# Emissions of N<sub>2</sub>O, CH<sub>4</sub>, and CO<sub>2</sub> from VEAS waste water treatment plant.



Lars R Bakken, UMB Anne Kari Marsteng, VEAS Shahid Nadeem, UMB

### March 2012.

Corresponding author: Lars R. Bakken, Department of Plant and Environmental Sciences, Norwegian University of Life Sciences. Email: lars.bakken@umb.no. Webpage: <u>http://www.umb.no/nitrogengroup/</u>

## Abstract:

In the IPCC guidelines for national climate gas inventories (Sandmo 2011), the default for estimating N<sub>2</sub>O emission from Wastewater Treatment Plants is that N<sub>2</sub>O emission is 2% of "processed" nitrogen; i.e. nitrogen removed by through precipitation (sludge) and nitrification + denitrification. Based on previous measurements at an early stage of the development of the VEAS process, it was hypothesized that the performance of the plant is much better than this (i.e. a lower percentage of processed N emitted as N<sub>2</sub>O). We tested this by measuring N<sub>2</sub>O emissions at various spots within the treatment plant, as well as the concentrations of N<sub>2</sub>O in the liquid phase throughout, including the exit water. This was done at 12 occasions throughout a period of 124 days, starting February 2, 2011, thus covering a range of operational conditions regarding water temperature (which is very low in winter) and various loading (high precipitation leads to high water flow with low concentrations of nutrients). Finally we tested the performance of the entire WWTP by sampling the exhaust gas from the entire plant which is collected and exits through a high chimney.

We also included measurements of  $CO_2$  and  $CH_4$  emissions in order to evaluate the performance of the WWTP with respect to all three relevant Green House Gases (GHG).

The results verified that the performance of the VEAS process with respect to  $N_2O$  emission is much better than the IPCC guidelines. On the average, the emission of  $N_2O$ -N to air from the entire plant (through the chimney) amounts to 0.2% of the processed N. If the  $N_2O$  lost as dissolved  $N_2O$  in the exit water is included, the percentage increase to 0.3. Single day values vary quite substantially, and the experimental data suggest that the performance of the plant can be improved by optimization of the routines.

Analysis of gas emissions within a single process hall showed that the nitrification reactors (NIT) emit most of the N<sub>2</sub>O (average 55 ± 30 (stdev) g N<sub>2</sub>O h<sup>-1</sup> from NIT), but a significant fraction of the N<sub>2</sub>O left the process hall dissolved in the exit water from the denitrification reactor ( $31 \pm 25$  g N<sub>2</sub>O-N h<sup>-1</sup>). This single process hall represents 1/12 of the entire plant; thus the estimated emission from all NIT-reactors amount to 660 ±360 N<sub>2</sub>O h<sup>-1</sup>. This is to be compared with the measured N<sub>2</sub>O emission from the entire plant based on analysis of the air ventilating through the chimney (460 ±340 g N2O-N h<sup>-1</sup>). It shows that process hall emission can account for all the N2O measured in the chimney.

The total emissions of CO<sub>2</sub> and CH<sub>4</sub> through the chimney were 803 kg CO<sub>2</sub>  $h^{-1}$  (±150) and 2.68 kg CH<sub>4</sub>  $h^{-1}$  (±0.66) (std dev). The nitrification+denitrification reactors account for most of this CO<sub>2</sub>, but for CH<sub>4</sub> the emission from nitrification + denitrification accounts for only 30%. Thus, there is a significant source of CH<sub>4</sub> emission within the plant in addition to the nitrification and denitrification reactor.

In terms of global warming  $CO_2$  –equivalents,  $CO_2$  emissions is the largest source (803 kg h<sup>-1</sup>), N<sub>2</sub>O is the second (215 kg h<sup>-1</sup>), and CH<sub>4</sub> is the lowest (54 kg h<sup>-1</sup>).

### **Background and introduction:** Description of the VEAS WWTP.

TheVEAS-WWTP is built in solid rock. Figure 1 shows a 3D drawing of the entire plant and Figure 2 shows the functional units and flows. Waste water flow = 9000 - 39500 m<sup>3</sup> h<sup>-1</sup>. Chemical characteristics of the wastewater entering the plant: pH 7,4, suspended material 236 mg/l, alkalinity 3,3 meqv/l, total organic Carbon (TOC) 90 mg/l, biological oxygen demand (BOF5) 164 mg/l, Chemical oxygen demand (KOF) 360 mg/l, total-phosphorous (Tot-P) 3,7 mg/l, total-nitrogen (TKN + NOX) 29 mg/l, ammonium 16,6 mg/l (all average values).

Nitrogen is removed from the wastewater through precipitation (33-43% of N removal) and through subsequent nitrification/denitrification (57 - 67 % of total N-removal). The average residence time in the nitrification (NIT) and denitrification (DEN) reactor is 0,3 h and 0.2 h, respectively. The C-source to the nitrification reactor is methanol.

For a more detailed description of the plant, see Sagberg et al. (1998)



Figure 1. Drawing (3D) of the entire plant. Hall 7 (marked) was used to measure gas emissions from nitrification and denitrification reactors.



## Figure 2. Flows and reaction cheme for the entire VEAS plant. In total there are 24 nitrification and 24 denitrifiation reactors. The emissions were measured from two reactors in Hall 7 (see Fig 1).

Characteristics and Operation of the nitrification reactor:

Since the nitrification reactor proved to be the most potent source of  $N_2O$ , special attention will be given to its operation. The following description is based on Sagberg et al (1998) and Mao et. al. (2008).

Each of the 24 reaction tanks contain  $\sim 350m^3$  upflow biofilters (Degremont BIOFOR) consisting of (lightweight) expanded clay aggregates (Leca) pellets. The pellets are 3–5mm in diameter, and have high density (1.24 gmL<sup>-1</sup>) compared to normal Leca. The pellets are coated with a nitrifying biofilm, built up through several years of continuous flow-through of mechanically purified wastewater rich in ammonium (0.5–2; average 1.2mM), with organic carbon [total organic carbon (TOC)= 35–45mg L\_1] and alkalinity (3,1 meqv L\_l). The wastewater is injected at the bottom of the reaction tank filled with Leca particles; aeration is secured by air injection with the incoming water; the average residence time of the water is 18 min; and the water-temperature range from 5 to 15 °C (seasonal variation). As the water flows through the reactor (100–180 L s<sup>-1</sup>, average 160), ~50% of TOC is removed, 30% by heterotrophic respiration and 20% by assimilation/adsorption (adding to the biofilm, which is partly removed by vigorous backwashing every 14 h). The calculated rate of heterotrophic respiration on the filter material during normal operation is 1–2 mmol CO<sub>2</sub>-C g<sup>-1</sup> carrier material h<sup>-1</sup> (based on mass balances for TOC). On the average, 90% of the ammonium is oxidized, resulting in a substantial reduction of pH (near-neutral at inlet, 6.2-7 at outlet). The estimated oxidation rate of ammonium during a normal operation is 0,5-2 mmol N g<sup>-1</sup> Leca h<sup>-1</sup>.

#### Previous studies of the nitrification reactor:

In a previous study of the nitrification rates and the amounts of nitrifying bacteria on pellets from the nitrification reactor (Mao et al., 2008), we estimated a cell density of ~  $10^9$  cells of ammonia oxidizing bacteria (AOB) per g Leca material, based on quantification of the amoA gene (coding for ammonia monooxygenase). Cloning sequencing suggested approximately equal population size of Nitrosospira and Nitrosomonas, wheras the abundance of archaeal ammonia oxidizers was insignificant. The population of ammonia oxidizing bacteria ( $10^9$  g<sup>-1</sup>) was sufficient to explain the observed nitrification rates. Based on

ammonia oxidation rates *in situ* (i.e. under normal operation of the WWTP), we were also able to estimate the average growth rate of AOB to be 0.001-0.01  $h^{-1}$ . This means that the average residence time of AOB must be 4-40 days, which supports the operators notion (Sagberg *et al.*, 1998) that the backwashing (every 14 hour) removes heterotrophic biofilms but only a marginal fraction of the AOB. On this basis, it was hypothesized that AOB primarily are situated in an inner part of the biofilm (near the surface of the pellet), which is not peeled off by the backwashing. Strong attachment of AOB to surfaces have been demonstrated for soils as well (Aakra et al 2000).

The biofilm also had a diverse community of heterotrophic denitrifying bacteria (cloning-sequencing of nirK), which is thought to create anoxic conditions and contribute to denitrification (which can also be conducted by AOB under oxygen limiting conditions). Considering this crucial role of heterotrophic film formation and its dependence of the backwashing (thin film after washing, increasing gradually through the 14 hours till next backwashing), we were particularly interested in the N<sub>2</sub>O emission at various stages between two washing events.

