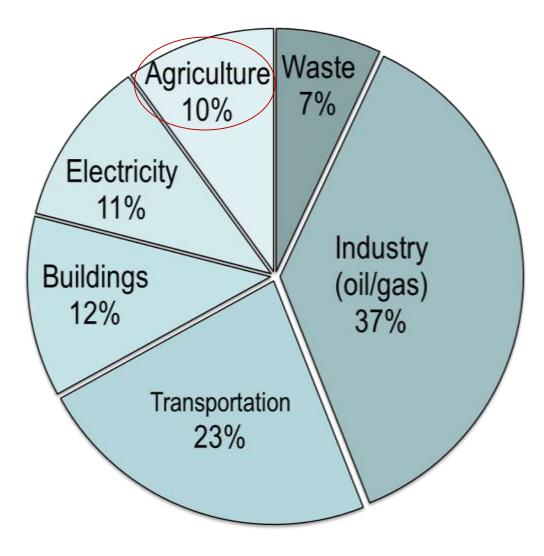
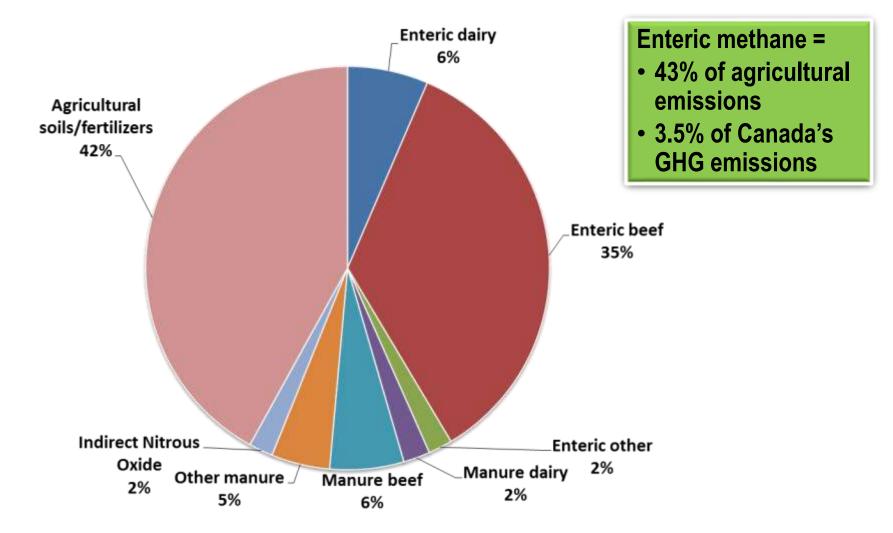


Reducing the Greenhouse Gas Emissions from Beef and Dairy Production: A Canadian Perspective

Karen Beauchemin, PhD

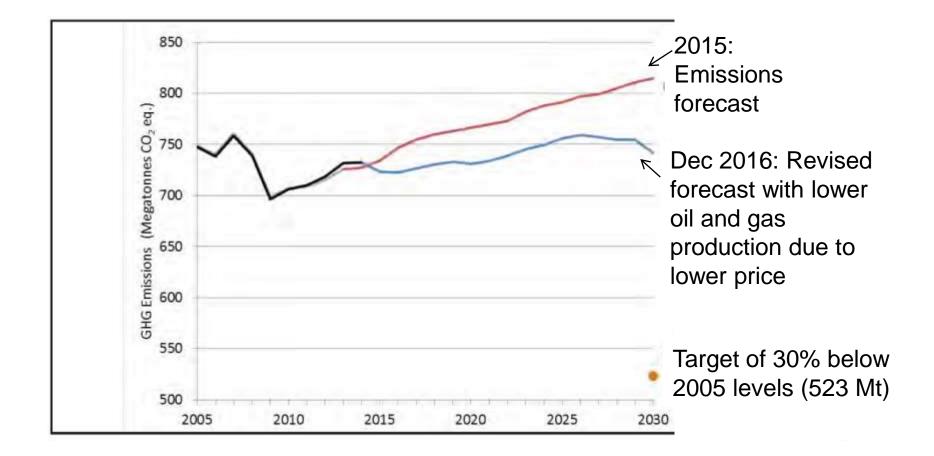
Research Scientist, Sustainable Production Systems Lethbridge Research and Development Centre Agriculture and Agri-Food Canada




2014

- "51% of global GHGs are created by livestock"
 - Hollywood experts
- 14.5% (1/3 methane)
 - Scientific experts (FAO, 2013)

Canada's Emissions by Sector: 2014



Canada's Agricultural Greenhouse Gas Emissions: 2013

https://www.ec.gc.ca/indicateurs-indicators/default.asp?lang=en&n=F60DB708-1

Canada's GHG Emissions Forecast to 2030

Pricing Carbon Pollution

Federal Policy: pricing carbon pollution by 2018 (Pan-Canadian Framework on Clean Growth and Climate Change)

