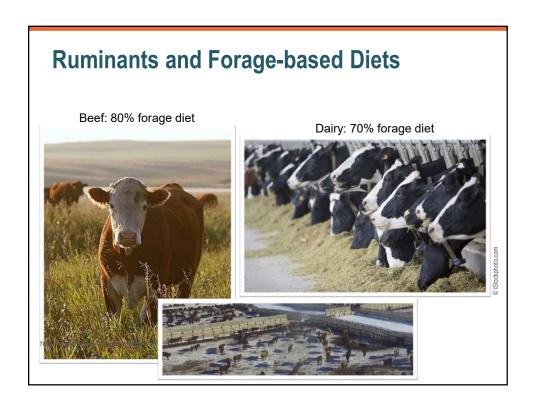

Agriculture and Agriculture et Agri-Food Canada Agroalimentaire Ca

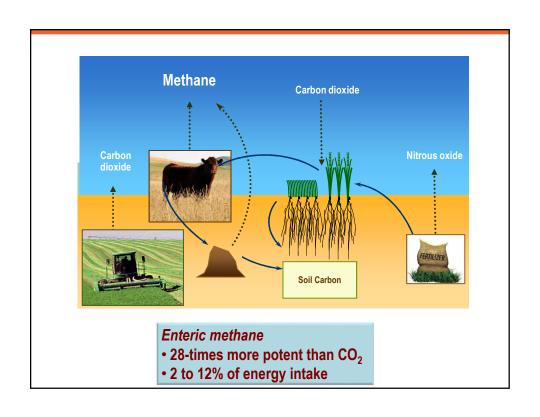

Canadä

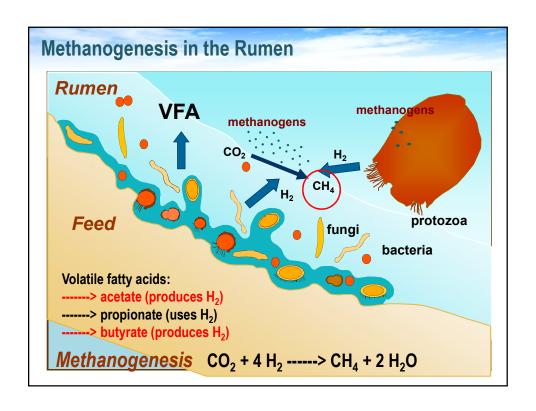


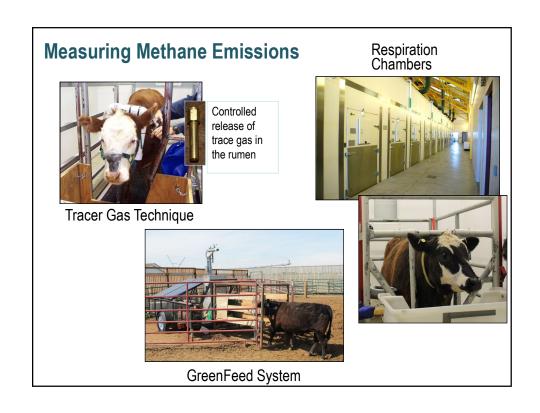


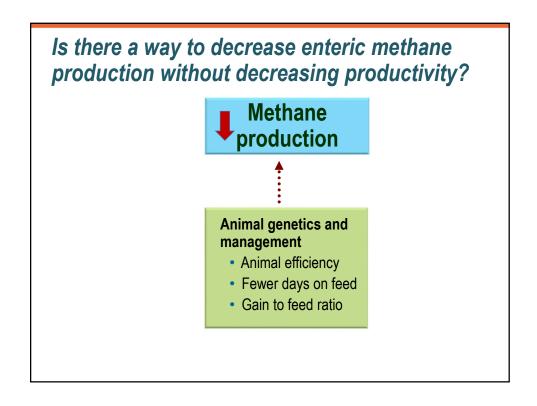
- 2014
- "51% of global GHGs are created by livestock"
 - Hollywood experts
- 14.5% (1/3 methane)
 - Scientific experts (FAO, 2013)