## Materials and methods:

For evaluation of the performance (i.e. N2O emission as % of nitrogen removed from the waste water) of the biological treatment (nitrification – denitrification) we measured the nitrogen flow and -removal at each date of emission measurement. The estimated nitrogen flows were calculated from water flow (online flow monitors) and measured total nitrogen concentration (organic + ammonium and nitrate+nitrite) measured at point 1 (in flow), 3 (water into the nitrification reactor) and 8 (exit water), Figure 3. The nitrogen removal in SED is primarily solids (sludge) and NH3/NH4<sup>+</sup> (the ammonium is stripped after methane fermentation of the sludge), and is included in the total N removal. Total N was analysed as Kieldahl N at VEAS accredited lab.



Figure 3. Drawing of flows and emissions measured within Hall 7: 1 is the water flow into the sedimentation tank, 3 is the water flow to the nitrification reactor (NIT), 6 is the water flow to the denitrification reactor (DEN), and 8 is the exit water. 2 is exit sludge, 4 is air flow into the nitrification reactor and 5 and 7 is the exit air from the nitrification and denitrification reactor, respectively. Gas concentrations in the water were analyzed (by headspace analyses) at point 1, 3, 6 and 8. Emissions were measured by analyzing exit air (through hoods, see below) at point 5 and 7.

Net emissions (CH<sub>4</sub>, CO<sub>2</sub> and N<sub>2</sub>O) at point 5 and 7 were estimated based on measured concentrations in exit air through hoods (collecting gas from 2 reaction chambers for NIT and DEN), measured concentrations in the hall air.

For point 5, the existing ventilation system was used; we sampled directly from the exit channels which collects the exit air from the two NIT reactors. The exit air is a mixture of the air flow through NIT (air blown in, point 4) and a significant flow of air from the hall (the hoods cover the chambers, but are not gas tight; fans secure low pressure in hoods so that a significant amount of air from the hall flows through the

narrow slits between the hoods and the surface). Emission estimates are based on the measured amounts in exit air, corrected for the amounts of  $N_2O$  through hall-air entering through the slit (Figure 4).



#### Fig 4. Sampling of nitrification reactor (NIT)

At point 7, the hoods collect gas flow from the reactor (mass flow by ebullition of  $N_2$  and  $N_2O$ ,  $CO_2$  etc) + large amounts of hall-air. The estimated mass flow of gas flow from the reactor was insignificant compared to the amount of gas entering the hood from the hall. As for point 5, the emissions were estimated from flow (through the hood exit channel), and concentrations measured in hall-air and in the exit channel.



Fig 5: Sampling from denitrification reactor (DEN)

#### Gas measurements:

All gas samples (from hoods and headspace ) were analysed by GC, in principle as described by Molstad et al (2007), but with a traditional GC equipped with Electron capture detector for determination of  $N_2O$ , Flame Ionization detector for CH<sub>4</sub> and Thermal Conductivity detector for CO<sub>2</sub>.

#### Headspace analysis:

Water samples were taken with a 60 mL syringe equipped with a 3-way valve. A volume of 20 mL was taken, and 20 ml air (from the hall) was drawn into the syringe, which was then closed and shaken vigorously (by hand) for 2 min. The gas phase was then pushed through a needle mounted on one of the outlet of the 3-way valve into an evacuated 12 mL serum flask (with butyl rubber septum) to reach a pressure of ~ 1.5 bar. These gas samples were then analysed by GC (Molstad et al., 2007), and the amount of dissolved  $CH_4$  and  $N_2O$  was calculated, assuming equilibrium between headspace and liquid, contribution from hall air was subtracted (determined each day).

#### **Calculations:**

#### Nitrous oxide (N<sub>2</sub>O):

<u>Gas in liquid</u> was measured by headspace analysis after equilibrating 20 ml liquid with air taken from the process hall. The temperature of the water after sampling and vigorous shaking (to obtain equilibrium) was ~ 15 °C, and the amounts of gas (N<sub>2</sub>O) originally in the liquid was estimated based on solubility at 15 °C, subtracting the amounts of gas in the air of the process hall (which was also measured at each time of samping).

1 ppmv N2O in headspace = 1.51 nmol N<sub>2</sub>O in whole flask (liquid+ gas phase)

= 42.3 ng  $N_2$ O-N in whole flask.

A fraction of this derives from the air drawn from the process hall, and should be subtracted: 1 ppmv in 20 mL hall-air contains 0.85 nmol  $N_2O = 23.7$  ng  $N_2O$ -N.

Thus, a measured conc of 1 ppmv in headspace and 1 ppmv in hall air gives 42.3-23.7 = 18.6 ng N<sub>2</sub>O-N in the 20 mL liquid sample.

 $\Rightarrow \text{ The amount of } N_2O-N \text{ in the 20 mL liquid sample is } W=C_{headsp}*42.3-C_{hall}*23,7, \text{ where } C_{headsp} \text{ is measured conc (ppmv) in headspace and } C_{hall} \text{ is measured conc (ppmv) in the hall air.}$ 

The amounts in g N<sub>2</sub>O-N pr m<sup>3</sup> is  $C_{\text{liquid}} = W*10^{-9}*10^{3}/0.02$  for obvious reasons.

#### Gas in gas samples from process points:

The temperature of the gas at the point where gas flow was measured was approximately  $20^{\circ}$ C, and the estimated concentration of N<sub>2</sub>O was calculated accordingly:

1 L at 20  $^{\circ}$ C = 0.041 mol N<sub>2</sub>O = 1,165 g N<sub>2</sub>O-N

 $1\text{ppmv} = 1.165*10^{-6}*10^{3} = 1.165*10^{-3}$  g N<sub>2</sub>O-N/m<sup>3</sup> (again for obvious reasons)

But the concentrations measured are in a mixture of two gas-flows: one from the hall ( $F_{hall}$ ) and one from the source ( $F_{source}$ ) => the amount of N contributed by the source (in  $F_{total}$ =  $F_{source}$  +  $F_{hall}$ ). The calculated concentration that is "due" to the source is :

$$\dot{C}_{source} = C_{source measured} - C_{hall} * F_{hall} / F_{total}$$

In the nitrification reactor, a small amount of  $N_2O$  is also entering the system with the flow of sparging air into the system. Hence the equation for NIT is :

$$\dot{C}$$
 source =  $C_{source measured}$  -  $C_{hall}*F_{hall}/F_{total}$  - $C_{amb}*F_{sparge}/F_{total}$ 

where  $C_{amb}$  is the ambient concentration of  $N_2O$  in the atmosphere and  $F_{sparge}$  is the flow of sparging air.

Gas in samples from the chimney (collective)

The calculation is equivalent to that above (for gases from point sources), but simpler:

we assume ambient concentration in the air drawn into the WWTP (treatment plant), which is 0.35 ppmv for N<sub>2</sub>O, 1.84 ppmv for CH<sub>4</sub>, and 361 ppmv for CO<sub>2</sub>

#### Methane (CH<sub>4</sub>):

<u>CH<sub>4</sub> in the liquid</u> : Equivalent calculations were done for methane. In this case we are interested in g CH<sub>4</sub>. The solubility of methane is 5.4% of that for N<sub>2</sub>O, and the ambient CH<sub>4</sub> concentration in the atmosphere is 1.84 ppmv. Otherwise, the calculations follow the same scheme as for N<sub>2</sub>O

1 ppmv CH<sub>4</sub> in headspace = 0.87 nmol CH<sub>4</sub> in whole flask (liquid+ gas phase)

= 14 ng CH<sub>4</sub> in whole flask.

A fraction of this derives from the air drawn from the process hall, and should be subtracted: 1 ppmv in 20 mL hall-air contains 0.84 nmol  $CH_4 = 13.4$  ng  $CH_4$ .

Thus, a measured concentration of 10 ppmv in headspace and 2 ppmv in hall air gives  $W = 10*14-2*13.4 = 113.2 \text{ ng CH}_4$  in the 20 mL liquid sample.

 $\Rightarrow \text{ The amount of CH}_4 \text{ in the 20 mL liquid sample is } W = C_{headsp} * 14 - C_{hall} * 13.4, \text{ where } C_{headsp} \text{ is } measured \text{ conc (ppmv) in headspace and } C_{hall} \text{ is measured conc (ppmv) in the hall air.}$ 

The amounts in g CH<sub>4</sub> pr m<sup>3</sup> is  $C_{\text{liquid}} = W*10^{-9}*10^{3}/0.02$ 

<u>CH<sub>4</sub> in gas samples</u>: 1 L at 20 °C = 0.041 mol CH<sub>4</sub> = 0.67 g CH<sub>4</sub> 1ppmv =  $0.65*10^{-6}*10^{3} = 0.67*10^{-3}$  g CH<sub>4</sub>/m<sup>3</sup>

Gas in samples from the chimney (collective)

As for  $N_2O$ , the ambient  $CH_4$  (i.e. concentration in the atmosphere) was subtracted.

