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Abstract

It lies in the nature of a catastrophe that its cost and benefits are non-marginal. This

makes policy decision making in the presence of catastrophes a complex task. Previous work

has shown that when projects are non-marginal they should not be evaluated in isolation and

that standard cost benefit analysis may provide biased results. This paper pursues this topic in

three directions. First, I introduce the possibility that policy measures may be dependent. This

allows the policy decision maker to exploit synergistic relationships and avoid unwanted and

unintended consequences. Second, the existence of real world constraints may effect the optimal

policy set. I evaluate the optimal policy under different constraints on model parameters such

as cost, willingness to pay and risk. Third, I allow the likelihood of a catastrophe to increase

with time. This provides a realistic framework for evaluating catastrophes characterized by

accumulation or tipping points. I show how these extensions change the willingness to pay and

the optimal policy set. This paper is largely theoretical, but provides policy decision makers

with guidance on the existence and nature of possible biases through analytical results and

examples.
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1 Introduction and background

The answer to the question “How should we evaluate projects?” depends on the nature of the

projects we consider. The standard economic tool for evaluating projects is cost benefit analysis

(CBA), but if the net benefits of a project are large compared to aggregated consumption, then

CBA can cause biased results [Dasgupta et al., 1972]. This creates an interdependency among the

projects. Thus, evaluating projects in isolation is not always a good approximation, especially when

cost and benefits are non-marginal.

In this paper I argue that the current efforts to consider interdependence have not yet been taken

far enough. Using policy measures to avert catastrophes, Martin and Pindyck [2015] are the first to

address this interdependence when selecting among a set of large projects. But they fail to consider

other dependencies such as direct dependencies among the policy measures or dependencies caused

by economic boundaries. Thus, the argument against evaluating projects or policy measures in

isolation should be even stronger. I argue that by not taking other dependencies into consideration

we get sub-optimal policy recommendations.

Martin and Pindyck [2015] is not the only study that note the bias of CBA. Hoehn and Randall

[1989]show how standard CBA is systematically biased when the number of projects is large. The

capacity of the economy provides an upper bound on net benefits that is only evident when projects

are evaluated together, whereas the standard measure is unbounded. Thus, when the number of

projects is large we overestimate net benefits. Dietz and Hepburn [2013] examine the conditions

of when CBA is biased when evaluating large projects. They show how using CBA to evaluate

non-marginal climate and energy projects can result in sub-optimal solutions and find that the

source of the error is the elasticity of marginal utility.

In their paper, Martin and Pindyck [2015]1 show that the standard rule of CBA, positive dis-

counted net welfare, is a necessary, but not sufficient criteria for averting a catastrophe. They find

that policies to avert catastrophes should not be evaluated in isolation, but rather in conjunction

with each other. The benefits of averting one catastrophe depends positively on the background

risk created by the existence of the other catastrophes.

Tsur and Zemel [2017] study intertemporal policies for managing multiple catastrophes where

efforts to alleviate a catastrophe can be smoothed out over time and find that background risk can

both increase and decrease the benefits of averting a catastrophe. Martin and Pindyck [2015] find

that if the total benefits and individual costs are sufficiently small, then the problem can still be

approximated by standard CBA. In contrast, Tsur and Zemel [2017] find that this approximation
1Other work that note the Martin and Pindyck [2015] study focus mostly on the implication of this on policies to

deal with climate change.
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may not hold even for marginal projects. This is discussed in more detail in section four.

I use the study by Martin and Pindyck [2015] to illustrate how policy measure dependencies,

economic boundaries and time-dependent risk affects the optimal policy for managing catastrophes2.

To do this I provide three extension that help move the framework closer to reality. All extensions

have implications on policy recommendations

First, in the original paper policy measures are assumed to be independent, with the exception

of the interdependence caused by background risk. The assumption of independence for both

catastrophes and policy measures are likely to be violated in the real world. Policy measures

aimed at averting one catastrophe may reduce the likelihood of other catastrophes and the damage

distributions of catastrophes are often subjected to tail dependencies. My first extension opens

up the framework to allow for dependencies, and I show how this affects both willingness to pay

(WTP) for averting catastrophes and which catastrophes it is optimal to avert.

Second, the framework proposed by Martin and Pindyck [2015] does not impose any constraints

on benefits, cost or risk. The policy decision maker is likely to face a budget constraint. Consider-

ations such as the limitations of constant relative risk aversion (CRRA) utility [Geweke, 2001] or

the overall correlation between a country’s economy and WTP, are arguments for binding WTP

from above. Introducing such overall constraints makes it more difficult for policy measures to pass

the optimal policy criterion. The effect of a constraint on risk for one or more of the catastrophes

depends on the nature of the dependencies between catastrophes and policy measures.

Third, in Martin and Pindyck [2015], each catastrophe is assumed to have a constant likelihood of

occurring. For catastrophes that are characterized by accumulation or tipping points, the likelihood

of the catastrophe occurring increases with time if there is no policy action. One such example is

a climate catastrophe. Thus for my third extension I use an inhomogenous Poisson process to

illustrate how to easily include one or more catastrophes where risk is time-dependent. If one or

more catastrophes have a likelihood of occurring that is non-decreasing in time, it emphasizes the

effect of background risk and the importance of discounting.

I show how the extensions affect the optimal policy and I use numerical examples to demonstrate

the effect by comparing my results with the results in Martin and Pindyck [2015]. I end the paper

by providing a summary of the results and concluding comments.
2Martin and Pindyck [2017] provide an interesting extension where they differentiate between catastrophes that

cause destruction and death. They show that for catastrophes that kill the benefits of averting is larger. The main
results in this paper is likely to hold also for deadly catastrophes because the underlying assumptions of their model
does not change.
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1.1 Martin and Pindyck’s original model

Assume a society is facing N catastrophes. If catastrophe i occurs it causes a permanent drop in

log consumption (ct) equal to the random amount φi. Log consumption follows a Poisson process,

ct = logCt = gt−
N∑
i=k

Qi(t)∑
t=1

φi,t

where g is the growth rate and Qi(t) is the Poisson counting process for catastrophe i with known

mean arrival rate λi. The cumulant generating function for time t is

κ(θ)t =

{
gθ +

N∑
i=1

λi(Ee
−θφi − 1)

}
t

If we do nothing, the discounted present welfare in t = 0 is3

W =
1

1− η
1

δ − κ(1− η)