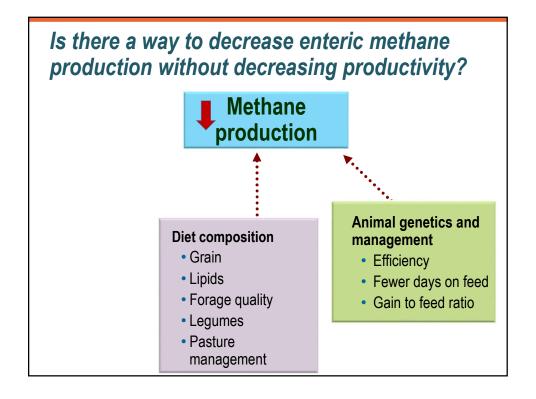


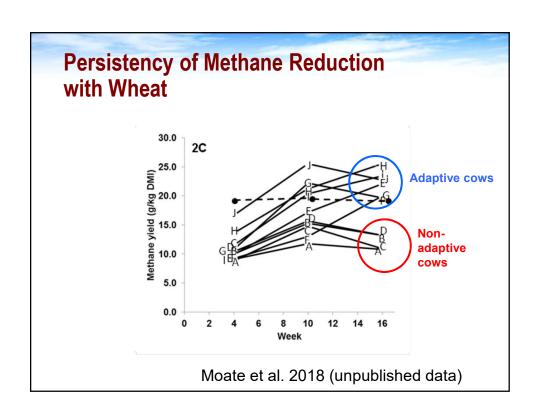

Approaches for the Agriculture Sector


- Agricultural lands as "carbon sinks"
 - Promoting land management
 - Increasing perennial permanent cover
 - Zero-till farming
- No policy for enteric methane








Feeding wheat to dairy cows lowered methane emissions in a short term study Moate et al. 2017 35-d study, 32 cows (8/trt) Dry rolled corn, wheat, barley, and double rolled barley Cows fed wheat had 30% lower methane (g/kg DMI) Methane yield (g/kg of DMI) 7.5 25 7.0 20 others <u> 등</u> 6.5 15 0.0 10 MY = -54±10.9 +13.3±1.92 * (Min pH) wheat 5.5 $R^2 = 0.810, P = 0.001$ 5 6:00 6:00 12:00 18:00 0 Time of day 5.5 Minimum pH

Longer term study: Persistency of Methane Reduction with Wheat

	Wee	ek 4	Wee	k 10	Wee	k 16		<i>P</i> -value	
Parameter									TRT
	CRN	WHT	CRN	WHT	CRN	WHT	TRT	Week	×
									Week
CH ₄ , g/d	404 ^b	233ª	433 ^b	375 ^b	410 ^b	409 ^b	0.025	0.001	0.001
CH ₄ , g/kg DMI	18.4 ^b	11.2a	19.3 ^b	17.9 ^b	18.3 ^b	18.3 ^b	0.040	0.001	0.001
CH ₄ , % GE intake	5.68 ^b	3.28 ^a	5.97 ^b	5.24 ^b	5.49 ^b	5.64 ^b	0.033	0.001	0.001

a b (P < 0.05)

Moate et al. 2018 (unpublished data)

Methane Mitigation for Grazing Beef Cattle: Legumes vs Grasses

Irrigated pastures in Utah (n=5/trt; SF6 technique)