#### Carbon dioxide (CO<sub>2</sub>)

Due to uncertainties regarding pH at different points in the process, the calculation of transport of dissolved (+dissociated)  $CO_2$  has not been estimated in detail. But emissions to the atmosphere follows the same scheme as for  $CH_4$  and  $N_2O$ . Ambient concentrations are ~360 ppmv).

1 L at 20 °C = 0.041 mol CO<sub>2</sub> = 1,8 g CO2 1ppmv =  $0.65*10^{-6}*10^{3} = 0.67*10^{-3}$  g CH<sub>4</sub>/m<sup>3</sup>

## **Results.**

## Analysis within the system: gas flows with water and emission to the atmosphere from nitrification and denitrification reactors (Hall 7).

The measured gas concentrations and estimated emissions and flows for each single time of measurements (from February 2 til June 6, 2011) are all listed in Tables A1-A3 (Appendix).

Figure 6 shows the average flows and emissions of the three gases (with standard deviation in parenthesis). These averages include some measurements when the operation was suboptimal (low airflow to NIT, low methanol to DEN), which apparently resulted in higher emissions. This calls for more systematic investigations of operation-effects on emissions.



Figure 6. Gas flows (with water) and emissions (to atmosphere) within the system based on measured concentrations (and flow) in Hall 7 (2 NIT and 2 DEN reactors). The figure shows average values for the period Febr 2 till June 6 2011 (raw data in Table A1-3, appendix). Flow with water are shown as horizontal arrows, emissions to the atmosphere as vertical arrows. Individual figures are shown for each gas; the top figure shows the names of the flows and emissions which will be used in the rest of the report.

In the following, we will show some more detailed plotting and analyses of some essential variables. Fig 7 demonstrates the large variability of N<sub>2</sub>O emission from NIT. It also shows that a substantial fraction of the N<sub>2</sub>O produced leaves the nitrification reactor with the water flow (potentially to be reduced in DEN). Fig 8 shows the CH<sub>4</sub> data for NIT, demonstrating that the CH<sub>4</sub> emitted from NIT is not produced there, but enters the reactor as dissolved CH<sub>4</sub> from SED. Fig 9 shows the CO<sub>2</sub> emission from NIT and DEN. As explained in the figure legend, the low CO<sub>2</sub>-emission from DEN reflects a combination of slow transport (still water, marginal ebullition) and possibly high pH.



Figure 7:  $N_2O$  flows from the nitrification reactor (sum for two reactor chambers). Average values for each date are shown by lines, single measurements as single dots. The emission to the gas phase (E(NIT)is the measured emission through the hood (corrected for  $N_2O$  in air from the process hall, and ambient  $N_2O$  in the process (sparging) air, see mm). The flow of  $N_2O$  leaving the nitrification tank with the exit water (F(NIT-DEN) is entering the denitrification tank (subsequent step). Despite the high flow of sparging air through the system, a significant fraction of the  $N_2O$  in the nitrification tank is not emitted to air.



Figure 8: CH<sub>4</sub> flows in and out from the nitrification reactor (sum for two reactor chambers). In-flow with the water (from SED) is shown as single black squares (F(SED-NIT)). Flow out of the reactor to air is shown in blue (emission to air, E(NIT)) and red (flow with exit-water, F(NIT-DEN)). Average values for out-flow each date are shown by lines, single measurements as single dots. The emission to the gas phase (blue colour) is the measured emission through the hood (corrected for CH<sub>4</sub> in air from the process hall, see mm). The flow of CH<sub>4</sub> leaving the nitrification tank with the water (F(NIT-DEN), red colour)) is entering the denitrification tank (subsequent step). In contrast to N<sub>2</sub>O, the sparging effectively removes most of the CH<sub>4</sub>, reflecting the low solubility of CH<sub>4</sub> compared to that of N<sub>2</sub>O. Thus, most of the CH<sub>4</sub> in NIT is emitted to the atmosphere. The flow of methane into the system (F(SED-NIT)) is largely matching the output, The outflow (E(NIT)+F(NIT-DEN)) was correlated with the in-flow of methane (F(SED-NIT)) ( $r^2=0,5$ ). Thus there is little evidence for CH<sub>4</sub> production within NIT.



Figure 9.  $CO_2$  emission (NB kg  $CO_2$  h<sup>-1</sup>) from nitrification reactor (E(NIT), blue) and Denitrification reactor (E(NIT), red). Average values for each date are shown by lines, single measurements by dots. The low emission from DEN is due to marginal transport (the water is still, and ebullition of N<sub>2</sub> is probably inefficient to transport significant amounts of  $CO_2$  out of the system). Thus, most of the  $CO_2$  is probably leaving the system with the exit water.

Correlations: CH<sub>4</sub> emission correlated with CH<sub>4</sub>-concentrations in the exit water both for the NIT reactor (r=0.49) and DEN (r=0.81). N2O emission also correlated with the N<sub>2</sub>O concentration in the exit water, both for NIT (r=0.77) and DEN (r= 0.89). None of these correlations are particularly surprising.

#### Measurements of exit air from the entire plant:

The concentrations in the chimney for various sampling times are plotted in Figure 10.



Fig 10 Concentrations of CO<sub>2</sub>, CH<sub>4</sub> and  $N_2O$  in exhaust air from the entire plant. The values are plotted as  $log_{10}$  values of concentrations in ppbv ( $\mu$ L m<sup>-3</sup>), thus a value of 3 is equivalent to 1000 ppbv, or 1 ppmv. The concentrations of the gases were closely correlated ( $r^2$  was 0.70 for CO<sub>2</sub> against  $N_2O$ , 0.81 for CO<sub>2</sub> against CH<sub>4</sub> and 0.77 for CH<sub>4</sub> against  $N_2O$ ). The average concentration ratio [CO<sub>2</sub>]/[CH<sub>4</sub>] was 121 (stdev= 13, min=97, max=139). The average concentration ratio [CH<sub>4</sub>]/[ $N_2O$ ] was 11.3 (stdev= 5.7, min=5.7, max=16.2). The measured air flow in the chimney was  $332*10^3$  m<sup>3</sup> h<sup>-1</sup> (stdev = 30, min= 293, max=374, all in  $10^3$  m<sup>3</sup> h<sup>-1</sup>). Based on the measured air flow and concentrations (minus that in ambient air), the total emission from the entire plant was calculated. The result is shown in Figure 11.



Fig 11 Emission of CO,  $CH_4$  and  $N_2O$  from the entire plant,  $log_{10}$  values of emissions in g h<sup>-1</sup> (NB: the unit for  $N_2O$  is g  $N_2O$  not  $N_2O$ -N).

Based on the measured concentrations in the chimney, we calculated average emissions of the three gases for entire plant, shown in Table 1. The emissions expressed in CO2 equivalents (i.e. global warming  $CO_2$  equivalents) are shown at the bottom line.

Table 1. Estimated emissions of the three gases in kg  $h^{-1}$ , as measured in the exhaust chimney (standard deviations, and min/max). The bottom line shows the emissions expressed in CO<sub>2</sub>-equivalents (i.e. global warming CO<sub>2</sub> equivalents, using a factor of 20 and 300 for CH<sub>4</sub> and N<sub>2</sub>O, respectively).

| Units                  | CO2  | N2O-N * | CH4  | N2O * |
|------------------------|------|---------|------|-------|
| average kg/h           | 803  | 0,46    | 2,68 | 0,72  |
| stdev                  | 150  | 0,34    | 0,66 | 0,53  |
| max                    | 1061 | 1,04    | 3,75 | 1,63  |
| min                    | 552  | 0,16    | 1,80 | 0,24  |
|                        |      |         |      |       |
| kg CO2-equivalents h-1 | 803  | 215     | 54   | 215   |

 $*N_2O$  emissions are expressed both as kg  $N_2O$ -N (as a biogeochemist would do) and as kg  $N_2O$  (as an atmospheric chemist would).

#### Can the emissions from the process hall account for the concentrations in the chimney?

The estimated emissions of N<sub>2</sub>O from the entire plant (0,72  $\pm$  0,53 kg N<sub>2</sub>O h-1) is in reasonable agreement with the emission from the nitrification and denitrification reactors: the measurements were done for 2 chambers of a total number of 24 in the entire plants. The total N<sub>2</sub>O emissions to air from these two chambers was 55  $\pm$  28 g N<sub>2</sub>O-N h<sup>-1</sup> (standard dev), which amounts to 86  $\pm$ 44 g N<sub>2</sub>O h<sup>-1</sup>. From the 24 reaction chambers (24 NIT and 24 DEN) we should thus expect 1.04  $\pm$  0.5 kg N<sub>2</sub>O h<sup>-1</sup>, which shows that the emissions from the nitrification and denitrification reactors as measured inside the plants can account for allthe N<sub>2</sub>O measured in the chimney.