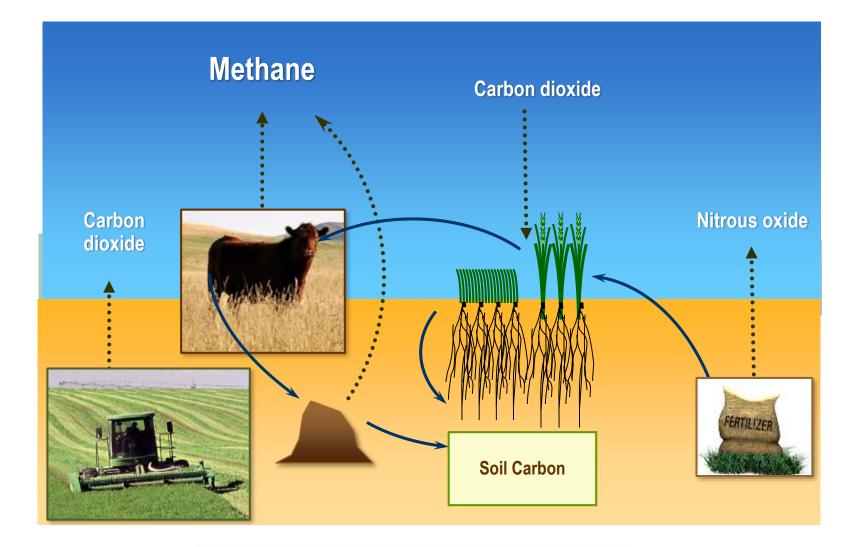
Provincially implemented:

British Columbia: carbon tax Ontario: cap and trade Quebec: cap and trade Alberta: hybrid system 2018 - \$10/t 2019 - \$20/t 2020 - \$30/t 2021 - \$40/t 2022 - \$50/t

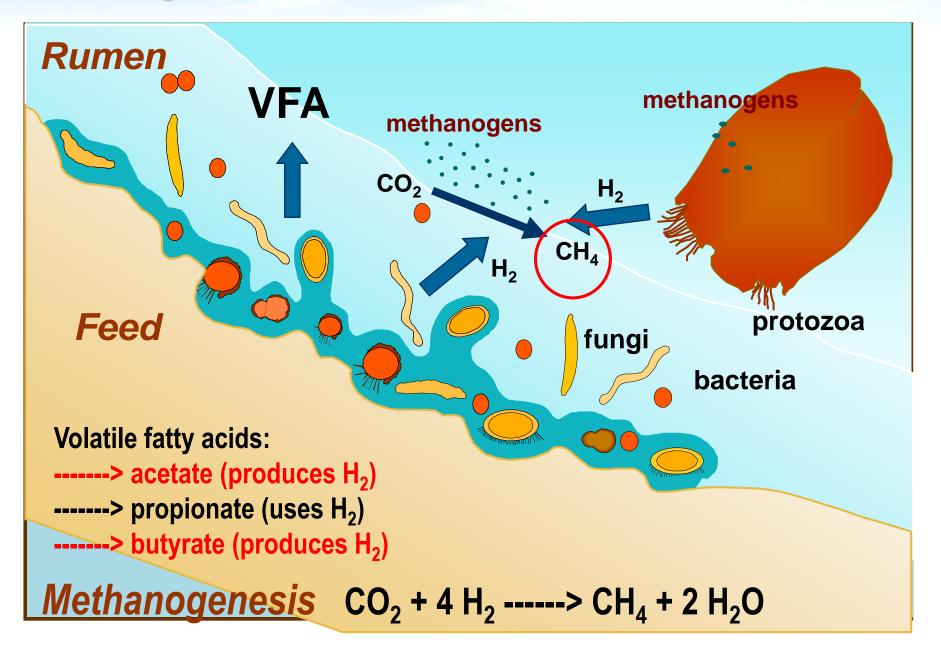
Approaches for the Agriculture Sector

Agricultural lands as "carbon sinks"

- Promoting land management
- Increasing perennial permanent cover
- Zero-till farming
- No policy for enteric methane