Averting catastrophe i is equal to setting λi = 0. The WTP to avert catastrophe i or a set S of

catastrophes are given by the expression

(1− wp)1−η =
δ − κp(1− η)

δ − κ(1− η)

where p can represent both policy measure i or policy set S. The actual cost of averting catastrophe

i is a permanent tax on consumption τi. Thus, if we choose to avert a set S of catastrophes the cost

will be multiplying consumption by
∏
i∈S (1− τi) forever. Martin and Pindyck [2015] defines two

variables Bi and Ki ,

Bi = (1− wi)1−η − 1

Ki = (1− τi)1−η − 1

which corresponds to the percentage loss of utility when consumption is reduced by either τi% or

wi%. Therefore it is optimal to choose a subset S that solves the problem

max
S⊆{1,..,N}

V =
1 +

∑
i∈S Bi∏

i∈S (1 +Ki(pi))
(1)

3For an extensive review of the original model please see Martin and Pindyck [2015].
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2 Averting catastrophes when policy measures are dependent

In Martin and Pindyck’s [2015] original paper policy measures are, except for the interdependencies

caused by non-marginality, assumed to be independent. Catastrophes are also assumed to occur

independently of each other. The assumptions of independence for both catastrophes and policy

measures are likely to be violated in the real world. Policy measures aimed at averting one catastro-

phe may reduce the likelihood of other catastrophes. For example, measures to reduce bioterrorism

may also reduce other types of terrorism. The risk of a nuclear catastrophe might be reduced by

reducing the number of nuclear power plants, but since nuclear power plants produce relative clean

energy this may increase the likelihood of a climate catastrophe. Another example is the impact

of climate change on the likelihood of natural disasters. If the likelihood of a climate catastrophe

is reduced it may also reduce the likelihood of storms, hurricanes, and even catastrophic infectious

diseases.

The damage distribution for the individual catastrophes may also be linked. Such dependencies

often occur in the extreme values and are referred to as tail dependencies. For example if the damage

from catastrophe i exceeds a certain value, then it is more likely for the damage of catastrophe j

to also exceed a certain value. Although dependencies are often modeled using a single number, a

correlation coefficient, this does not necessary reflect true dependencies.

2.1 Model reformulation

I reformulate the model to allow for policy measures dependencies. Let log consumption follow

a spatial two-dimensional Poisson process that is homogeneous with respect to time. The second

dimension is a policy vector p that contains the scaling of all i = 1, .., N policy measures. For all

i, the mean arrival rate of catastrophe i depends on p, such that λi(p). This opens up the model

for dependencies between catastrophes and between policy measures. Let

λi(p) = λi {1− pi (p)}

where

pi(p) = pi + ρi(p)

and pi(p) ∈ [0, 1] ∀i. pi is the intended decrease in the likelihood of catastrophe i occurring as a

result of introducing policy measure i. ρi(p) is the unintended decrease or increase in the likelihood

of catastrophe i occurring as a result of all other policy measures. This term captures dependencies.

With this simple set up the cumulant generating function is
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κp(θ) = gθ −
n∑
i=1

λi(p)(Ee−θφi − 1) = gθ −
n∑
i=1

λi (1− pi (p)) (Ee−θφi − 1) (2)

It does not matter if the origin of the dependencies is the mean arrival rate of catastrophes or the

expected damages. Since pi (p) is deterministic I can define

Ee−θφi(p) = pi (p)
(
1− Ee−θφi

)
+ Ee−θφi

where pi (p)
(
1− Ee−θφi

)
is the consumption we avoid losing when catastrophe i occurs as a conse-

quence of the policy set p. This yields the same cumulant generating function as (2). Thus, it only

matters how we define ρi(p) and pi(p) and this definition is determined by the dependencies true

nature. Note that this framework does not put any restrictions on the formulation of dependencies

as long as ρi(p) is such that pi(p) ∈ [0, 1] ∀i. If ρi(p) = 0 for all i then all catastrophes and policy

measures are assumed to be mutually independent.

I differentiate between evaluating policy measures individually, through a 1 ×N single impact

policy vector,

pi = (0, ..., pi, .., 0)

and as a set S, through a 1×N multiple impact policy vector,

ps = (p1, ..., pi, .., ps, .., 0)

Note that evaluating in isolation does not imply that dependencies among the policy measures (or

catastrophes) do not exist, but rather that we can only evaluate the effects of policy measure i

on other catastrophes and not how the policy measures depend on each other. The relationship

between the willingness to pay for the policy set S and policy measure i follows the same intuition

as in Martin and Pindyck [2015], but does now also depend on the complexity of the dependencies.

The relationship between the willingness to pay for the policy set S and policy measure i is described

in Result 1.

Result 1: The relationship between willingness to pay for ps and pi

The WTP for the total consequences of policy pi in isolation is linked to the WTP for the total

consequences of a policy set ps =
∑
i∈S ps by the expression

5



(1− ws(ps))1−η − 1 =
(3)

∑
i∈S

[
(1− wi(pi))1−η − 1

]
+
∑
i∈S

[(1− wci (ps))1−η − 1
]
−
∑
j∈S

[
(1− wci (pj))

1−η − 1
]

where wci (ps) is the WTP for the unintended consequences of policy set S on catastrophe i and

wci (pj) is the WTP for the unintended consequences of policy pj on catastrophe i.

This shows that the original results from Martin and Pindyck [2015],

(1− ws(ps))1−η − 1 =
∑
i∈S

[
(1− wi(pi))1−η − 1

]
(4)

only holds in the face of dependencies if the last term is equal to zero. The last term is only zero if

s∑
i=1

ρj(pi) = ρj(

s∑
i=1

pi)

Remember that ρj(
∑s

i=1 pi) is equivalent to ρj(ps). The equality above only holds if the functional

form of ρj(p) is linearly separable in the elements of p. In practice such a restriction means

that ρj(p) cannot have any interaction with the other elements in p. This implies (4) holds for

dependencies modeled using a linear relationship but not for more complex dependencies. From

Jensen inequality we know that if the last term is equal to zero then ws(ps) ≤
∑S
i=1 wi(pi), but if

the last term is not equal to zero this inequality may not hold.