For CO<sub>2</sub>, we also find that the emissions measured from NIT+DEN (avg 56 kg CO2 h-1 for two chambers, stdev= 17) can account for most of the CO<sub>2</sub> emission measured in the chimney: for 24 chambers we get an estimated emission of  $672 \pm 204$  kg CO<sub>2</sub> h-1.

In contrast, the emissions of CH<sub>4</sub> from the nitrification and denitrification reactors added up to the entire plants (i.e. from all 24 reactor chambers) is much lower than the emissions from the entire plant. The emission from two chambers were 68.7 g CH<sub>4</sub> h (stdev = 35), which adds up to 824  $\pm$ 204 g CH<sub>4</sub> h-1, which is only 30 % of that measured in the chimney. There is evidently another strong source of CH4 in the plant.

#### Emission of N<sub>2</sub>O-N as % of total N removal:

The average rate of N-removal in the entire VEAS plant is 220 kg N h<sup>-1</sup> (stdev=95). The average rate of N<sub>2</sub>O emission through the chimney is 0.46 kg N<sub>2</sub>O-N h<sup>-1</sup>, which is 0.2 % of the nitrogen removal. If we include the N<sub>2</sub>O in the exit water from DEN (56% of direct emissions from NIT+DEN, Fig 6), the emission of N<sub>2</sub>O-N increase to ~0,3% of N-removal. The fate of the N<sub>2</sub>O in the exit water is uncertain however. In theory, a significant fraction of the N<sub>2</sub>O in the exit water can be reduced en route from DEN to the bottom of the fjord. This is in fact quite plausible considering the residence time in the transport tube compared to that in the denitrification reactor: the average residence time in the denitrification reactor is only 0,2 h, but the transport of the water to its exit at the bottom of the fiord takes 0.3-1.2 h. It appears likely that a significant fraction of the N<sub>2</sub>O is reduced during transport to the fiord.

#### Identification of operational conditions that enhance N<sub>2</sub>O emissions:

The results for single dates (Appendix 2) indicate that low airflow through the nitrification reactor results in high  $N_2O$  production in this compartment, primarily as N2O transport with exit water to the denitrification tank (not as higher emission to the atmosphere). The results for low methanol dosage to the denitrificaton tank are variable. More systematic investigations by deliberate change of operational conditions are needed to identify operations that may systematically enhance or reduce emissions. The importance of management on  $N_2O$  emissions was underscored in a recent literature study by Westling (2011), who found that the emissions of  $N_2O$ -N as a fraction of the N-removal varied grossly between treatment plants.

References:

Aakra Å, Hesselsøe M, Bakken LR (2000) Surface attachment of ammonia oxidizing bacteria in soil. Fems Microbiol Ecol 39: 222-235.

Mao Y, Bakken LR, Zhao L, Frostegård Å (2008) Functional robustness and gene pools of a wastewater nitrification reactor: comparison of dispersed and intact biofilms when stressed by low oxygen and low pH. FEMS Microbiol Ecol 66:167-180.

Molstad L, Dorsch P & Bakken LR (2007) Robotized incubation system for monitoring gases (O(2), NO, N(2)O N(2)) in denitrifying cultures. J Microbiol Methods 71: 202–211.

Sagberg P, Ryrfors P & Grundnes Berg K (1998) Mass balance in a compact nitrogen and phosphorus WWTP. Chemical Water and Waste Water Treatment (Hahn HH, Hoffmann E & Ødegaard H, eds), pp. 231–242. Springer-Verlag, Berlin.

Sandmo T (2011) The Norwegian Emission Inventory 2011. Documentation of methodologies for estimating emissions of greenhouse gases and long range transboundary air pollutants. Satistics Norway (<u>http://www.ssb.no/english/subjects/01/90/doc\_201121\_en/doc\_201121\_en.pdf</u>)

Westling K (2011) Lustgasemissioner från avlopsreningsverk – en litteraturstudie. IVL rapport B1977, IVL Svenska Miljøinstitutet. (<u>http://vav.griffel.net/filer/C\_2011-IVLB1977.pdf</u>)

Appendix: primary data.

Appendix 1: Primary data on N2O.

Appendix 2: Calculated N<sub>2</sub>O flows and emissions at each point in DEN and NIT reactors Hall 7 (see Fig 3 for codes). The last three columns are 1) total N<sub>2</sub>O output (emission from NIT+ DEN and flow with exit water from DEN) 2) total N removal in DEN+NIT (i.e. nitrogen removed through nitrification and denitrification, estimated from chemical determination of total N in water in and water out), and 3) the N<sub>2</sub>O-N output as % of N-removal

Appendix 3: primary CH4 data, Hall 7

Appendix 4: Primary CO2-data Hall 7

Appendix 5: primary data Chimney.

Appendix 6: Calculated emissions based on chimney concentrations and flow

Appendix 7: operational descriptions at the time of sampling/emission measurements (in Norwegian).