Ruminants and Forage-based Diets

Beef: 80% forage diet


Dairy: 70% forage diet

© iStockphoto.com

Enteric methane
28-times more potent than CO₂
2 to 12% of energy intake

Methanogenesis in the Rumen

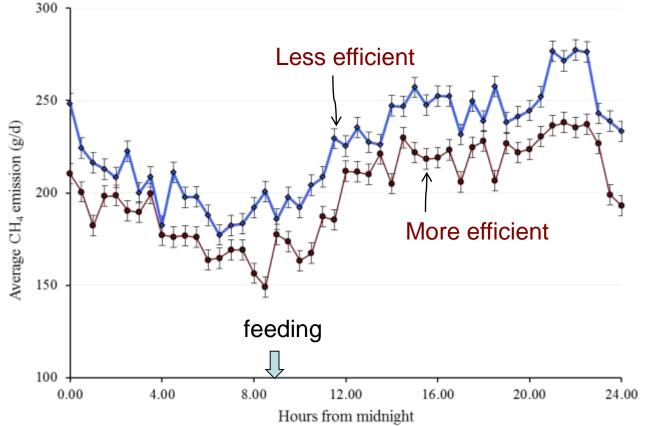
Measuring Methane Emissions

Tracer Gas Technique

Controlled release of trace gas in the rumen

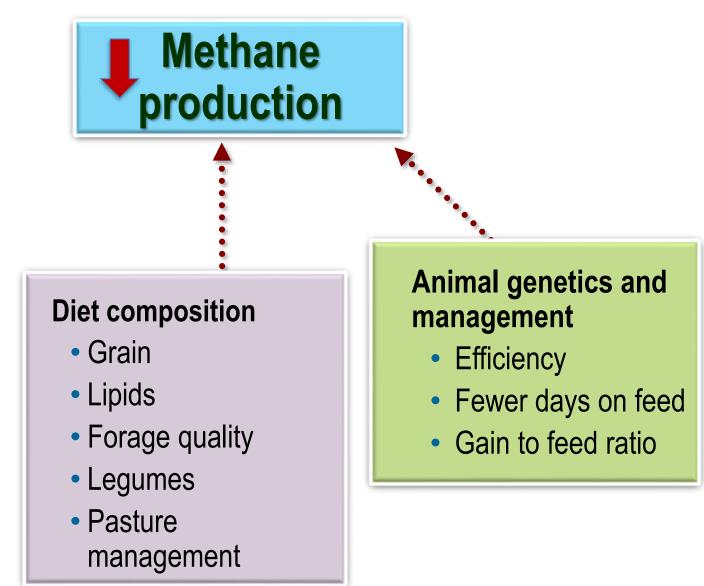
GreenFeed System

Is there a way to decrease enteric methane production without decreasing productivity?

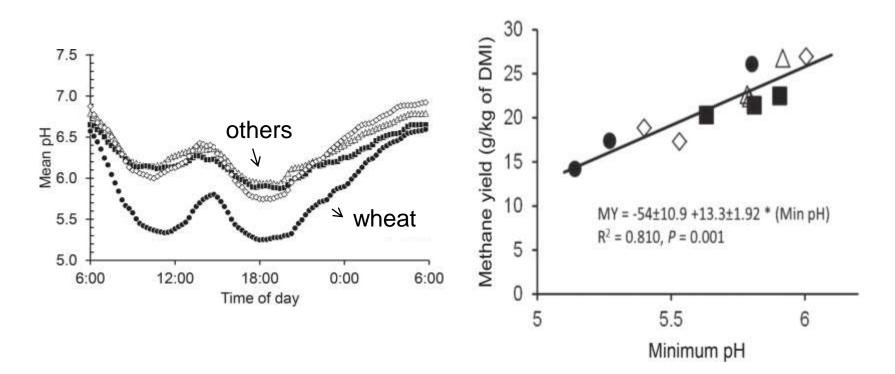


Animal genetics and management

- Animal efficiency
- Fewer days on feed
- Gain to feed ratio


Enteric methane emissions from high and low efficiency beef replacement heifers (GreenFeed system)

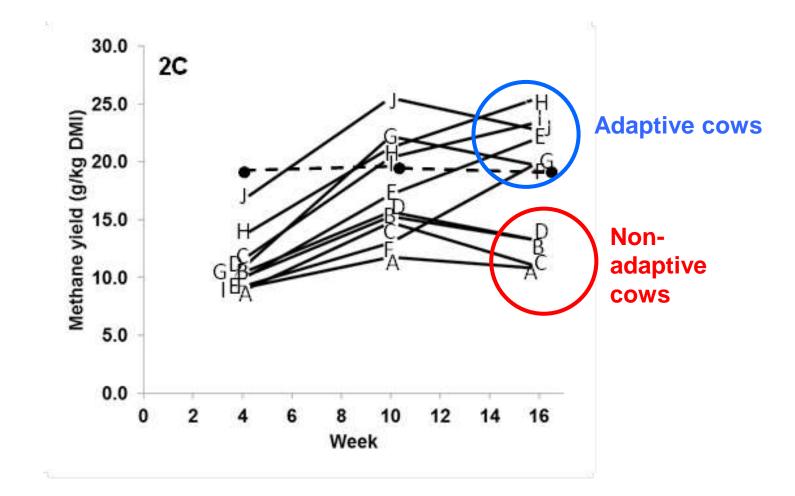
9% less CH₄ (g/d) 0 difference (g/kg DMI)


Alemu et al. 2017 J. Anim. Sci. 95:3727-3737

Is there a way to decrease enteric methane production without decreasing productivity?