The relationship between the WTP for a policy measure and a set of policy measures do not

say anything about the optimal choice and scaling of p. For easy comparison I follow Martin and

Pindyck [2015] and define Ki as

Ki(pi) = (1− τi(pi))1−η − 1

such that the costs of policy measure i depends on the scaling of policy measure, pi. Bi(p) is defined

as

Bi(p) = piBi + ρi(p)Bi

where piBi =
[
(1− wi(pi))1−η − 1

]
captures the benefits from the intended consequences and

is always non-negative. ρi(p)Bi =
[
(1− wci (p))

1−η − 1
]
represents the benefits of the unintended

consequences which can be both positive and negative. Assuming that the unintended consequences
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are not both large and also negative, such that 1+
∑N
i=1Bi(p) > 0, then for all i the policy decision

maker should choose a policy vectorp that solves the problem

max
p

V =

{
1 +

∑N
i=1Bi(p)∏n

i=1 (1 +Ki(pi))

}
s.t. pi ∈ [0, 1] (5)

Note that there is one important assumption behind this result. The unintended consequences

cannot be large and negative. If they are, then 1 +
∑N
i=1Bi(p) < 0 and maximizing V is actually

equivalent to minimizing welfare. Thus, the policy recommendations will reduce welfare as much

as possible. In the rest of the paper I assume that the unintended consequences are such that they

meet the requirement that 1 +
∑N
i=1Bi(p) > 0.

As in Martin and Pindyck [2015], the set of catastrophes can be divided into three groups. There

are catastrophes i where discounted net present welfare is strictly increasing in pi, such that the

policy decision maker should do what they can to avert the catastrophe, i.e. setting pi = 1. The

cost-benefit trade off for these catastrophes are such that the relative rate of change in benefits is

larger than the relative rate of change in costs

∂
∂pi

∑n
i=1Bi(p)

1 +
∑n
i=1Bi(p)

>

∂Ki(pi)
∂pi

1 +Ki(pi)

In addition there are catastrophes that should be partially alleviated. These catastrophes satisfy

the criterion

∂
∂pi

∑n
i=1Bi(p)

1 +
∑n
i=1Bi(p)

=

∂Ki(pi)
∂pi

1 +Ki(pi)

This criterion also yields the optimal scaling of pi when pi ∈ (0, 1). Finally, for some catastrophes

the discounted net present welfare is strictly decreasing in pi, and the policy decision maker should

do nothing. This implies that the relative rate of change in benefits is smaller than the relative rate

of change in costs,

∂
∂pi

∑n
i=1Bi(p)

1 +
∑n
i=1Bi(p)

<

∂Ki(pi)
∂pi

1 +Ki(pi)

If there does not exist any dependencies then we will have no unintended consequences. Thus, to

make it easier to compare the optimal solution with and without dependencies, I rewrite the benefit

side in terms of the intended and unintended consequences

∂
∂pi

∑n
i=1Bi(p)

1 +
∑n
i=1Bi(p)

=

∂piBi

∂pi
+ ∂

∂pi

∑n
i=1 ρi(p)Bi

1 +
∑n
i=1 piBi +

∑n
i=1 ρi(p)Bi

(6)
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Remember that when all policy measures are mutually independent, ∂
∂pi

∑n
i=1 ρi(p) = 0 and∑n

i=1 ρi(p) = 0 for all i.

Note that, dependent or not, the optimal solution is characterized by the relationship between

the relative rates of change in cost and benefits. The cost of introducing a policy i and scaling it

pi is the same no matter what the dependencies are, thus the cost side provides a fixed point for

analyzing the effect of including dependencies in the framework. We can use this to investigate

when ignoring dependencies causes us to recommend too much or too little policy action.

Result 2: Dependencies and the optimal set

If the relative rate of change in the benefits from the unintended consequences are larger than the

relative rate of change in the benefit from the intended consequence,

∂
∂pi

∑n
i=1 ρi(p)∑n

i=1 ρi(p)
>

∂Bi(pi)
∂pi

1 +
∑n
i=1Bi(pi)

then it must be that
∂
∂pi

∑n
i=1Bi(p)

1 +
∑n
i=1Bi(p)

>

∂Bi(pi)
∂pi

1 +
∑n
i=1Bi(pi)

and we pick pi < p∗i . The opposite is true when the relative rate of change in the benefits from the

intended consequences are smaller than the relative rate of change in the benefits from the intended

consequences.

If dependencies exist and we ignore them, then we either underestimate or overestimate the

relative rate of change in benefits. Thus, we pick a pi that is sub-optimal. Given the example

above, if the policy decision maker ignores dependencies and find it is optimal to partially alleviate

catastrophe i then we know that

∂
∂pi

∑n
i=1Bi(p)

1 +
∑n
i=1Bi(p)

>

∂Bi(pi)
∂pi

1 +
∑n
i=1Bi(pi)

=

∂Ki(pi)
∂pi

1 +Ki(pi)

The policy decision maker should actually prevent catastrophe i and not partially alleviate it. The

driving force behind this is that the unintended effects of pi on in this case catastrophe j are

such that the relative marginal benefit of the unintended effects from i are larger than the relative

marginal cost of j. Martin and Pindyck [2015] argue that because projects to avert catastrophes are

non-marginal it creates a interdependency among projects such that standard cost benefit analysis

may caused biased results. I have shown that this is a simplification and that, unless the additional

dependencies among the policy measures are insignificantly small, their framework causes sub-

optimal policy recommendations. When including dependencies into the framework it also opens
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the possibility that the unintended consequences are so large and negative that the approach used

in Martin and Pindyck [2015] will result in policy recommendations that minimize welfare, instead

of maximizing welfare.

In the next section I illustrate how the optimal policy set changes when we allow for dependencies

between a climate catastrophe and natural disasters

2.2 Numerical example

Assume that the likelihood of catastrophic climate change is correlated with the likelihood of storms

and hurricanes, such that averting or partially alleviating a climate catastrophe also reduces the

likelihood of these two natural disasters. Let’s also assume that policies aimed at reducing the

likelihood of bioterrorism also reduce the likelihood of nuclear terrorism and mega-virus. I as-

sume a positive linear correlation between them, such that a 5% correlation implies that averting

bioterrorism reduces the likelihood of nuclear terrorism and mega-virus by 5%.

In order to make the example similar to the examples in Martin and Pindyck [2015], I use the

same parameter values and functional form. An overview of these can be found in the Appendix of

this paper.

When the index of relative risk aversion is low (η = 2) Martin and Pindyck’s [2015] numerical

example show that it is not optimal to avert a climate catastrophe. In contrast, Figure 1 illustrates

that if averting climate catastrophe reduces the likelihood of storms and hurricanes by at least

7,5%, it is optimal to avert a climate catastrophe. When relative risk aversion is low the original

decision to not avert a climate catastrophe is not robust in the presence of even small correlations.