## Appendix table 1. Primary data N<sub>2</sub>O.

Pimary data N2O

| date  | 1<br>SANDFAN<br>G | <b>3</b><br>SED             | <b>5</b><br>NIT<br>emissio<br>n | <b>6</b><br>NIT exit-<br>water | <b>7</b><br>DEN<br>emission | <b>8</b><br>DEN exit-<br>water | <b>9</b><br>luft hall | Flow 5 (air<br>flow) | <b>Flow 7</b><br>(air flow) | Flow 4<br>(prosess<br>air) | Flow 6<br>(water<br>flow) | temp,<br>water<br>(oC) | primær<br>betingelse | sekundær<br>betingelse |
|-------|-------------------|-----------------------------|---------------------------------|--------------------------------|-----------------------------|--------------------------------|-----------------------|----------------------|-----------------------------|----------------------------|---------------------------|------------------------|----------------------|------------------------|
| date  | ppm N2O           | ppm<br>N2O<br>headsp<br>ace | ppm<br>N2O                      | ppm N2O<br>headspac<br>e       | ppm N2O                     | ppm N2O<br>headspac<br>e       | ppm<br>N2O            | m3/h                 | m3/h                        | m3/h                       | l/s                       | °C                     |                      |                        |
| 2.2.  |                   | 8,76                        | 33,20                           | 21,60                          | 1,76                        | 2,64                           | 1,85                  | 2410                 | 1220                        | 2150                       | 210                       | 8,8                    | tykt vann            | normal                 |
| 8.2.  |                   | 2,76                        | 32,34                           | 28,04                          | 0,92                        | 1,06                           | 0,89                  | 2350                 | 992                         | 1885                       | 171                       | 7,9                    | før vask             | normal                 |
| 11.2. |                   | 3,41                        | 13,73                           | 23,40                          | 1,74                        | 4,27                           | 2,73                  | 1980                 | 1120                        | 1810                       | 200                       | 7,8                    | etter vask           | normal                 |
| 15.2. |                   | 2,90                        | 15,71                           | 30,19                          | 2,11                        | 2,58                           | 2,28                  | 2540                 | 1030                        | 991                        | 261                       | 7,4                    | lav metanol          | avvik                  |
| 15.2. |                   | 2,83                        | 17,06                           | 32,95                          | 2,14                        | 2,57                           | 2,40                  | 2540                 | 1030                        | 991                        | 261                       | 7,4                    | lav metanol          | avvik                  |
| 15.2. |                   | 1,95                        | 26,33                           | 31,74                          | 1,29                        | 1,77                           | 1,34                  | 2650                 | 1020                        | 1800                       | 171                       | 7,5                    | nok metanol          | normal                 |
| 15.2. |                   | 1,87                        | 19,73                           | 31,27                          | 1,28                        | 1,72                           | 1,33                  | 2650                 | 1020                        | 1800                       | 171                       | 7,5                    | nok metanol          | normal                 |
| 18.2. |                   | 4,33                        | 47,97                           | 40,01                          | 1,83                        | 2,30                           | 1,69                  | 2550                 | 1140                        | 1108                       | 201                       | 7,7                    | lav luft             | avvik                  |
| 18.2. |                   | 4,88                        | 32,50                           | 32,65                          | 2,37                        | 2,98                           | 2,23                  | 2460                 | 1140                        | 1798                       | 218                       | 7,7                    | nok luft             | normal                 |
| 18.2. |                   |                             | 30,66                           |                                |                             |                                |                       | 2460                 | 1140                        | 1798                       | 218                       | 7,7                    | nok luft             | normal                 |
| 18.2. |                   |                             | 33,80                           |                                |                             |                                |                       | 2460                 | 1140                        | 1798                       | 218                       | 7,7                    | nok luft             | normal                 |
| 4.4.  |                   | 0,94                        | 3,50                            | 3,49                           | 1,00                        | 4,16                           | 0,61                  | 2564                 | 1043                        | 1713                       | 473                       | 6                      | tynt vann            | normal                 |
| 4.4.  |                   | 0,95                        | 3,57                            | 3,46                           | 1,01                        | 4,45                           | 0,62                  | 2564                 | 1043                        | 1713                       | 473                       | 6                      | tynt vann            | normal                 |
| 7.4.  |                   | 1,52                        | 3,66                            | na                             | 0,92                        | 3,03                           | 0,73                  | 2722                 | 1114                        | 1410                       | 502                       | 6,1                    | tynt vann            | normal                 |
| 7.4.  |                   | na                          | 3,71                            | 3,94                           | 0,94                        | 3,26                           | 0,72                  | 2722                 | 1114                        | 1410                       | 502                       | 6,1                    | tynt vann            | normal                 |
| 7.4.  |                   | 1,40                        | 3,75                            | 3,95                           | 0,98                        | 3,20                           | 0,72                  | 2722                 | 1114                        | 1410                       | 502                       | 6,1                    | tynt vann            | normal                 |
| 12.5. | 0,73              | 4,67                        | 16,15                           | 12,08                          | 1,54                        | 4,21                           | 1,08                  | 2780                 | 1150                        | 1780                       | 295                       | 12,1                   | før vask             | normal                 |
| 12.5. | 0,71              | 4,74                        | 16,12                           | 12,89                          | 1,52                        | 4,36                           | 1,11                  | 2780                 | 1150                        | 1780                       | 295                       | 12,1                   | før vask             | normal                 |
| 13.5. | 1,78              | 3,81                        | 23,57                           | 14,83                          | 1,99                        | 5,71                           | 1,64                  | 2720                 | 1060                        | 1790                       | 305                       | 12,1                   | etter vask           | normal                 |
| 13.5. | 1,74              | 3,93                        | 23,59                           |                                | 2,00                        | 5,63                           | 1,79                  | 2720                 | 1060                        | 1790                       | 305                       | 12,1                   | etter vask           | normal                 |
| 1.6.  | 3,01              | 3,18                        | 15,43                           | 10,75                          | 2,83                        | 8,65                           | 1,45                  | 2670                 | 1100                        | 1660                       | 319                       | 12,2                   | nok metanol          | normal                 |
| 1.6.  | 2,95              | 3,56                        | 15,22                           | 10,60                          | 2,87                        | 7,96                           | 1,51                  | 2670                 | 1100                        | 1660                       | 319                       | 12,2                   | nok metanol          | normal                 |
| 1.6.  | 1,66              | 3,21                        | 17,29                           | 11,84                          | 2,55                        | 47,10                          | 1,19                  | 2730                 | 1040                        | 1630                       | 313                       | 12,2                   | lav metanol          | avvik                  |
| 1.6.  | 1,73              | 3,28                        | 17,10                           | 11,80                          | 5,32                        | 45,72                          | 1,21                  | 2730                 | 1040                        | 1630                       | 313                       | 12,2                   | lav metanol          | avvik                  |
| 6.6.  | 2,62              | 3,59                        | 15,74                           | 13,65                          | 2,12                        | 17,90                          | 1,12                  | 2660                 | 1130                        | 1725                       | 259                       | 13,2                   | nok luft             | normal                 |
| 6.6.  | 2,77              | 2,87                        | 15,56                           | 13,26                          | 1,97                        | 17,71                          | 1,08                  | 2660                 | 1130                        | 1725                       | 259                       | 13,2                   | nok luft             | normal                 |
| 6.6.  | 2,69              | 3,44                        | 16,36                           | 13,43                          | 2,27                        | 17,63                          | 1,00                  | 2660                 | 1130                        | 1725                       | 259                       | 13,2                   | nok luft             | normal                 |
| 6.6.  | 1,16              | 1,80                        | 21,21                           | 25,15                          | 4,86                        | 39,49                          | 1,04                  | 2300                 | 1140                        | 1160                       | 235                       | 13,2                   | lav luft             | avvik                  |
| 6.6.  | 1,16              | 1,86                        | 20,69                           | 24,49                          | 4,90                        | 39,17                          | 1,05                  | 2300                 | 1140                        | 1160                       | 235                       | 13,2                   | lav luft             | avvik                  |
| 6.6.  | 1,17              | 1,76                        | 20,70                           | 24,37                          | 4,82                        | 38,98                          | 1,22                  | 2300                 | 1140                        | 1160                       | 235                       | 13,2                   | lav luft             | avvik                  |

| date  | Flow 6<br>(water<br>flow) | temp,<br>water<br>(oC) | notes on<br>conditions | 1 SED<br>liquid<br>inflow | 3<br>SED liquid<br>outflow | 5<br>NIT emis-<br>sion | 6<br>NIT liquid<br>outflow | 7<br>DEN<br>emis-<br>sion | 8<br>DEN<br>liquid<br>outflow | tot N2O<br>out<br>(5+7+8) | tot N-<br>removal | %<br>N2O -<br>N |
|-------|---------------------------|------------------------|------------------------|---------------------------|----------------------------|------------------------|----------------------------|---------------------------|-------------------------------|---------------------------|-------------------|-----------------|
| date  | l/s                       | °C                     |                        | g N2O-<br>N/h             | g N2O-<br>N/h              | g N2O-N/h              | g N2O-<br>N/h              | g N2O-<br>N/h             | g N2O-<br>N/h                 | g N2O-<br>N/h             | g N/h             | %               |
| 2.2.  | 210                       | 8,8                    | High TOC               |                           | 12,36                      | 92,65                  | 32,88                      | -0,13                     | 2,57                          | 95,09                     | 30540             | 0,30            |
| 8.2.  | 171                       | 7,9                    |                        |                           | 2,95                       | 88,06                  | 35,86                      | 0,03                      | 0,73                          | 88,82                     | 17450             | 0,50            |
| 11.2. | 200                       | 7,8                    |                        |                           | 2,87                       | 31,12                  | 33,30                      | -1,30                     | 4,17                          | 34,00                     | 22035             | 0,14            |
| 15.2. | 261                       | 7,4                    | Methanol low           |                           | 3,23                       | 42,39                  | 57,45                      | -0,20                     | 2,58                          | 44,77                     | 23103             | 0,18            |
| 15.2. | 261                       | 7,4                    | Methanol low           |                           | 2,96                       | 46,14                  | 62,82                      | -0,31                     | 2,43                          | 48,26                     | 23103             | 0,20            |
| 15.2. | 171                       | 7,5                    |                        |                           | 1,57                       | 79,95                  | 40,35                      | -0,06                     | 1,33                          | 81,22                     | 15675             | 0,50            |
| 15.2. | 171                       | 7,5                    |                        |                           | 1,47                       | 59,61                  | 39,75                      | -0,06                     | 1,27                          | 60,82                     | 15675             | 0,37            |
| 18.2. | 201                       | 7,7                    | Air low                |                           | 5,18                       | 139,68                 | 59,78                      | 0,18                      | 2,07                          | 141,93                    | 16678             | 0,84            |
| 18.2. | 218                       | 7,7                    |                        |                           | 6,03                       | 91,43                  | 52,12                      | 0,19                      | 2,87                          | 94,49                     | 35133             | 0,26            |
| 18.2. | 218                       | 7,7                    |                        |                           |                            | 87,88                  |                            |                           |                               |                           |                   |                 |
| 18.2. | 218                       | 7,7                    |                        |                           |                            | 96,87                  |                            |                           |                               |                           |                   |                 |
| 4.4.  | 473                       | 6                      | low TOC                |                           | 2,15                       | 9,84                   | 11,34                      | 0,47                      | 13,76                         | 24,06                     | 11478             | 0,19            |
| 4.4.  | 473                       | 6                      | low TOC                |                           | 2,17                       | 10,06                  | 11,21                      | 0,48                      | 14,76                         | 25,30                     | 11478             | 0,20            |
| 7.4.  | 502                       | 6,1                    | low TOC                |                           | 4,24                       | 10,47                  |                            | 0,24                      |                               |                           | 12553             |                 |
| 7.4.  | 502                       | 6,1                    | low TOC                |                           |                            | 10,67                  | 13,52                      | 0,29                      | 10,92                         | 21,88                     | 12553             | 0,15            |
| 7.4.  | 502                       | 6,1                    | low TOC                |                           | 3,80                       | 10,78                  | 13,55                      | 0,33                      | 10,67                         | 21,78                     | 12553             | 0,15            |
| 12.5. | 295                       | 12,1                   |                        | 0,27                      | 9,13                       | 51,05                  | 25,76                      | 0,61                      | 8,09                          | 59,75                     | 25390             | 0,23            |
| 12.5. | 295                       | 12,1                   |                        | 0,19                      | 9,25                       | 50,91                  | 27,54                      | 0,55                      | 8,39                          | 59,85                     | 25390             | 0,23            |
| 13.5. | 305                       | 12,1                   |                        | 1,99                      | 6,70                       | 72,90                  | 32,30                      | 0,42                      | 11,13                         | 84,45                     | 36813             | 0,22            |
| 13.5. | 305                       | 12,1                   |                        | 1,71                      | 6,80                       | 72,81                  |                            | 0,27                      | 10,74                         | 83,82                     | 36813             | 0,22            |
| 1.6.  | 319                       | 12,2                   |                        | 5,32                      | 5,75                       | 46,28                  | 24,13                      | 1,76                      | 19,03                         | 67,07                     | 16018             | 0,40            |
| 1.6.  | 319                       | 12,2                   |                        | 5,12                      | 6,58                       | 45,57                  | 23,69                      | 1,74                      | 17,28                         | 64,59                     | 16018             | 0,39            |
| 1.6.  | 313                       | 12,2                   | Methanol low           | 2,35                      | 6,06                       | 53,45                  | 26,62                      | 1,65                      | 110,64                        | 165,74                    | 16018             | 1,02            |
| 1.6.  | 313                       | 12,2                   | Methanol low           | 2,50                      | 6,20                       | 52,82                  | 26,50                      | 4,98                      | 107,33                        | 165,13                    | 16018             | 1,02            |
| 6.6.  | 259                       | 13,2                   |                        | 3,94                      | 5,84                       | 47,55                  | 25,68                      | 1,32                      | 34,07                         | 82,94                     | 26800             | 0,30            |
| 6.6.  | 259                       | 13,2                   |                        | 4,26                      | 4,46                       | 47,03                  | 24,95                      | 1,16                      | 33,72                         | 81,92                     | 26800             | 0,30            |
| 6.6.  | 259                       | 13,2                   |                        | 4,20                      | 5,67                       | 49,61                  | 25,37                      | 1,67                      | 33,66                         | 84,95                     | 26800             | 0,31            |
| 6.6.  | 235                       | 13,2                   | Air low                | 1,04                      | 2,18                       | 55,45                  | 43,97                      | 5,08                      | 69,62                         | 130,15                    | 17233             | 0,74            |
| 6.6.  | 235                       | 13,2                   | Air low                | 1,03                      | 2,28                       | 54,05                  | 42,77                      | 5,11                      | 69,03                         | 128,19                    | 17233             | 0,73            |
| 6.6.  | 235                       | 13,2                   | Air low                | 0,87                      | 1,93                       | 53,85                  | 42,39                      | 4,78                      | 68,52                         | 127,14                    | 17233             | 0,72            |