Feeding wheat to dairy cows lowered methane emissions in a short term study

- Moate et al. 2017
 - 35-d study, 32 cows (8/trt)
 - Dry rolled corn, wheat, barley, and double rolled barley
 - Cows fed wheat had 30% lower methane (g/kg DMI)


Longer term study: Persistency of Methane Reduction with Wheat

	Wee	ek 4	Wee	k 10	Wee	ek 16		P-value	
Parameter									TRT
	CRN	WHT	CRN	WHT	CRN	WHT	TRT	Week	×
									Week
CH ₄ , g/d	404 ^b	233ª	433 ^b	375 ^b	410 ^b	409 ^b	0.025	0.001	0.001
CH ₄ , g/kg DMI	18.4 ^b	11.2ª	19.3 ^b	17.9 ^b	18.3 ^b	18.3 ^b	0.040	0.001	0.001
CH₄, % GE intake	5.68 ^b	3.28ª	5.97 ^b	5.24 ^b	5.49 ^b	5.64 ^b	0.033	0.001	0.001

a b (*P* < 0.05)

Moate et al. 2018 (unpublished data)

Persistency of Methane Reduction with Wheat

Moate et al. 2018 (unpublished data)

Methane Mitigation for Grazing Beef Cattle: Legumes vs Grasses

Irrigated pastures in Utah (n=5/trt; SF6 technique)

	Meadow bromegrass	Birdsfoot trefoil *	Cicer milkvetch
Body weight, kg			
Cows, 2014	681 a	634 a	676 a
Heifers, 2015	448 a	432 a	438 a
Forage DM disappearance, kg/d			
Cows, 2014	11.2 c	12.1 b	15.4 a
Heifers, 2015	7.2 b	8.6 b	11.7 a
Enteric methane, g/d			
Cows, 2014	322 a	169 b	146 b
Heifers, 2015	201 a	128 b	135 b

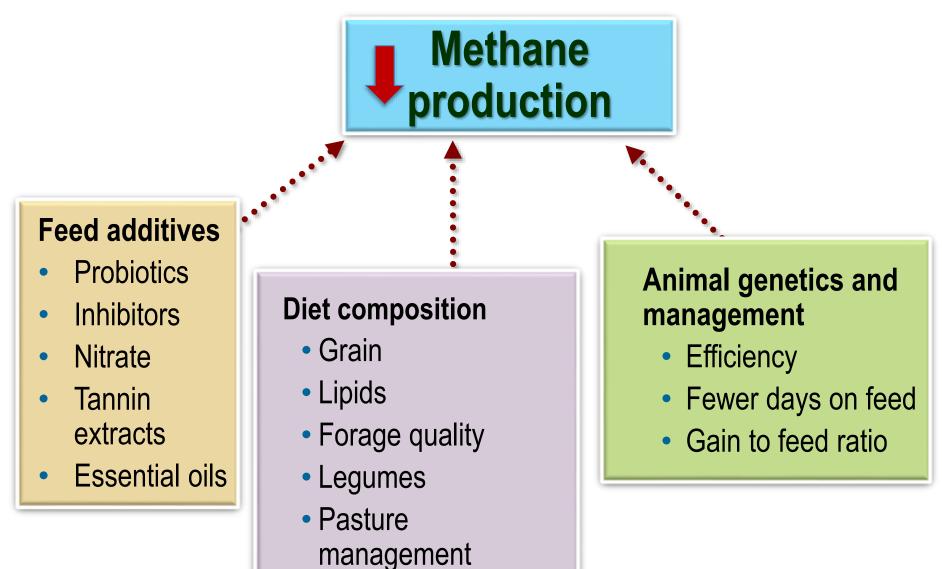
Within row: a,b (P < 0.05)

* Contained 2 to 3% CT

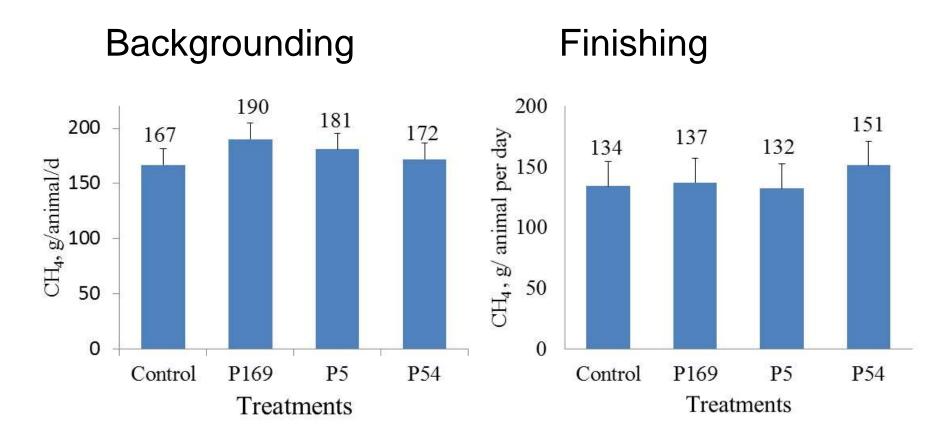
J. MacAdam, University of Utah (unpublished data)

Effects of Condensed Tannin Containing Fresh-cut Legumes in Growing Cattle

(cut and carry, chambers)


	Early		Late		
	Alfalfa	CT- Sainfoin	Alfalfa	CT-Sainfoin	
CT content, % DM	0 b	2.45 a	0 b	0.66 b	
Methane, g/kg DMI	26.6	28.2	24.8	24.0	
Methane, % GE intake	8.6	9.1	8.2	8.0	