The numerical results provided in Martin and Pindyck [2015] show that when relative risk

aversion is high (η = 4) it is not optimal to avert bioterrorism. But, if averting bioterrorism

reduces the likelihood of nuclear terrorism and a mega-virus by at least 6%, then it is in fact

optimal to avert bioterrorism.
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Figure 1: Example of how the optimal policy for bioterrorism and catastrophic climate change
changes from not avert to avert if we consider possible correlations.
The likelihood of storms and hurricanes occurring is positively correlated with the likelihood of a
climate catastrophe and the likelihood of nuclear terrorism and a mega-virus is positively correlated
with the likelihood of bioterrorism. η is the relative rate of risk aversion.

3 Averting catastrophes under economic boundaries

3.1 Binding total costs and benefits from above

When deciding whether or not to avert or partially alleviate a range of catastrophes the deci-

sion maker is likely to be facing other non-catastrophic social planning problems that require re-

sources. Thus, there exists a upper bound on the total fraction of consumption the policy deci-

sion maker can spend on averting catastrophes. I impose an arbitrary bound called T such that

T ≥
∏n
i=1 (1 +Ki(pi)) where T can be mapped to a upper constraint on the total consumption tax.

I attach the multiplier ζ to the constraint and assume the constraint is binding. If the constraint

is not binding we have an interior solution and the optimal policy set is the same as for the uncon-

strained problem. I solve (5) with the constraint imposed and rewrite the expression such that the

cost side of the criterion remains the same as before. With a constraint on total cost, the benefit

side of the criterion can be written as,

∂
∂pi

∑N
i=1Bi(p)

1 +
∑n
i=1Bi(p) + ζT 2
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where T =
∏N
i=1 (1 +Ki(pi)). Since the intuition is the same as for the unconstrained problem, we

should partially alleviate catastrophe i if

∂
∂pi

∑N
i=1Bi(p)

1 +
∑n
i=1Bi(p) + ζT 2

=

∂Ki(pi)
∂pi

1 +Ki(pi)

Since both ζ > 0 and T > 0, we have that

∂
∂pi

∑N
i=1Bi(p)

1 +
∑N
i=1Bi(p)

>

∂
∂pi

∑N
i=1Bi(p)

1 +
∑N
i=1Bi(p) + ζT 2

=

∂Ki(pi)
∂pi

1 +Ki(pi)
(7)

The relative rate of change in costs is the same, but the benefit side is smaller. The constrained

criterion provides less slack than the unconstrained case and the optimal policy set shrinks. This is

also true if I apply a upper bound on benefits. In theory it is possible that consumers are willing to

spend almost all of their consumption on averting catastrophes with small probabilities and large

damages, see for example Geweke [2001]. In addition, WTP can be correlated with the overall

economy of the country. This is especially true for this framework, where the WTP is given as a

fraction of consumption. I impose an arbitrary upper bound on the willingness to pay. This implies

the total benefits of any policy set is bounded from above by B. I attach the multiplier β to the

constraint and assume the constraint is binding. The benefit side can be written as,

∂
∂pi

∑N
i=1Bi(p) (1− β

∏n
i=1 (1 +Ki(pi)))

1 +
∑N
i=1Bi(p)

Since
∏N
i=1 (1 +Ki(pi)) > 0 and 0 < β < 1 ,

∂
∂pi

∑N
i=1Bi(p)

1 +
∑N
i=1Bi(p)

>

∂
∂pi

∑N
i=1Bi(p)

(
1− β

∏N
i=1 (1 +Ki(pi))

)
1 +

∑N
i=1Bi(p)

(8)

Thus, binding benefits from above also shrinks the optimal policy set. With a more strict criterion

it makes sense that we should focus on averting catastrophes with the highest ratio of relative rate

of change in benefits to relative rate of change in costs. In other words, averting the catastrophes

that give us the most bang for our buck.

Let RMi∆(p) be the ratio of relative rate of change in benefits to relative rate of change in cost.

It is defined as

RMi∆(p) =

∂
∂pi

∑N
i=1Bi(p)

1 +
∑N
i=1Bi(p)

1 +Ki(pi)
∂Ki(pi)
∂pi

Let’s use this to develop a rule for a sequential approach for choosing among projects. For example,

if we avert or partially alleviate only one catastrophe, which one would we pick?
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Result 3: Rule for sequential approach

The first catastrophe we should fully or partially alleviate, even when there exists a given a set of

constraints on either WTP or tax, is the one with the largest ratio of relative rate of change in

benefits relative to relative rate of change in costs above one. Pick catastrophe i such that

{RMi∆(p) ≥ RMj∆(p)|RMi∆(p)) ≥ 0} , ∀j 6= i

As we will see, this is exactly what happens in the numeric examples in this paper. Using the

parameter values in Martin and Pindyck [2015] I determine which catastrophes should be averted

for a range of different constraints on both WTP and consumption tax. Catastrophes that are not

optimal to avert or partially alleviated are excluded from Figure 2.

Figure 2: Constraint on taxation and the optimal scaling of policy vector p. η is rate of relative
risk aversion

If there is no constraint on taxation and the relative risk aversion is low (η = 2), it is optimal

to avert five catastrophes. Such a policy action requires the equivalent of a 11,5% taxation on

consumption. If there is no constraint on taxation and the relative risk aversion is high (η = 4) it

is optimal to avert four catastrophes; this requires a 10,5% tax on consumption. Any boundary set

above this has no effect on the optimal policy set.

With a very strict constraint on taxation, then, it is only optimal to avert a mega-virus catas-

trophe. This result holds for both levels of the relative risk aversion. If society can spend 5%

of consumption on averting catastrophes we should avert avert a mega-virus catastrophe for both

levels of relative risk aversion. If η = 2 the society should also avert floods and reduce the likelihood

of nuclear terrorism by 1/3 or, if η = 4, reduce the likelihood of a climate catastrophe by 3/4.

The results of binding WTP from above is similar and can be seen in Figure 3.
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Figure 3: Constraint on WTP and the optimal scaling of policy vector p. Relative risk aversion η

The willingness to pay to avert the optimal set when relative risk aversion is low is 31% of

consumption and 41% of consumption when it is high. Any boundary set above this has no effect

on the optimal policy set. If the willingness to pay is restricted such that a society is only willing

to pay at most 20% of the consumption, the optimal policy bundle shrinks to avert a mega virus

and floods when η = 2 and only a mega-virus if η = 4.