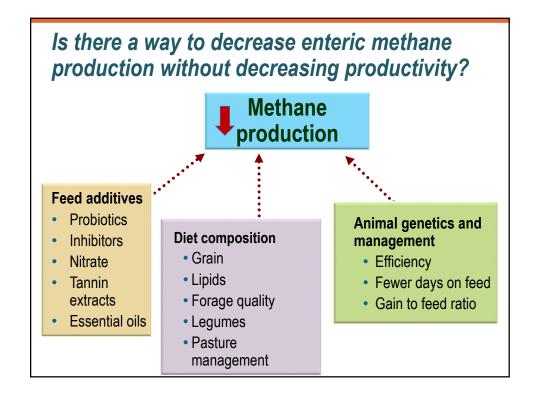
	Meadow bromegrass	Birdsfoot trefoil *	Cicer milkvetch
Body weight, kg			
Cows, 2014	681 a	634 a	676 a
Heifers, 2015	448 a	432 a	438 a
Forage DM disappearance, kg/d			
Cows, 2014	11.2 c	12.1 b	15.4 a
Heifers, 2015	7.2 b	8.6 b	11.7 a
Enteric methane, g/d			
Cows, 2014	322 a	169 b	146 b
Heifers, 2015	201 a	128 b	135 b

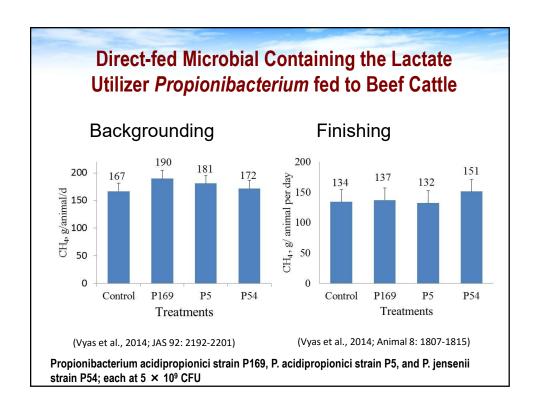
Within row: a,b (P < 0.05)

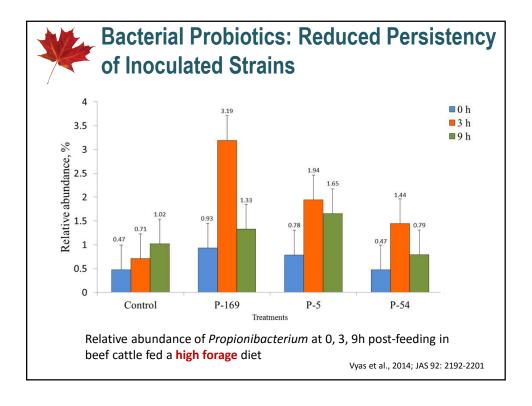
J. MacAdam, University of Utah (unpublished data)

Effects of Condensed Tannin Containing Fresh-cut Legumes in Growing Cattle

(cut and carry, chambers)

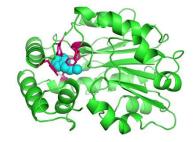

	Early		Late		
	Alfalfa	CT- Sainfoin	Alfalfa	CT-Sainfoin	
CT content, % DM	0 b	2.45 a	0 b	0.66 b	
Methane, g/kg DMI	26.6	28.2	24.8	24.0	
Methane, % GE intake	8.6	9.1	8.2	8.0	

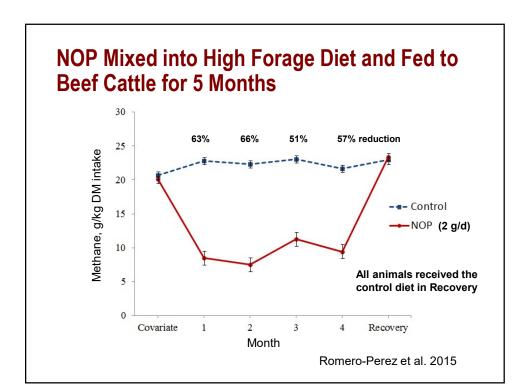

a,b (P < 0.05)


No stage x forage interaction

Chung et al. (2013) J. Anim. Sci. 91:4861-4874

^{*} Contained 2 to 3% CT




Methane Inhibitor: 3-Nitrooxypropanol (NOP)