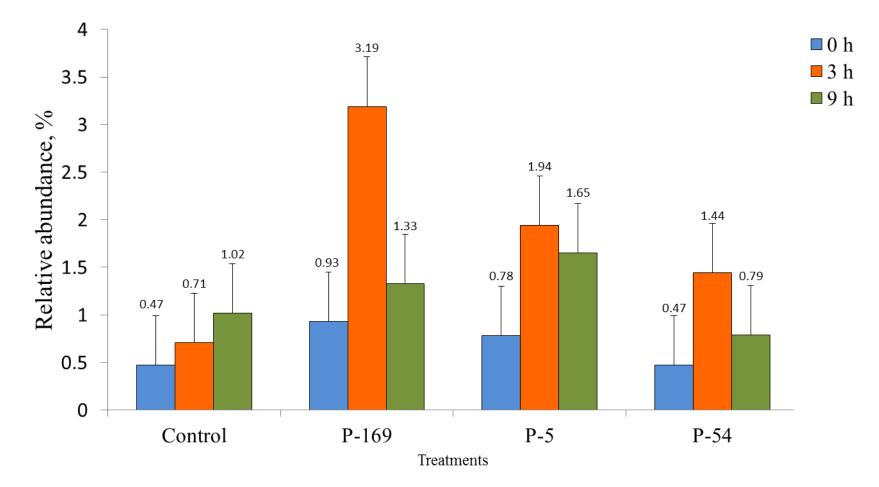
a,b (P < 0.05)


No stage x forage interaction

Chung et al. (2013) J. Anim. Sci. 91:4861-4874

Is there a way to decrease enteric methane production without decreasing productivity?

Direct-fed Microbial Containing the Lactate Utilizer *Propionibacterium* fed to Beef Cattle

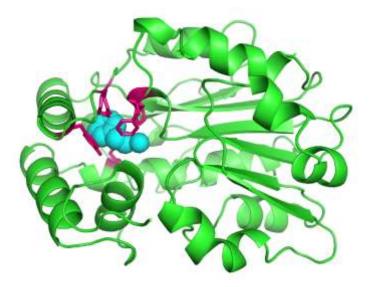


(Vyas et al., 2014; JAS 92: 2192-2201)

(Vyas et al., 2014; Animal 8: 1807-1815)

Propionibacterium acidipropionici strain P169, P. acidipropionici strain P5, and P. jensenii strain P54; each at 5 \times 10⁹ CFU

Bacterial Probiotics: Reduced Persistency of Inoculated Strains

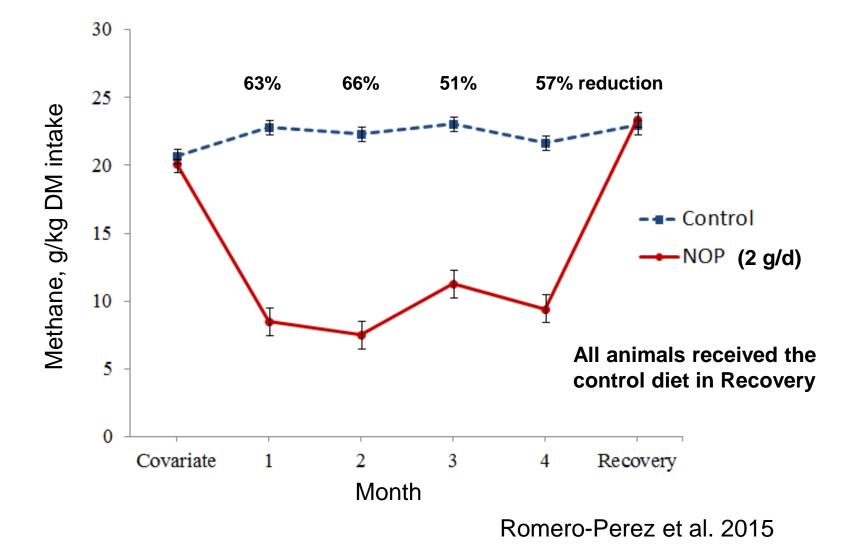


Relative abundance of *Propionibacterium* at 0, 3, 9h post-feeding in beef cattle fed a **high forage** diet

Vyas et al., 2014; JAS 92: 2192-2201

Methane Inhibitor: 3-Nitrooxypropanol (NOP)

- Experimental compound (DSM Nutritional Products, Switzerland)
- Inhibits the last step of methanogenesis in the rumen
- Degraded in the GIT to propanediol, (propylene glycol), nitrate, nitrite
- Low safety risk (not carcinogenic or mutagenic)



Mode of Action:

Structural analog of Methyl-coenzyme M

 Binds to the active site of the enzyme (methylcoenzyme M reductase) involved in the last step of methane synthesis and oxidizes its active site Ni(I) (Duin et al. 2016. PNAS.1600298113)

NOP Mixed into High Forage Diet and Fed to Beef Cattle for 5 Months

Effects of Feeding 3-Nitrooxypropanol (NOP) and Monensin (33 ppm) to Feedlot Cattle