Introducing constraint on costs or benefits that are binding clearly changes the optimal policy

set. The numerical analysis shows that, given these parameter values, the catastrophe the policy

decision maker should focus on averting is a mega-virus catastrophe.

3.2 Constraints on risk

In the real world some catastrophes may dominate both media and policy agendas. Such catastro-

phes are likely to receive more attention from policy decision makers than others. For this reason,

policy decision makers may be interested in reducing the likelihood of a given catastrophe so that

it falls below some threshold.

Let λmaxi be the maximum likelihood of catastrophe i that society (or the social planner) is

willing to accept and assume 0 < λmaxi < λi. I attach the multiplier πi and assume the constraint

is binding. The cost side remains the same, but the benefit side of the criterion is

∂
∂pi

∑N
i=1Bi(p) + πiλipi

∏N
i=1 (1 +Ki(pi))

1 +
∑N
i=1Bi(p)

Since πi > 0 and λipi > 0,

∂
∂pi

∑N
i=1Bi(p) + πiλipi

∏N
i=1 (1 +Ki(pi))

1 +
∑N
i=1Bi(p)

>

∂
∂pi

∑N
i=1Bi(p)

1 +
∑N
i=1Bi(p)

(9)
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This is not surprising, and it basically implies that if we impose an upper constraint on the

likelihood of catastrophe i we should increase the scaling of the relevant measure. For catastrophes

that are not optimal to avert or partially alleviate, this is a direct result of the constraint forcing

us to scale up the policy. What is more interesting is what happens to the optimal scaling of policy

measure i if there exist a constraint on the likelihood of another catastrophe, say k. The benefit

side of the criterion is now

∂
∂pi

∑N
i=1Bi(p) + πkλk

(
∂pk(p)
∂pi

)∏N
i=1 (1 +Ki(pi))

1 +
∑N
i=1Bi(p)

(10)

The last expression in (9) depends on the value of ∂pk(p)∂pi
. If ∂pk(p)∂pi

> 0 an increase in i decreases

the likelihood of catastrophe k and vice versa. This implies that

• If ∂ρk(p)
∂pi

< 0, the second term is negative, and the optimal scaling is characterized by

pno constrainti > pconstrainti

• If ∂ρk(p)
∂pi

> 0, the second term is positive, and the optimal scaling is characterized by

pno constrainti < pconstrainti

• If ∂ρk(p)∂pi
= 0, the second term is zero, and the optimal scaling is characterized by pno constrainti =

pconstrainti

The next numerical example combines a binding upper constraint on the maximum likelihood

of a climate catastrophe with different constraints on WTP and taxation. The example can be

seen in Figure 4 and illustrates how introducing a binding upper constraint on risk can reduce

welfare. If there is no constraint on WTP or taxation, the reduction in welfare compared to

the optima is small. Introducing constraints on WTP and taxation yields a larger reduction in

welfare. For example, if the policy decision maker can only spend 2.5% of consumption on averting

catastrophes, reducing the likelihood of a climate catastrophe by half yields an 11% reduction in

welfare compared to the unconstrained case. The point here is that, with these parameter values,

there exists other catastrophes with a much larger ratio of relative rate of change between benefits

and costs (RMi∆(p)), than a climate catastrophe. Introducing an upper constraint on the likelihood

of a climate catastrophe forces these catastrophes out of the optimal policy set, and this yields a

drop in welfare.
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Figure 4: The welfare loss of imposing an upper constraint on the likelihood of a climate catastrophe
combined with constraints on WTP and taxation. (10% constraint implies that taxation or WTP
cannot exceed 10% of consumption)

4 Averting catastrophes when risk is time-dependent

In Martin and Pindyck [2015], log consumption follows a homogeneous Poisson process and the

mean arrival rate for all catastrophes is constant over time. The assumption that the mean arrival

rate is constant may not hold for all catastrophes. Take catastrophic climate change for example:

If we choose to do nothing and continue the development path we have today is it likely that

the probability of a climate catastrophe occurring is the same today and 50 years into the future?

Probably not. For catastrophes where accumulation occurs or a tipping point exists, it is reasonable

to assume that the mean arrival rate will increase with time.

The WTP to avert catastrophe i or a set S is derived by setting the discounted net present

welfare of doing nothing equal to the discounted net present welfare of averting i or set S. A

change in the likelihood of one catastrophe occurring, therefore, does not only affect the WTP

to avert the catastrophe it self, it also affects the WTP to avert all the other catastrophes. This

extension shows how to easily adapt the framework to one or more catastrophes with non-decreasing

mean arrival rate and what the implications of this may be.

4.1 Model reformulation

Let log consumption follow an inhomogenous Poisson process. An inhomogeneous Poisson process

is similar to an ordinary Poisson process except that the mean arrival rate is time dependent. This

allows for seasonal fluctuations in the likelihood of a catastrophe occurring, or for the likelihood to

be non-decreasing in time. The mathematical cost of this is that we lose the property of stationary

increments, which is one of the properties of Levy processes.
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Let Qi(t) be the counting process of an inhomogeneous Poisson process for catastrophe i with

known intensity function λi(t). Note that λi(t) is a deterministic function of time t. The cumulative

intensity function is Λi(t) =
´ t
0
λi(τ)dτ . For the inhomogeneous Poisson process the probability of

Qi(t) being equal to mi is given by

P {Qi(t) = mi} =
Λi(t)

mi

mi!
e−Λi(t)

I assume that λi(t) is a non-decreasing function of time t and define it as

λi(t) =

 fi(t) if τ ∈ [0, t′i]

λmaxi if else


This implies that the mean arrival rate is increasing in t until it reaches an upper level λmaxi at

time t = t′i. The cumulant intensity function is then defined as

Λi(t) =


´ t
0
fi(t)dt = Fi(t) if t ∈∈ [0, t′i]´ t

0
λmaxi dt = λmaxi t if else


Assume there are N catastrophes, and that catastrophes i = 1, .., k have a mean arrival rate that

is non-decreasing in time t. Let

ri(t) =

 Λi(t) if i = 1, .., k

λit if else


such that the cumulant generating function in time t is

κt(θ) = θgt+

n∑
i=1

ri(t)
(
Ee−θφi − 1

)
Assume i = 1, .., k is ordered such that t′i−1 < t′i for all i and that t′0 = 0. The discounted net

present welfare of doing nothing is

W0 =
1

1− η

ˆ ∞
0

e−δteκt(1−η)dt

which can be calculated by splitting the integral

W0 =
1

1− η

k−1∑
i=0

(ˆ t′i+1

t′i

e−δteκt(1−η)dt

)

Integration is complicated by the functional form of fi(t). The effect of introducing one or more

catastrophes with a non-decreasing mean arrival rate are illustrated easiest through numerical
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examples. Still, there are some general conclusions that can be drawn. Assume i = 1 and let w

denote WTP. One possible reasonable simplification is to choose the constant mean arrival rate to

be a value in the range between the minimum and maximum, λ ∈ [λ0, λ
max].