- Experimental compound (DSM Nutritional Products, Switzerland)
- Inhibits the last step of methanogenesis in the rumen
- Degraded in the GIT to propanediol, (propylene glycol), nitrate, nitrite
- Low safety risk (not carcinogenic or mutagenic)

Mode of Action:

- Structural analog of Methyl-coenzyme M
- Binds to the active site of the enzyme (methylcoenzyme M reductase) involved in the last step of methane synthesis and oxidizes its active site Ni(I) (Duin et al. 2016. PNAS.1600298113)

Effects of Feeding 3-Nitrooxypropanol (NOP) and Monensin (33 ppm) to Feedlot Cattle

Backgrounding phase - 105 days

	No MON		With	With MON		ficance
	No	Plus	No	Plus	MON	NOP
	NOP	NOP	NOP	NOP	IVION	NOP
Initial BW, kg	308	308	308	310	0.86	0.69
Final BW, kg	462	459	464	464	0.31	0.71
DM intake, kg/day	8.41	7.64	8.08	7.64	0.12	<0.01
Gain:feed	0.172	0.184	0.183	0.189	<0.01(+4	
ADG, kg/d	1.45	1.43	1.47	1.46	0.21	0.41
CH ₄ , g/kg DM intake	28.2	15.7	28.1	17.1	0.65	<0.01 (42

No significant interactions between MON and NOP

240 steers, 6 pens/trt

Vyas et al., submitted

Effects of Feeding 3-Nitrooxypropanol (NOP) and Monensin (33 ppm) to Feedlot Cattle

Finishing phase - 105 days

	No MON		With	With MON		icance
	No	Plus	No	Plus	MON	NOP
	NOP	NOP	NOP	NOP	IVION	NOP
Initial BW, kg	507	504	512	513	0.06	0.81
Final BW, kg	698	692	694	697	0.97	0.82
DM intake, kg/day	12.1	11.4	11.4	11.0	0.06	0.06
Gain:feed	0.150	0.152	0.152	0.159	0.58	<0.01+3
ADG, kg/d	1.80	1.79	1.73	1.74	0.08	0.98
CH ₄ , g/kg DM intake	15.9	8.32	19.1	13.8	0.06	<0.01-37

No significant interactions between MON and NOP

240 steers, 6 pens/trt

Vyas et al., submitted

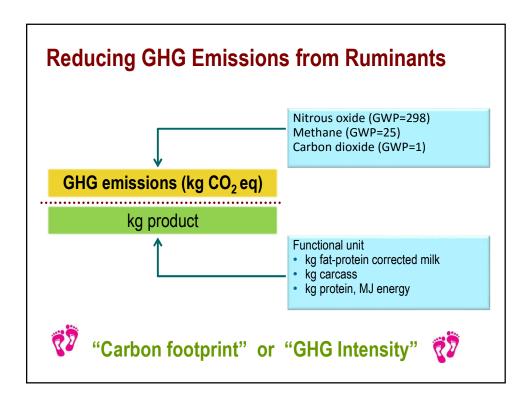
Evaluation of an Experimental Methane Inhibitor at a Commercial Feedlot (2017-2018)

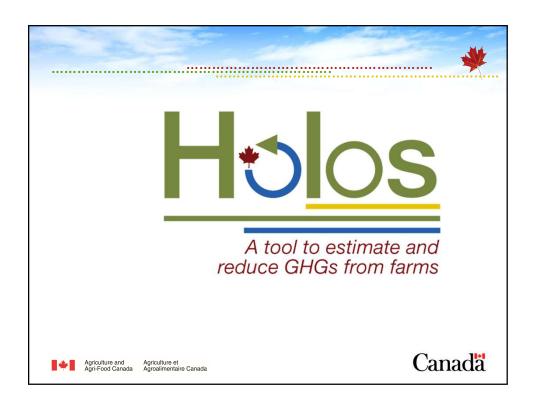
Research Studies: 30-60% reduction in methane from beef and dairy cattle; no negative effects for animals; low safety hazard for humans