Backgrounding phase – 105 days

	No MON		With	With MON		ficance
	No	Plus	No	Plus		
	NOP	NOP	NOP	NOP	MON	NOP
Initial BW, kg	308	308	308	310	0.86	0.69
Final BW, kg	462	459	464	464	0.31	0.71
DM intake, kg/day	8.41	7.64	8.08	7.64	0.12	<0.01
Gain:feed	0.172	0.184	0.183	0.189	<0.01+4	4% <mark><0.01</mark> +5
ADG, kg/d	1.45	1.43	1.47	1.46	0.21	0.41
CH ₄ , g/kg DM intake	28.2	15.7	28.1	17.1	0.65	<0.01 (42

No significant interactions between MON and NOP

240 steers, 6 pens/trt

Vyas et al., submitted

Effects of Feeding 3-Nitrooxypropanol (NOP) and Monensin (33 ppm) to Feedlot Cattle

Finishing phase – 105 days

	No MON		With	With MON		icance	
	No	Plus	No	Plus		NOD	
	NOP	NOP	NOP	NOP	MON	NOP	
Initial BW, kg	507	504	512	513	0.06	0.81	
Final BW, kg	698	692	694	697	0.97	0.82	
DM intake, kg/day	12.1	11.4	11.4	11.0	0.06	0.06	
Gain:feed	0.150	0.152	0.152	0.159	0.58	<0.01+39	
ADG, kg/d	1.80	1.79	1.73	1.74	0.08	0.98	
CH ₄ , g/kg DM intake	15.9	8.32	19.1	13.8	0.06	<0.01-37	

No significant interactions between MON and NOP

240 steers, 6 pens/trt

Vyas et al., submitted

Evaluation of an Experimental Methane Inhibitor at a Commercial Feedlot (2017-2018)

Research Studies: 30-60% reduction in methane from beef and dairy cattle; no negative effects for animals; low safety hazard for humans

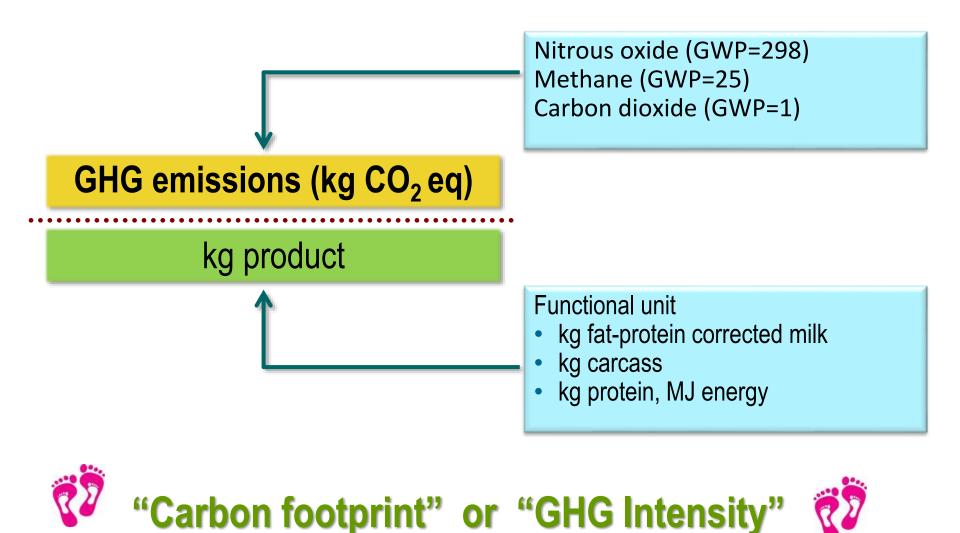
Measuring methane production at a feedlot

Evaluation of an Experimental Methane Inhibitor at a Commercial Feedlot (2017-2018)