Appendix 2.

## Appendix 3. Primary CH<sub>4</sub> data (hall 7, DEN+NIT)

| date  | <b>1</b><br>SANDFANG | <b>3</b><br>SED | <b>5</b><br>NIT<br>emission | 6 NIT<br>exit-water | <b>7</b><br>DEN<br>emission | <b>8</b><br>DEN exit-<br>water | <b>9</b><br>luft hall |
|-------|----------------------|-----------------|-----------------------------|---------------------|-----------------------------|--------------------------------|-----------------------|
|       | ppm CH4              | ppm CH4         | ppm CH4                     | ppm CH4             | ppm CH4                     | ppm CH4                        | ppm CH4               |
| 2.2.  |                      | 145,38          | 53,47                       | 13,10               | 20,15                       | 22,11                          | 12,23                 |
| 8.2.  |                      | 144,10          | 39,13                       | 9,20                | 16,26                       | 13,35                          | 6,24                  |
| 11.2. |                      | 113,55          | 22,05                       | 11,69               | 18,73                       | 18,58                          | 13,41                 |
| 15.2. |                      | 127,89          | 27,59                       | 12,08               | 17,43                       | 17,99                          | 10,74                 |
| 15.2. |                      | 124,77          | 27,76                       | 12,42               | 17,72                       | 18,40                          | 7,57                  |
| 15.2. |                      | 147,36          | 27,31                       | 9,68                | 15,73                       | 17,92                          | 7,52                  |
| 15.2. |                      | 147,49          | 27,63                       | 9,73                | 16,12                       | 16,67                          | 10,85                 |
| 18.2. |                      | 123,29          | 41,20                       | 10,73               | 12,96                       | 19,33                          | 9,07                  |
| 18.2. |                      | 133,10          | 55,92                       | 12,13               | 14,16                       | 18,39                          | 9,02                  |
| 18.2. |                      |                 | 55,43                       |                     |                             |                                |                       |
| 18.2. |                      |                 | 56,21                       |                     |                             |                                |                       |
| 4.4.  |                      | 23,50           | 12,69                       | 5,14                | 5,86                        | 6,42                           | 3,78                  |
| 4.4.  |                      | 23,24           | 12,74                       | 5,23                | 5,92                        | 7,02                           | 3,80                  |
|       |                      |                 |                             | mislykket           |                             |                                |                       |
| 7.4.  |                      | 34,51           | 22,41                       | prøve               | 12,84                       | 13,15                          | 11,11                 |
| 7 4   |                      | mislykket       | 22.00                       | 12.00               | 10 10                       | 12.07                          | 11.01                 |
| 7.4.  |                      | prøve           | 22,68                       | 13,06               | 13,13                       | 13,87                          | 11,01                 |
| 7.4.  | 60.02                | 30,60           | 22,94                       | 13,15               | 13,41                       | 13,57                          | 10,87                 |
| 12.5. | 69,93                | 118,64          | 70,67                       | 15,01               | 29,50                       | 32,62                          | 10,15                 |
| 12.5. | 69,39                | 120,90          | /1,10                       | 15,94               | 29,14                       | 33,95                          | 9,80                  |
|       |                      |                 |                             |                     |                             |                                | 2,28                  |
| 13 5  | 7/ 32                | 1/11.08         | 75.02                       | 17.86               | 30.65                       | 27.10                          | 12,35                 |
| 13.5. | 75 5/                | 154 66          | 7/ 69                       | 17,00               | 30,05                       | 25.80                          | 12,50                 |
| 1.6   | 46.89                | 53 33           | 39.90                       | 13.12               | 15.03                       | 14 48                          | 8 92                  |
| 1.6   | 42 79                | 68 48           | 39.40                       | 12.46               | 15,03                       | 13.61                          | 8.81                  |
| 1.6   | 34.28                | 56,98           | 35.92                       | 11.80               | 14.62                       | 15.81                          | 7.66                  |
| 1.6.  | 40.93                | 59,21           | 35.29                       | 12,57               | 15.70                       | 14.95                          | 7.85                  |
| 6.6   | 87.23                | 127.99          | 30.17                       | 12.97               | 22.91                       | 17.00                          | 8.53                  |
| 6.6.  | 94.60                | 95.67           | 29.73                       | 13.88               | 20.32                       | 17.06                          | 7,53                  |
| 6.6   | 88.66                | 120.65          | 31.29                       | 13.29               | 22.38                       | 17.07                          | 8.11                  |
| 6.6.  | 57.74                | 84.68           | 42.37                       | 19.56 20.99 16.44   |                             | 16.44                          | 7,34                  |
| 6.6.  | 60.02                | 109.66          | 41,16                       | 19.68               | 21,70                       | 16.03                          | 7,24                  |
| 6.6.  | 63,44                | 89,82           | 40,85                       | 19,02               | 22,25                       | 16,17                          | 7,60                  |