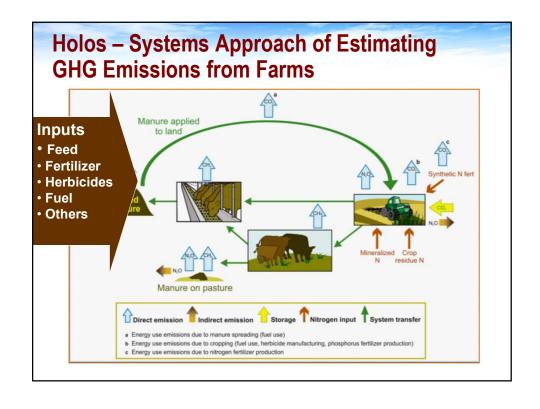
Evaluation of an Experimental Methane Inhibitor at a Commercial Feedlot (2017-2018) Sean McGinn: open path lasers

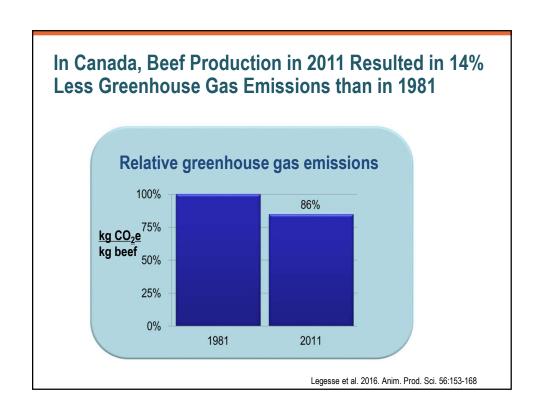
GreenFeed System to measure methane production per animal

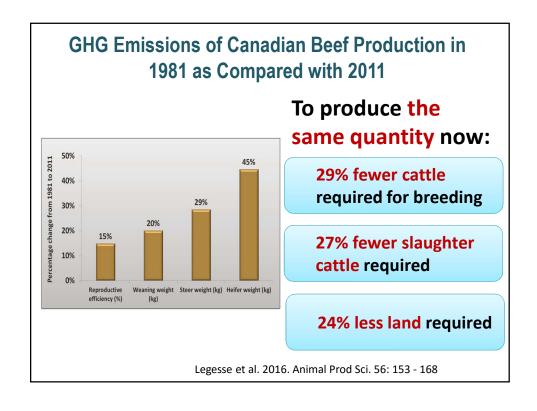
GrowSafe system to measure feed intake per animal

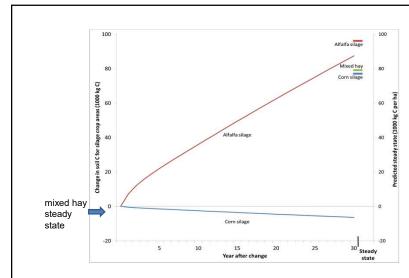

Nitrate as an Alternative Hydrogen Sink in the Rumen

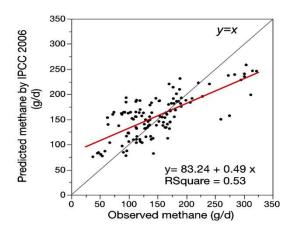

- Nitrate is reduced to nitrite and then ammonia
- Nitrate acts as an alternative H sink, competes with methanogenesis and lowers methane emissions
- Source of dietary non-protein nitrogen
- Potential for nitrite toxicity
 - Animal adaptation needed
 - Encapsulation slows release of nitrate


Lee and Beauchemin (2014) Can J Anim Sci 94:557-570 (review)


