Bio4Fuels Days Norwegian Centre for Sustainable Bio-based Fuels and Energy Hell, October 3 2017

Economics of Two Biofuels Value Chains

Raf Roelant

Process Design Center, Breda, Netherlands

EU project, FP7-NMP: FAST industrialisation by CAtalysts Research and Development

Coordinator: SINTEF

Economics of Biofuels Value Chains

- 1. Introduction to FASTCARD, PDC
- 2. Conceptual process design and technoeconomic evaluation for the production of biofuels

3.

FAST CARD

Gas route

Liquid route

Introduction: FASTCARD

FAST industrialisation by Catalysts Research and Development

- Funded by European Commission
- Jan. 2014 Dec. 2017
- 14 partners from 9 countries
- 2 value chains from wood to motor fuels:
 - Gas route
 - Liquid route

Introduction: PDC

Process Design Center

- Consultancy company with main office in Breda, Netherlands
- 30+ years of experience in
 - Energy efficiency
 - Conceptual process design (PROSYN®)
 - Techno-economic evaluation

Economics of Biofuels Value Chains

- 1. Introduction to FASTCARD, PDC
- Conceptual process design and technoeconomic evaluation for the production of biofuels

- 3. Gas route
- 4. Liquid route

CPD, TEE: WHY?

CPD, TEE: Fast projection of techno-economic performance at industrial scale.

CPD, TEE: WHY?

CPD, TEE: Fast projection of techno-economic performance at industrial scale: steers R&D

CPD, TEE for biofuels

Expensive:

- Biomass growth (E.g., vegetable oils)
- Capital investment for process relative to fuel yield:
 - Catalytic conversions: severe reaction conditions (T, p, chemical)
 - Biochemical conversions: mild reaction conditions, but low reaction rates (anaerobic digestion, fermentation, enzymatic hydrolysis)
- Input of energy or co-reactants (H₂, MeOH, ...)

Conceptual Process Design (CPD) and techno-economic evaluation (TEE) helps control 2 of 3 main cost contibutors.

Conceptual process design

Conceptual process design

EU project, FP7-NMP: FAST industrialisation by CAtalysts Research and Development

Coordinator: SINTEF

Economic evaluation

Economics of Biofuels Value Chains

- 1. Introduction to FASTCARD, PDC
- Conceptual process design and technoeconomic evaluation for the production of biofuels

- 3. Gas route
- 4. Liquid route

Gas route: diesel from wood

Expensive:

- Biomass growth (E.g., vegetable oils)
- Capital investment related to product yield:
 - Catalytic conversions: severe reaction conditions (T, p, chemical)
 - Biochemical conversions: mild reaction conditions, but low reaction rates (anaerobic digestion, fermentation, enzymatic hydrolysis)
 - Low energy yields
- Input of energy or co-reactants (H₂, MeOH, ...)

Process design aimed at

- limiting capital costs: avoiding processing excessive gas volumes
- maximising energy yield

Gas route: diesel from wood

H₂:CO ratio tends to become **superstoichiometric** in FT synthesis loop. Difficult to reverse: requires reverse water-gas shift at high temperatures with steam addition to avoid coke formation.

- \rightarrow Avoid H₂:CO ratio becoming superstoichiometric:
- Limit steam/carbon ratio at reforming stage while avoiding coke formation,
- Avoid water-gas shift activity on FT catalyst:

Gas route

Gas route (200 MW_{th} wood feed)

Versus

Gas route (200 MW_{th} wood feed)

Energy ratio product/feed = 63%

Capital investment: 270 M€

Production cost: 150 €/MWh

About half of production cost due to CAPEX!

Versus

Energy ratio product/feed = 43%

Capital investment: 200 M€

Production cost: 160 €/MWh

Future work should be aimed at reducing CAPEX, e.g., by increasing gasification pressure.

Gas route (200 MW_{th} wood feed)

Economics of Biofuels Value Chains

- 1. Introduction to FASTCARD, PDC
- Conceptual process design and technoeconomic evaluation for the production of biofuels

- 3. Gas route
- 4. Liquid route

Liquid route

5000 Nm³/d FCC unit 6 to 10 % bio-oil feed

Liquid route

Expensive:

- Biomass growth (E.g., vegetable oils)
- Capital investment related to product yield:
 - Catalytic conversions: severe reaction conditions (T, p, chemical)
 - Biochemical conversions: mild reaction conditions, but low reaction rates (anaerobic digestion, fermentation, enzymatic hydrolysis)
 - Low energy yields
- Input of energy or co-reactants (H₂, MeOH, ...)

Process design aimed at reducing hydrogen consumption.

Liquid route

Liquid route (5000 Nm³/d FCC unit with 6 to 10 % bio-oil feed)

With Co-FCC product distribution measured at Davison Circulating Riser at Repsol, Spain for state-of-the-art catalyst (Futura).

Liquid route (5000 Nm³/d FCC unit with 6 to 10 % bio-oil feed)

Contribution CAPEX very low!

Liquid route (5000 Nm³/d FCC unit with 6 to 10 % bio-oil feed)

Future work should be aimed at

- Co-FCCing raw or merely hydrostabilised pyrolysis oil
- High FCC fuel yields through catalytic, process-technological innovation.

Biobased motor fuel: a helicopter view

EC Sustainable Transport Forum: Sub Group on Advanced Biofuels. Final Report, 2017.

Conclusions

Comparison gas and liquid route:

	Gas route	Liquid route
Drop-in?	YES	YES
Investment risk	HIGH	LOW
Potential on sustainable production	HIGH: large production scales possible from "any" biomass	LIMITED: Co-FCC: assumes coupling with fossil refining
	Long-term potential	Short-term potential

• Government incentives with long-term guarantees needed: Probably an excise duty exemption on biofuels.

We thank

- 1. You for your attention.
- 2. The European Commission

for its financial support (FP7 grant 604277).

3. The FASTCARD partners.

24 January 2018 Repsol Technology Centre, Móstoles, Madrid

- Open seminar for industry and academia
- Not limited to experience in FASTCARD project
- Invited speakers from BTG-BTL, BDI-Bioenergy, SASOL, Johnson Matthey, IFPEN, Repsol, Grace

More info and registration:

http://www.sintef.no/en/events/fastcard-final-seminar/