Appendix 4 Primary data CO<sub>2</sub>, Hall 7

| dato  | 1<br>SANDFANG | <b>3</b><br>SED    | <b>5</b><br>NIT emission | <b>6</b><br>NIT exit-<br>water | <b>7</b><br>DEN<br>emission | <b>8</b><br>DEN exit-<br>water | <b>9</b><br>luft hall |
|-------|---------------|--------------------|--------------------------|--------------------------------|-----------------------------|--------------------------------|-----------------------|
|       | ppm CO2       | ppm CO2            | ppm CO2                  | ppm CO2                        | ppm CO2                     | ppm CO2                        | ppm CO2               |
| 2.2.  |               | 3785               | 14315                    | 9729                           | 1997                        | 9061                           | 1834                  |
| 8.2.  |               | 2863               | 12400                    | 9677                           | 1245                        | 9062                           | 935                   |
| 11.2. |               | 2777               | 8143                     | 9269                           | 1841                        | 9412                           | 1930                  |
| 15.2. |               | 2158               | 11086                    | 11053                          | 1659                        | 9834                           | 1516                  |
| 15.2. |               | 3306               | 13494                    | 9741                           | 2044                        | 9873                           | 1587                  |
| 15.2. |               |                    | 12882                    |                                |                             |                                |                       |
| 15.2. |               |                    | 13385                    |                                |                             |                                |                       |
| 18.2. |               | 3789               | 10213                    | 10683                          | 2390                        | 9968                           | 1823                  |
| 18.2. |               | 3835               | 10313                    | 10874                          | 2431                        | 10176                          | 1916                  |
| 18.2. |               | 4078               | 12166                    | 11172                          | 1653                        | 8339                           | 1109                  |
| 18.2. |               | 2258               | 11876                    | 10948                          | 1618                        | 7809                           | 1188                  |
| 4.4.  |               | 1441               | 8070                     | 6633                           | 1343                        | 6426                           | 882                   |
| 4.4.  |               | 1373               | 8407                     | 6499                           | 1320                        | 7083                           | 987                   |
| 7.4.  |               | 2303               | 7058                     | mislykket<br>prøve             | 1266                        | 6544                           | 1006                  |
| 7.4.  |               | mislykket<br>prøve | 7108                     | 7224                           | 1313                        | 7213                           | 936                   |
| 7.4.  |               | 2125               | 7147                     | 7291                           | 1338                        | 7511                           | 890                   |
| 12.5. | 4010          | 4036               | 16503                    | 11231                          | 2110                        | 11415                          | 1234                  |
| 12.5. | 4378          | 4032               | 16520                    | 12175                          | 2046                        | 11637                          | 1115                  |
|       |               |                    |                          |                                |                             |                                | 464                   |
|       |               |                    |                          |                                |                             |                                | 513                   |
| 13.5. | 3054          | 3898               | 17020                    | 12569                          | 2216                        | 11848                          | 1530                  |
| 13.5. | 2776          | 4055               | 17000                    |                                | 2335                        | 11193                          | 1579                  |
| 1.6.  | 4211          | 4382               | 17027                    | 11116                          | 1950                        | 10907                          | 1401                  |
| 1.6.  | 4244          | 4916               | 16860                    | 10653                          | 2070                        | 10114                          | 1744                  |
| 1.6.  | 2518          | 4141               | 14656                    | 11284                          | 1646                        | 11444                          | 1733                  |
| 1.6.  | 2725          | 4225               | 14385                    | 11433                          | 3860                        | 10919                          | 1346                  |
| 6.6.  | 8920          | 5476               | 13328                    | 11809                          | 1809                        | 12650                          | 1062                  |
| 6.6.  | 9648          | 4131               | 13168                    | 11293                          | 1581                        | 12594                          | 940                   |
| 6.6.  | 9340          | 5143               | 14007                    | 11440                          | 1830                        | 11961                          | 934                   |
| 6.6.  | 4213          | 4638               | 11817                    | 15651                          | 2224                        | 11895                          | 974                   |
| 6.6.  | 4804          | 5138               | 11400                    | 15313                          | 2166                        | 12178                          | 1036                  |
| 6.6.  | 4261          | 4660               | 11397                    | 15134                          | 2225                        | 11950                          | 1338                  |

| dato           | klokkeslett |         | prøvenr | CO2  | N2O   | CH4   |
|----------------|-------------|---------|---------|------|-------|-------|
|                |             |         |         | ppm  | Ppm   | ppm   |
| 9.1.11 13:30   | 13:00       | serie 1 | 1       | 1558 | 0,936 | 11,72 |
| 9.1.11 13:30   |             |         | 2       | 1624 | 0,925 | 12,12 |
| 9.1.11 13:30   |             |         | 3       | 1560 | 0,938 | 11,99 |
| 9.1.11 13:30   |             |         | 4       | 1524 | 0,915 | 11,77 |
| 9.1.11 13:30   |             |         | 5       | 1599 | 0,928 | 11,87 |
| 9.1.11 13:30   |             |         | 6       | 1578 | 0,947 | 11,83 |
| 06.09.11 10:00 | 10:00       |         | 7       | 1606 | 0,772 | 12,17 |
| 06.09.11 10:00 |             |         | 8       | 1655 | 0,750 | 12,05 |
| 06.09.11 10:00 |             |         | 9       | 1544 | 0,756 | 11,95 |
| 06.09.11 10:00 |             |         | 10      | 1664 | 0,759 | 11,93 |
| 06.09.11 10:00 |             |         | 11      | 1670 | 0,778 | 12,35 |
| 06.09.11 10:00 |             |         | 12      | 1610 | 0,760 | 12,29 |
| 06.09.11 10:00 |             |         | 13      | 1638 | 0,772 | 12,52 |
| 06.09.11 10:00 |             |         | 14      | 1607 | 0,763 | 12,06 |
| 06.09.11 10:00 |             |         | 15      | 1557 | 0,767 | 12,11 |
| 21.09.11 10:00 | 10:00       | serie 2 | 1       | 1420 | 0,974 | 10,95 |
| 21.09.11 10:00 |             |         | 2       | 1422 | 0,964 | 11,70 |
| 21.09.11 10:00 |             |         | 3       | 1439 | 0,985 | 11,27 |
| 21.09.11 15:25 | 15:25       |         | 5       | 1403 | 1,292 | 13,06 |
| 21.09.11 15:25 |             |         | 6       | 1415 | 1,307 | 13,37 |
| 21.09.11 15:25 |             |         | 7       | 1441 | 1,328 | 12,92 |
| 27.09.11 9:40  | 09:40       |         | 9       | 1945 | 1,984 | 20,10 |
| 27.09.11 9:40  |             |         | 10      | 2003 | 2,028 | 20,32 |
| 27.09.11 9:40  |             |         | 11      | 1889 | 1,948 | 19,18 |
| 27.09.11 13:05 | 13:05       |         | 13      | 1977 | 2,308 | 17,01 |
| 27.09.11 13:05 |             |         | 14      | 1997 | 2,343 | 16,88 |
| 27.09.11 13:05 |             |         | 15      | 1974 | 2,299 | 17,10 |
| 27.09.11 15:30 | 15:30       |         | 17      | 1881 | 2,699 | 16,75 |
| 27.09.11 15:30 |             |         | 18      | 1885 | 2,713 | 16,17 |
| 27.09.11 15:30 |             |         | 19      | 1879 | 2,733 | 15,83 |
| 27.09.11 18:20 | 18:20       |         | 21      | 2073 | 3,347 | 19,23 |
| 27.09.11 18:20 |             |         | 22      | 2063 | 3,337 | 18,92 |
| 27.09.11 18:20 |             |         | 23      | 1994 | 3,259 | 19,70 |

## Appendix 5 Primary data, Chimney

Appendix 6. Estimated emissions based on air flow and gas concentrations in chimney (ambient concentrations of the three gases subtracted)

|               | emissions,<br>kg h-1 |       |      |                         |
|---------------|----------------------|-------|------|-------------------------|
| date and time | CO2                  | N2O-N | CH4  | N2O (whole<br>molecule) |
| 01.09.2011    | 810.08               | 0.26  | 2.40 | 0.41                    |
| 01.09.2011    | 854,41               | 0,26  | 2,50 | 0,40                    |
| 01.09.2011    | 811,15               | 0,26  | 2,47 | 0,41                    |
| 01.09.2011    | 786,88               | 0,25  | 2,41 | 0,39                    |
| 01.09.2011    | 837,87               | 0,26  | 2,44 | 0,40                    |
| 01.09.2011    | 823,25               | 0,26  | 2,43 | 0,42                    |
| 06.09.2011    | 731,39               | 0,16  | 2,18 | 0,26                    |
| 06.09.2011    | 760,01               | 0,16  | 2,16 | 0,24                    |
| 06.09.2011    | 694,94               | 0,16  | 2,13 | 0,25                    |
| 06.09.2011    | 765,54               | 0,16  | 2,13 | 0,25                    |
| 06.09.2011    | 768,60               | 0,17  | 2,22 | 0,26                    |
| 06.09.2011    | 733,54               | 0,16  | 2,21 | 0,25                    |
| 06.09.2011    | 750,15               | 0,16  | 2,26 | 0,26                    |
| 06.09.2011    | 732,16               | 0,16  | 2,16 | 0,25                    |
| 06.09.2011    | 702,52               | 0,16  | 2,17 | 0,25                    |
| 21.09.2011    | 582,73               | 0,23  | 1,80 | 0,35                    |
| 21.09.2011    | 584,12               | 0,22  | 1,95 | 0,35                    |
| 21.09.2011    | 593,66               | 0,23  | 1,86 | 0,36                    |
| 21.09.2011    | 552,25               | 0,33  | 2,14 | 0,51                    |
| 21.09.2011    | 558,36               | 0,33  | 2,20 | 0,52                    |
| 21.09.2011    | 572,37               | 0,34  | 2,12 | 0,53                    |
| 27.09.2011    | 880,38               | 0,59  | 3,70 | 0,93                    |
| 27.09.2011    | 912,38               | 0,61  | 3,75 | 0,95                    |
| 27.09.2011    | 849,01               | 0,58  | 3,51 | 0,91                    |
| 27.09.2011    | 1047,73              | 0,82  | 3,57 | 1,29                    |
| 27.09.2011    | 1060,56              | 0,84  | 3,54 | 1,32                    |
| 27.09.2011    | 1045,54              | 0,82  | 3,60 | 1,29                    |
| 27.09.2011    | 1004,78              | 1,01  | 3,58 | 1,58                    |
| 27.09.2011    | 1007,58              | 1,01  | 3,44 | 1,59                    |
| 27.09.2011    | 1003,96              | 1,02  | 3,35 | 1,60                    |
| 27.09.2011    | 913,38               | 1,04  | 3,38 | 1,63                    |
| 27.09.2011    | 908,11               | 1,03  | 3,32 | 1,62                    |
| 27.09.2011    | 871,57               | 1,01  | 3,47 | 1,58                    |