Sean McGinn: open path lasers

GreenFeed System to measure methane production per animal

GrowSafe system to measure feed intake per animal

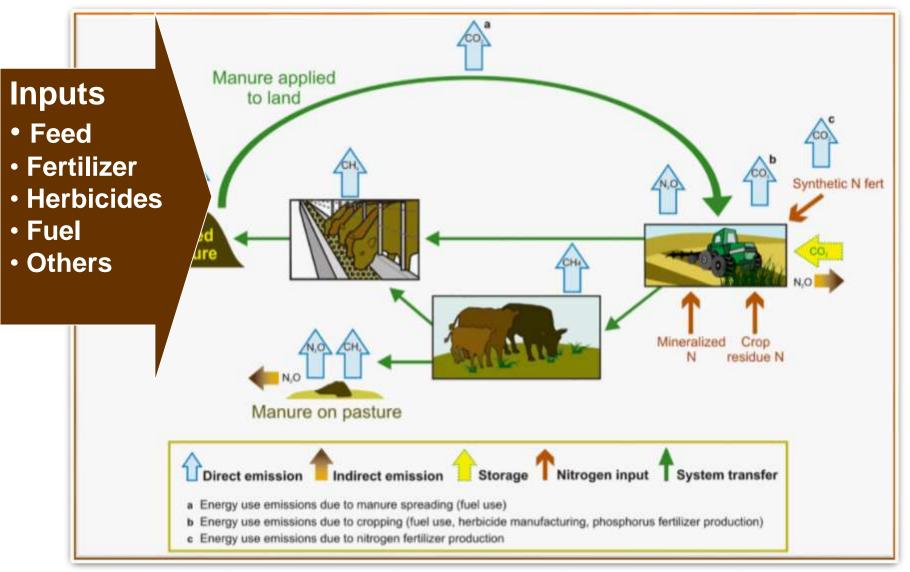

Nitrate as an Alternative Hydrogen Sink in the Rumen

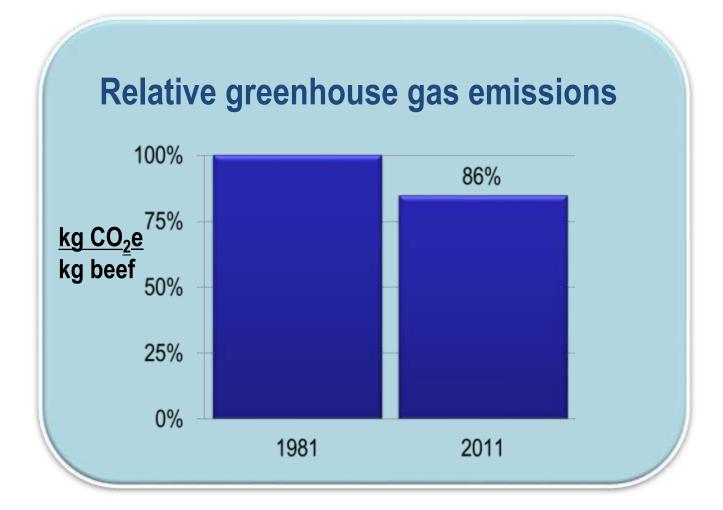
- Nitrate is reduced to nitrite and then ammonia
- Nitrate acts as an alternative H sink, competes with methanogenesis and lowers methane emissions
- Source of dietary non-protein nitrogen
- Potential for nitrite toxicity
 - Animal adaptation needed
 - Encapsulation slows release of nitrate

Evaluation of Nitrate for Methane Reduction

Beef Cattle Studies	Diet (DM basis)	Methane yield (g/kg DMI) reduction	
Short-term (28 d perio	ods)		
Lee et al. 2015 JAS	55% barley silage	-18% (<i>P</i> < 0.05)	
Long-term studies			
Lee et al. 2017 JAS	65% corn silage	-6 to -10% NS	
	10% corn silage	0% NS	
Aklilu et al. 2018	65% barley silage	-12% (<i>P</i> < 0.05)	
(unpublished)	8% barley silage	-10% (<i>P</i> < 0.05)	

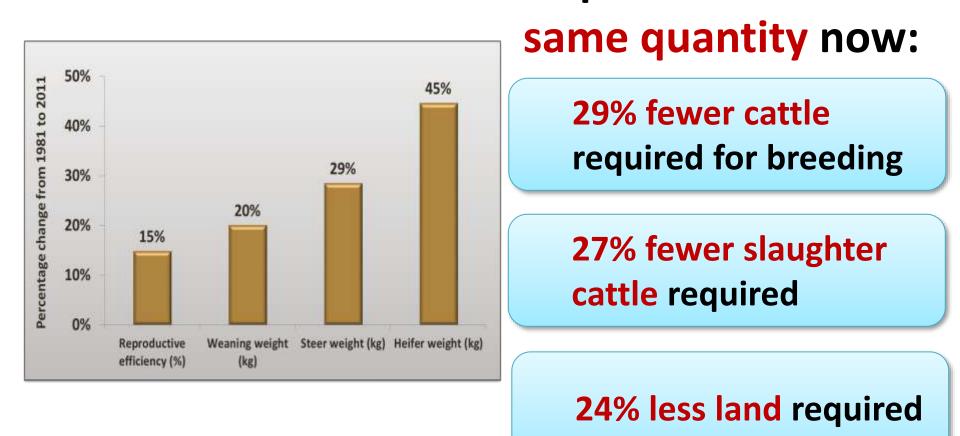
Reducing GHG Emissions from Ruminants


A tool to estimate and reduce GHGs from farms



Agriculture et Agroalimentaire Canada

Holos – Systems Approach of Estimating GHG Emissions from Farms



In Canada, Beef Production in 2011 Resulted in 14% Less Greenhouse Gas Emissions than in 1981

Legesse et al. 2016. Anim. Prod. Sci. 56:153-168

GHG Emissions of Canadian Beef Production in 1981 as Compared with 2011

Legesse et al. 2016. Animal Prod Sci. 56: 153 - 168

To produce the

The Effect of Corn vs. Alfalfa Silage on the Carbon Footprint of Milk (Little et al. 2017)

Included:

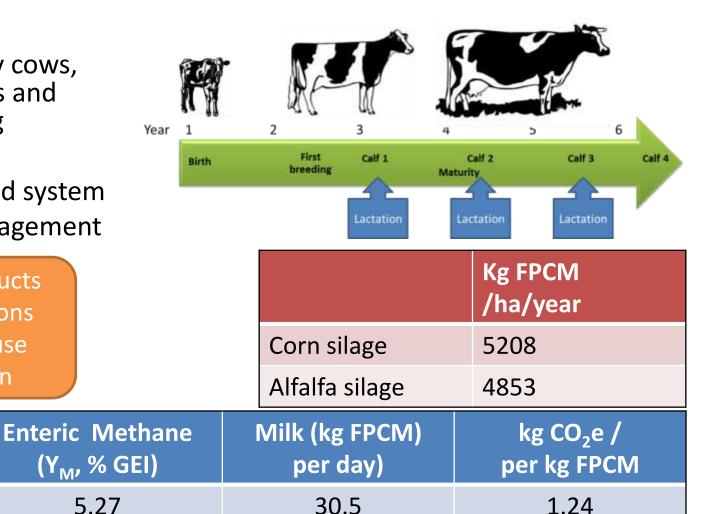
- Lactating, dry cows, replacements and veal offspring
- 6 -year cycle

Corn silage

Alfalfa silage

- Cropping/feed system
- Manure management

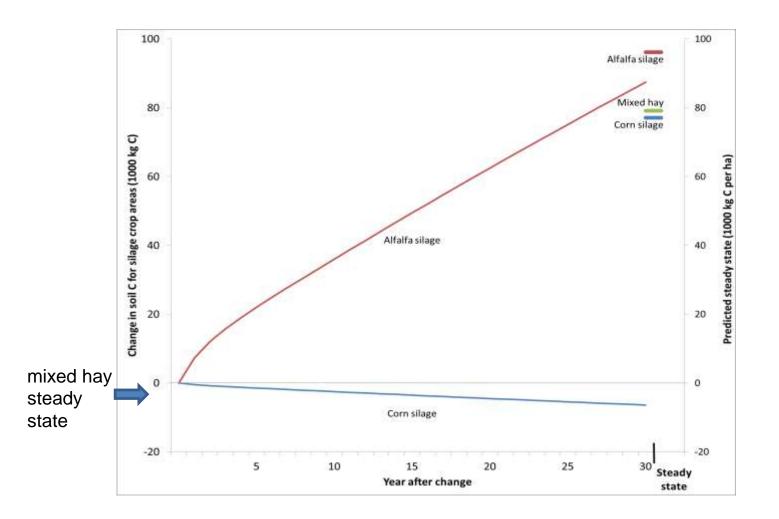
Animal products


GHG emissions

Land area use

Soil carbon

5.27


5.85

30.7

100% allocation of GHG to milk

1.25

Predicted gain or loss of soil carbon due to rotation change from a mixed hay steady state to alfalfa silage or corn silage for the entire forage cropland over 30 years since change (**left side**); and predicted steady state per hectare for each forage rotation (**right side**).

Predicted (IPCC 2006, Ym = 6.5% of GE intake) vs. Observed Methane Emissions for Beef Cattle fed ≥ 40% Forage (Ym value)

Escobar-Bahamondes et al. 2017. Can. J. Anim. Sci. 97:83–94

HOLOS Development


- Feed database
- Ym predictions from feed composition
- Monthly time step expanded to yearly time step (crop rotations, soil carbon)
- Water budget
- Other ecosystem services (wildlife habitat)

The Way Forward

Animal genetics Low methane diets Management **Additives** Methane (kg) Meat (kg) & Milk (kg) **Maximize Production**

Other benefits from forage based systems

Measuring Emissions on Pasture and Farms (S. McGinn)

Carbon dioxide
exchange (land)
Enteric methane
(cattle)

Feeding Lipids

- Lowers CH₄ by 3 5% per 1% added fat
- Effectiveness depends on:
 - Source (medium > long chain FA)
 - Form (refined oil > full-fat oilseeds)
- Max. total fat content of diet 6% DM
- Mode of action
 - Inhibits growth of rumen protozoa
 - Replaces some of the carbohydrates, which would be digested and produce CH_4 in the rumen
 - Biohydrogenation of fatty acids competes with hydrogen
 - Medium chain fatty acids have toxic effects on rumen methanogens
 - Reduces fiber digestion (esp. high fiber diets)

Beef calf finishi	ng systems	Age at market (months)
Calf finished 110 d (1 kg/d) Forage	170 d (1.5 kg/d) Grain-finished	16
Yearling (Stoc 150 d (0.7 kg/d) Forage	:ker) <u>120 d (0.7 kg/d) 120 d</u> Pasture Grain-f	
Grass-fed 150 d (0.7 kg/d) Forage	() /	10 d (0.8 kg/d) 24 orage-finished

			Calf-fed syst	em Grass-fed System
	E	Enteric CH ₄ emissions	low	high
	N	I ₂ O emissions	high	low ???
	S	Soil carbon	loss	preserves
	F	ossil fuel energy use	more	less
	V	Vildlife habitat	low	high
	L	and use	less	more
r		Competition for human for grain	high	low
	120	Enteric Methane	6.0	Feed Resources Used
(kg)	100		5.0	□ Forage □ Grain
Methane (kg)	80		. 4.0	
Met	60		(1) 3.0 D	
	40		م 2.0	
	20		1.0	
	0		0.0	
		Calf finished Yearling	Grass fed	Calf fed Yearling Grass fed

Beauchemin, 2015