• Constant mean arrival rate as a minimum = underestimates WTP and vice versa:

Setting λ = λ0, implies that w(λ) < w(λ(t)). The opposite is true for λ = λmax.

Another reasonable simplification is to set the constant mean arrival rate to be the average of the

non-decreasing mean arrival rate, but this overestimates WTP.

• Constant mean arrival rate as an average of the intensity function is overesti-

mating WTP: If we simplify and use the original framework with λ = λ(t) , then because

t → ∞ we pick λ = λmax. This is equivalent to setting t′ = 0. Thus w(λ) > w(λ(t)) as long

as the discount factor is non-zero.

There is a clear relationship between the WTP and when the mean arrival rate reaches the maximum

value. The earlier in time the maximum value is reached, the higher is the WTP to avert the

catastrophe. Because this provides an increase in background risk, it also increases the WTP to

avert other catastrophes.

• Relationship between WTP and the stop time t′: For t′ < t′′, t′ reaches λmax faster

than t′′, then w(t′) > w(t′′).

When the mean arrival rate is non-decreasing time plays a role in two different dimensions. It

increases the likelihood of the catastrophe occurring, thus also increasing the benefits of averting

the catastrophe. In contrast to this, we value the benefits from averting the catastrophe less because

the largest benefits of doing so now occur further into the future.

• The importance of discounting: Let δ be the discount rate. Because of discounting there

exist t′ and t′′ such that for t′ < t′′ we have w(t′′) = w(t′). Then δm > δnimplies that if

w(t′, δn) = w(t′′, δn) for t′ and t′′ then w(t′, δm) > w(t′′, δm). Discounting plays a even more

important role when the mean arrival rate is non-decreasing.

This extension is related to earlier mentioned work by Tsur and Zemel [2017] on intertemporal poli-

cies to manage multiple catastrophes. Whereas I simply assume that the likelihood of a catastrophe

occurring depends on time, Tsur and Zemel [2017] specify the underlying relationship. They as-

sume the likelihood is increasing in some state variable. In the context of a climate catastrophe this

state variable can be the atmospheric GHG concentration, and it evolves over time depending on

abatement efforts and emissions output. Tsur and Zemel [2017] allow for partial alleviation (here:
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abatement efforts) to be smoothed over time. I assume that the decision is made at time t = 0.

The aim of my extension is to, in an intuitive way, show how including an intertemporal dimension

can change policy recommendations. For example how the different approaches to choosing the

constant mean arrival rate affects the WTP, and how ignoring the intertemporal dimension may

underestimate the WTP for efforts to avert a climate catastrophe. To illustrate the latter I use

a numerical example. This example looks at both the effect on WTP and the optimal policy set

when the likelihood of a climate catastrophe is non-decreasing in time.

4.2 Numerical example

Assume that the likelihood of a climate catastrophe (i = 2) is non-decreasing in time. The intensity

function is defined as

f(t) = λ02 + αtβ

such that

F (t) = t

(
λ02 +

αtβ

β + 1

)
I introduce three different values for λ02 and λmax2 and let β = 0.25. The rest of the parameter

values remain the same as in the original article by Martin and Pindyck [2015]. The minimum and

maximum values of the mean arrival rate are symmetrically picked around the original constant

mean arrival rate λ2 = .004. For the pair
{
λ02, λ

max
2

}
= {.002, .006} we are underestimating the

true WTP for averting a climate catastrophes as long as the mean arrival rate reaches its maximum

value less than 175 years into the future.

In the original article it is not optimal to avert a climate catastrophe when relative risk aversion

is low (η = 2). In Figure 5, as long as the stop time t is to the left of the yellow dotted line, it is

optimal to avert the catastrophe. This implies that, if the mean arrival rate reaches it maximum

value less of .006 less than 130 years into the future, we should avert a climate catastrophe.
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Figure 5: The WTP for averting a climate catastrophe when the mean arrival rate is non-decreasing
in time.
β = 0.25. λ2(t) reaches λmax2 at stop time t′. For each pair of λ-values if the stop time t′ is to the
left of the colored dotted line it is optimal to avert the catastrophe. Relative risk aversion η = 2.

For the pair
{
λ02, λ

max
2

}
= {.003, .005} we are underestimating the true WTP for averting a

climate catastrophe as long as the mean arrival rate reaches it maximum value less than 100 years

into the future. If we reach the maximum mean arrival rate of .005 before 50 years into the future

we should, given these parameter values, avert the climate catastrophe. The further into the future

stop time t′ is, the lower the WTP to avert the catastrophe. The reason for this is that the largest

benefits of averting a catastrophe occur when the likelihood is the highest. If this happens too far

into the future, these benefits will be “discounted away”. I have argued earlier that the assumption

that the mean arrival rate of the climate catastrophe is constant is not realistic. Figure 5 shows

how we risk underestimating the WTP to avert such a catastrophe and how it causes us to make

sub-optimal policy decisions. For low relative risk aversion (η = 2) we should not avert a climate

catastrophe when the mean arrival rate is constant, but Figure 5 shows how this may be subject

to change. For example, if we believe that instead of the likelihood being 0.004 it is instead 0.002

today, and that if we do nothing(!) this will increase to 0.006 in the next 100 years, we should take

measures to avert a climate catastrophe.

Increasing the likelihood of one catastrophe occurring over time also results in an increase in

background risk. This increase causes a increase in the willingness to pay to avert other catastrophes.

The further into the future a climate catastrophe reaches it maximum likelihood of occurring, the
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smaller the effect of the background risk from this catastrophe will be. This is because we discount

future net benefits. This is clearly illustrated in Figure 6.

In contrast to Martin and Pindyck [2015], Tsur and Zemel [2017] find ambiguous effects when it

comes to the effect of background risk. My work show similar results. We can see in Figure 6 that

the WTP to avert other catastrophes is increasing in the beginning, even though this is where the

effect of background risk should be the strongest.