Evaluation of Nitrate for Methane Reduction


Beef Cattle Studies	Diet (DM basis)	Methane yield (g/kg DMI) reduction
Short-term (28 d peri	ods)	
Lee et al. 2015 JAS	55% barley silage	-18% (<i>P</i> < 0.05)
Long-term studies		
Lee et al. 2017 JAS	65% corn silage	-6 to -10% NS
	10% corn silage	0% NS
Aklilu et al. 2018	65% barley silage	-12% (<i>P</i> < 0.05)
(unpublished)	8% barley silage	-10% (<i>P</i> < 0.05)

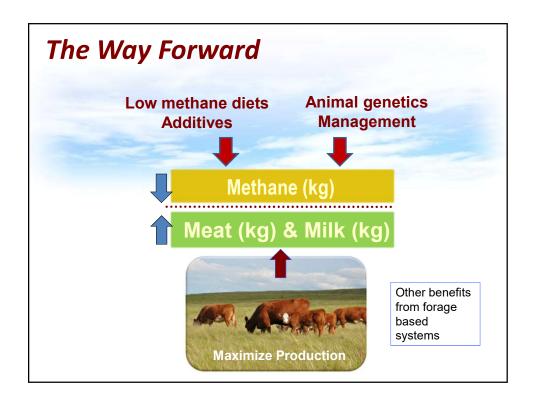




Predicted gain or loss of soil carbon due to rotation change from a mixed hay steady state to alfalfa silage or corn silage for the entire forage cropland over 30 years since change (**left side**); and predicted steady state per hectare for each forage rotation (**right side**).

39

Predicted (IPCC 2006, Ym = 6.5% of GE intake) vs. Observed Methane Emissions for Beef Cattle fed ≥ 40% Forage (Ym value)


Escobar-Bahamondes et al. 2017. Can. J. Anim. Sci. 97:83-94

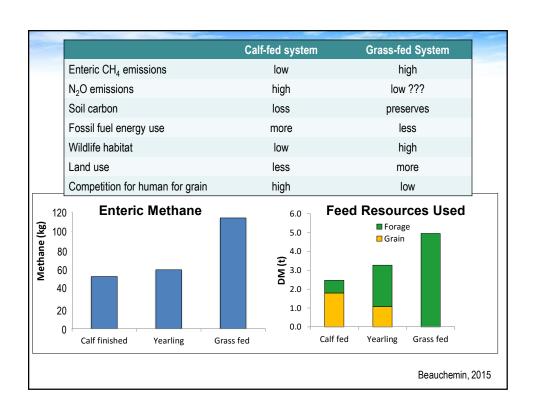
HOLOS Development

- Feed database
- Ym predictions from feed composition
- Monthly time step expanded to yearly time step (crop rotations, soil carbon)
- Water budget
- Other ecosystem services (wildlife habitat)

41

Measuring Emissions on Pasture and Farms (S. McGinn)

Carbon dioxide exchange (land)Enteric methane (cattle)



Open path laser

Feeding Lipids

- Lowers CH₄ by 3 5% per 1% added fat
- Effectiveness depends on:
 - Source (medium > long chain FA)
 - Form (refined oil > full-fat oilseeds)
- Max. total fat content of diet 6% DM
- Mode of action
 - Inhibits growth of rumen protozoa
 - Replaces some of the carbohydrates, which would be digested and produce CH₄ in the rumen
 - Biohydrogenation of fatty acids competes with hydrogen
 - Medium chain fatty acids have toxic effects on rumen methanogens
 - Reduces fiber digestion (esp. high fiber diets)

ef calf finish	ing systems		Age at market (months)
Calf finished			
110 d (1 kg/d)	170 d (1.5 kg	g/d)	16
Forage	Grain-finish		.0
Yearling (Sto	cker)		
150 d (0.7 kg/d)	120 d (0.7 kg/d)	120 d (1.6 kg/d)	20
Forage	Pasture Gr	ain-finished	20
Grass-fed			
150 d (0.7 kg/d)	120 d (0.7 kg/d)	240 d (0.8 kg/d)	24
Forage	Pasture	Forage-finishe	d