Figure 6: The WTP to avert a mega-virus and earthquakes when the mean arrival rate for a climate
catastrophes (i = 2) is non-decreasing in time.
β = 0.25.λ2(t) reaches λmax2 at stop time t′. For each pair of λ-values if the stop time t′ is to the
left of the colored dotted line it is optimal to avert the catastrophe. Relative risk aversion η = 2.

For the pairs {.003, .005} and {.002, .006} we underestimate the WTP for averting a mega-virus

catastrophe and earthquakes if the mean arrival rate of a climate catastrophe reaches it’s maximum

value before 200 years into the future.

5 Conclusion and summary

The main motivation of this paper is to analyze how different dependencies affect policy recommen-

dations for managing multiple catastrophes. I have demonstrated how the model in Martin and

Pindyck [2015] can be extended to include policy measure dependencies, economic boundaries and

time-dependent risk. The effect of the extensions are illustrated both using analytical results and

numerical examples.

In the original paper Martin and Pindyck [2015] assume there are no dependencies between policy

measures or between catastrophes. When this assumption is removed we see how the relationship

between the WTP to avert a set of catastrophes and the sum of the individual WTP to avert the

catastrophes in the set depends on the nature of dependencies. The relationship introduced in the

original paper only holds for simple dependencies such as linear relationships where there is no
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interaction between terms. Dependencies also have an effect on the optimal choice and scaling of

policy. If the relative rate of change in the benefits from the unintended consequences of the policy

measure are larger than the relative rate of change in the benefit from the intended consequences

of the policy measure, we should scale the policy measure higher than we would if there were no

dependencies. The reason for this is that we ignore the possibility that the unintended benefits have

a lower marginal cost than the intended benefits. In general if dependencies are overlooked will lead

to sub-optimal policy recommendations. In the numerical examples it is obvious that the policy

recommendations change for even small correlations between the catastrophes. For example, when

relative risk aversion is low we should not avert a climate catastrophe unless averting a climate

catastrophe decreases the likelihood of storms and floods by 7,5%.

Binding either WTP or consumption taxation provides a stricter criterion for which catastrophes

should be averted or partially alleviated, keeping only the catastrophes with the largest ratio of

relative rate of change in benefits to relative rate of change in costs in the optimal policy set. For

example, with strict constraints on either costs or benefits, the only catastrophe we should avert is

a mega-virus catastrophe. The effect of a constraint on risk depends on the nature of dependencies.

If the constraint is on catastrophe k and there are no dependencies between catastrophe i and k, the

constraint has no effect on the optimal scaling of the policy action to avert catastrophe i. If there

are synergistic relationships, we should scale up the policy measure to avert catastrophe i and the

opposite for mitigating relationships. The numerical example also illustrate that such constraints

reduce overall welfare.

In the Martin and Pindyck’s [2015] original model, all catastrophes have a constant likelihood

of occurring. For catastrophes where accumulation occurs or a tipping point exist, the likelihood

is likely to increase with time. One such example is a climate catastrophe. If the mean arrival

rate of one catastrophe is non-decreasing in time it implies the largest benefits from averting the

catastrophe occurs in the future. This emphasizes the importance of the choice of discount rate.

The point is illustrated by looking at the example of a climate catastrophe. The minimum and

maximum values of the mean arrival rate were symmetrically chosen around the constant mean

arrival rate. When relative risk aversion is low and the mean arrival rate is constant it is not

optimal to avert a climate catastrophe. In contrast, when the mean arrival rate is non-decreasing,

this result is not robust. The numerical examples also show ambiguous effects when it comes to the

effect of background risk.

The extensions presented in this paper make the framework more complex and maybe less in-

tuitive, but they also reflect real world issues. The results underline the importance of evaluating

policy measures to avert catastrophes as a set. One lesson that we can take from Martin and
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Pindyck [2015] is that because of the non-marginal nature of catastrophe we should not evaluate

policy measures to avert a climate catastrophe in isolation My argument goes further than Martin

and Pindyck’s [2015]. In addition to interdependencies caused by non-marginal projects and back-

ground risk, we should not evaluate in isolation because of possible policy dependencies, economic

boundaries and time-dependent risk. This paper illustrates how policy dependencies cause bias in

both WTP and the optimal policy set. The magnitude and size of the bias depends on the nature

of the policy dependencies. Thus, more more empirical research on the existence and nature of

policy dependencies is needed.
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Appendix

Parameter values

zi = e−φi is distributed according to the power distribution with parameter αi > 0, such that

b(zi) = αiz
αi−1
i with 0 ≤ zi ≤ 1. Growth rate g = 0.02 and discount rate δ = 0.02

Potential catastrophe λi βi τi

Mega-virus 0.02 5 0.02

Climate 0.004 4 0.04

Nuclear terrorism 0.04 17 0.03

Bioterrorism 0.04 32 0.03

Floods 0.17 100 0.02

Storms 0.14 100 0.02

Earthquakes 0.03 100 0.01

Table 1: Parameter values Martin and Pindyck [2015]

Results from original article

Potential catastrophe η = 2 η = 4

wi Avert=1 wi Avert=1

Mega-virus 0.159 1 0.309 1

Climate 0.048 0 0.180 1

Nuclear terrorism 0.086 1 0.141 1

Bioterrorism 0.047 1 0.079 0

Floods 0.061 1 0.096 1

Storms 0.051 1 0.082 0

Earthquake 0.011 0 0.020 0

Table 2: Results Table 1 Martin and Pindyck [2015]

Proofs

Proof: Result 1

LetκS(θ) be the CGF for the intended consequences and κSc (θ) the CGF for the unintended conse-

quences. Because pi(p) = pi + ρi(p) the cumulant generating function can be split into two parts

such that,

κS(θ) = κS(θ) + κSc (θ)− κ(θ) ∗
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and similar for i. Then

∑
i∈S

δ − κi(θ)
δ − κ(θ)

=
∑
i∈S

δ − κi(θ)− κic(θ) + κ(θ)

δ − κ(θ)

Remember that
∑

i∈S κ
i(θ) = (S − 1)κ(θ) + κS(θ), such that

∑
i∈S

δ − κi(θ)
δ − κ(θ)

=
Sδ + κ(θ)− κS(θ)−

∑
i∈S κ

i
c(θ)

δ − κ(θ)

Insert for κS(θ) using * (κS(θ)− κSc (θ) + κ(θ) = κS(θ)), this yields

∑
i∈S

δ − κi(θ)
δ − κ(θ)

=

(
δ − κS(θ)

)
+
{∑

i∈S
(
δ − κic(θ)

)
−
(
δ − κSc (θ)

)}
δ − κ(θ)

∗ ∗

We have that

δ − κi(θ)
δ − κ(θ)

− 1 = (1− w(pi))
1−η − 1

and similar for all other. Notation: w(pi) is the total WTP for policy measure i,wc(pi) is the

WTP for the unintended consequences caused by policy measure i andwc(ps) is the WTP for the

unintended consequences caused by policy set S. Then * * can be rewritten to

(1− w(ps))
1−η−1 =

∑
i∈S

(
(1− w(pi))

1−η − 1
)

+

{(
(1− wc(ps))

1−η − 1
)
−

(∑
i∈S

(1− wc(pi))
1−η − 1

)}
∗∗∗

Since (from Martin and Pindyck’s [2015] original result)

(1− wc(ps))
1−η − 1 =

∑
i∈S

{(
(1− wci (ps))

1−η − 1
)}

I can rewrite * * * such that

(1− w(ps))
1−η−1 =

∑
i∈S

(
(1− w(pi))

1−η − 1
)

+
∑
i∈S

((1− wci (ps))
1−η − 1

)
−
∑
j∈S

(
(1− wci (pj))

1−η − 1
)

�

Proof: Unconstrained maximization

max
p

V =

{
1 +

∑n
i=1Bi(p)∏n

i=1 (1 +Ki(pi))

}
s.t. pi ∈ [0, 1]
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Attach multipliers γi to constraint 0 ≥ pi − 1 and µi to 0 ≥ −pi, the Lagrangian is L = V (p) +∑N
i=1 γi (1− pi) +

∑N
i=1 µi (pi) and the solution is given by ∂V

∂pi
= µi − γi. For the corner solution

pi = 0 I have that ∂V
∂pi

= −µi, which implies

∂
∂pi

∑N
i=1Bi(p)

1 +
∑N
i=1Bi(p)

<

∂Ki(pi)
∂pi∏N

i=1 (1 +Ki(pi))

For the corner solution pi = 1 I have that ∂V
∂pi

= γi, which implies

∂
∂pi

∑N
i=1Bi(p)

1 +
∑N
i=1Bi(p)

>

∂Ki(pi)
∂pi∏N

i=1 (1 +Ki(pi))

and finally for the interior solution I have that ∂V
∂pi

= 0, which implies

∂
∂pi

∑N
i=1Bi(p)

1 +
∑N
i=1Bi(p)

=

∂Ki(pi)
∂pi∏N

i=1 (1 +Ki(pi))

Proof: Constrained maximization - taxation

max
p

V =

{
1 +

∑n
i=1Bi(p)∏n

i=1 (1 +Ki(pi))

}
s.t. pi ∈ [0, 1]

and T ≥
∏N
i=1 [1 +Ki(pi)]. The Lagrangian is L = V (p) +

∑N
i=1 γi (1− pi) +

∑N
i=1 µi (pi) +

ζ
(
T −

∏N
i=1 [1 +Ki(pi)]

)
. The solution is given by ∂V

∂pi
−ζ ∂Ki(pi)

∂pi
= µi−γi. I assume the constraint

T ≥
∏N
i=1 [1 +Ki(pi)]is binding. For the corner solution pi = 0 I have that ∂V

∂pi
− ζ ∂Ki(pi)

∂pi
= −µi,

which implies

∂
∂pi

∑N
i=1Bi(p)(

1 +
∑N
i=1Bi(p) + ζT 2

) < ∂Ki(pi)
∂pi∏N

i=1 (1 +Ki(pi))

For the corner solution pi = 1 I have that ∂V
∂pi
− ζ ∂Ki(pi)

∂pi
= γi, which implies

∂
∂pi

∑N
i=1Bi(p)(

1 +
∑N
i=1Bi(p) + ζT 2

) > ∂Ki(pi)
∂pi∏N

i=1 (1 +Ki(pi))

and finally for the interior solution I have that ∂V
∂pi
− ζ ∂Ki(pi)

∂pi
= 0, which implies

∂
∂pi

∑N
i=1Bi(p)(

1 +
∑N
i=1Bi(p) + ζT 2

) =

∂Ki(pi)
∂pi∏N

i=1 (1 +Ki(pi))

For all pi ∈ [0, 1] the benefit side of the criterion is given by

∂
∂pi

∑N
i=1Bi(p)(

1 +
∑N
i=1Bi(p) + ζT 2

)
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while the cost side remains the same.

Proof: Constrained maximization - WTP

max
p

V =

{
1 +

∑n
i=1Bi(p)∏n

i=1 (1 +Ki(pi))

}
s.t. pi ∈ [0, 1]

andB ≥
∑N
i=1Bi(p). The Lagrangian is L = V (p)+

∑N
i=1 γi (1− pi)+

∑N
i=1 µi (pi)+β

(
B −

∑N
i=1Bi(p

)
.

The solution is given by ∂V
∂pi
− β

(
∂
∂pi

∑N
i=1Bi(p)

)
= µi − γi. I assume the constraint B ≥∑N

i=1Bi(p) is binding. Following the same procedure as above, this yields the benefit side

∂
∂pi

∑N
i=1Bi(p))

(
1− β

∏N
i=1 (1 +Ki(pi))

)
(

1 +
∑N
i=1Bi(p)

)
leaving the cost side the same.

Proof: Constrained maximization - Risk

max
p

V =

{
1 +

∑n
i=1Bi(p)∏n

i=1 (1 +Ki(pi))

}
s.t. pi ∈ [0, 1]

and λmaxk ≥ λk(1 − pk(p)). The Lagrangian is L = V (p) +
∑N
i=1 γi (1− pi) +

∑N
i=1 µi (pi) +

πk (λmaxk − λk(1− k(p))). The solution is given by ∂V
∂pi

+ πkλk
∂pk(p)
pi

= µi − γi. This yields the

benefit side
∂
∂pi

∑N
i=1Bi(p) + πkλk

∂pk(p)
∂pi

∏N
i=1 (1 +Ki(pi))

(1 +
∑n
i=1Bi(p))

and if k = i
∂
∂pi

∑N
i=1Bi(p) + πkλkpi

∏N
i=1 (1 +Ki(pi))

(1 +
∑n
i=1Bi(p))

leaving in both cases the cost side the same.
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