| A 1' '           | 7 0 1 1 1     |             | ° 1 (         |                     | \ 1     | · · 1 · · · ·                           | 1 11             |
|------------------|---------------|-------------|---------------|---------------------|---------|-----------------------------------------|------------------|
| $\Delta nnendiv$ | / Reckrivelce | av filefand | na anlegget i | TOrcal chefindelcer | Iel ved | nravetaking tra                         | nrocecchallene   |
| прренил          | / DUSKIIVUISU | av unstand  | pa antegget   | TOISOKSUCHIIZUISUI  |         | provolating ma                          | prosessitatione. |
|                  |               |             | ()()          |                     | /       | , , , , , , , , , , , , , , , , , , , , |                  |

| Runde                      |      | 1                                                      | 1                    | 1                    | 1                                | 1                                | 1                          | 1                              | 2                                                         | 2                                                      | 3                    | 3                    | 4                              | 4                          | 4                                 | 4                                |
|----------------------------|------|--------------------------------------------------------|----------------------|----------------------|----------------------------------|----------------------------------|----------------------------|--------------------------------|-----------------------------------------------------------|--------------------------------------------------------|----------------------|----------------------|--------------------------------|----------------------------|-----------------------------------|----------------------------------|
| SerieID:                   |      | А                                                      | с                    | D                    | E                                | F                                | G,M                        | н, к                           | B, N                                                      | O, P, R                                                | S, T                 | U,W                  | X,Y                            | Ø,Å                        | AA, BB, EE                        | CC, DD, FF                       |
| Dato:                      |      | 02.feb                                                 | 08.feb               | 11.feb               | 18.feb                           | 18.feb                           | 16.feb                     | 15.feb                         | 04.apr                                                    | 07.apr                                                 | 12.mai               | 13.mai               | 01.jun                         | 01.jun                     | 06.jun                            | 06.jun                           |
| Tilstand                   |      | Vann                                                   | Vask                 | Vask                 | Oksygen                          | Oksygen                          | Metanol                    | Metanol                        | Vann                                                      | Vann                                                   | Vask                 | Vask                 | Metanol                        | Metanol                    | Oksygen                           | Oksygen                          |
| Beskrivelse                |      | tykt vann                                              | Rett før vask        | Rett etter<br>vask   | Lav<br>lufttilførsel             | Tilstrekkelig<br>lufttilførsel   | Lav<br>metanoldos<br>ering | vanlig<br>metanoldos<br>ering  | snøsmelting,<br>tynt vann                                 | snøsmelting,<br>tynt vann                              | Rett før vask        | Rett etter<br>vask   | Vanlig<br>metanoldos<br>ering  | Lav<br>metanoldos<br>ering | Lav<br>lufttilførsel              | Tilstrekkelig<br>lufttilførsel   |
| Kriterier                  |      | vannmengde<br>2000 I/s<br>ammonium inn<br>over 20 mg/l | se tabell<br>vedlegg | se tabell<br>vedlegg | under 5<br>mg/l O2 i<br>DEN-tank | over 7 mg/l<br>O2 i DEN-<br>tank | nitrat ut<br>over 3 mg/l   | nitrat ut<br>under 1,5<br>mg/l | vannmengde<br>7000 l/s<br>ammonium<br>inn under 5<br>mg/l | vannmengde<br>7000 l/s<br>ammonium inn<br>under 5 mg/l | se tabell<br>vedlegg | se tabell<br>vedlegg | nitrat ut<br>under 1,5<br>mg/I | nitrat ut<br>over 3 mg/l   | under 5 mg/l<br>O2 i DEN-<br>tank | over 7 mg/l<br>O2 i DEN-<br>tank |
| Ammonium inn<br>NIT 8      | mg/l | 25,2                                                   | 26,9                 | 22,4                 | 24,8                             | 24,8                             | 24                         | 24,8                           | 8,9                                                       | 6,4                                                    | 17,7                 | 18,6                 | 13,1                           | 12,4                       | 19,3                              | 19,8                             |
| Ammonium ut NIT<br>8       | mg/l | 11,6                                                   | 19,8                 | 3,1                  | 5,35                             | 5,6                              | 4,6                        | 2,8                            | 0,7                                                       | 0,9                                                    | 7,6                  | 6                    | 1,25                           | 0,83                       | 7,6                               | 10,1                             |
| рН                         |      | 7,17                                                   | 7,31                 |                      |                                  |                                  | 7,14                       |                                | 7,34                                                      | 7,16                                                   |                      |                      |                                |                            |                                   |                                  |
| nitrat inn sed 4           | mg/l | 1,62                                                   | 2,43                 | 2,18                 | 0,97                             | 0,98                             | 1,05                       | 0,99                           | 14,18                                                     | 13,5                                                   | 0,82                 | 0,94                 | 1,13                           | 1,2                        | 1,58                              | 1,58                             |
| nitrat inn, DEN-<br>tank 8 | mg/l | 13,1                                                   | 14,2                 | 13,7                 | 15,6                             | 13,9                             | 14,5                       | 18,3                           | 8,3                                                       | 7,7                                                    | 11,8                 | 12,8                 | 11,7                           | 10,3                       | 12,1                              | 11,6                             |
| nitrat ut, DEN 8           | mg/l | 0,8                                                    | 1,4                  | 2,1                  | 1                                | 1,6                              | 3,9                        | 1,4                            | 3,4                                                       | 2,2                                                    | 1,6                  | 1,7                  | 1                              | 4                          | 0,8                               | 0,8                              |
| metanol-dosering<br>DEN 7  | l/h  | 96                                                     | 61                   | 84                   | 101                              | 100                              | 82                         | 92                             | 122                                                       | 131                                                    | 120                  | 135                  | 58                             | 40                         | 94                                | 79                               |
| metanol-dosering<br>DEN 8  | l/h  | 58                                                     | 47                   | 55                   | 61                               | 58                               | 46                         | 64                             | 98                                                        | 105                                                    | 68                   | 74                   | 78                             | 54                         | 63                                | 55                               |
| turbiditet, SED 7          | FTU  | 25,6                                                   | 20                   | 25                   | 45                               | 42                               | 32                         | 17                             | 14                                                        | 15                                                     | 22                   | 22                   | 12                             | 18                         | 12                                | 13                               |
| oksygen DEN-tank<br>8      | mg/l | 9,9                                                    |                      | 9                    | 9,4                              | 9,3                              | 9,8                        | 10,6                           | 8,9                                                       | 8,4                                                    | 8,2                  | 8,4                  | 8,9                            | 8,9                        | 8,5                               | 8,5                              |
| orto-P DEN-tank 8          | mg/l | 0,27                                                   | 0,22                 | 0,25                 | 0,24                             | 0,26                             | 2                          | 0,3                            | 0,07                                                      | 0,1                                                    | 0,55                 | 0,47                 | 0,01                           | 0,01                       | 0,05                              | 0,05                             |
| vann-mengde inn,<br>MTU    | l/s  | 1990                                                   | 1550                 | 1800                 | 1925                             | 2075                             | 1745                       | 1840                           | 5722                                                      | 6916                                                   | 2684                 | 2660                 | 3322                           | 4350                       | 3140                              | 2530                             |
| vann-mengdeDEN<br>71       | l/s  | 104                                                    | 85                   | 105                  | 98                               | 108                              | 130                        | 86                             | 219                                                       | 251                                                    | 147                  | 153                  | 168                            | 157                        | 130                               | 118                              |
| vann-mengde DEN<br>74      | l/s  | 106                                                    | 86                   | 95                   | 102                              | 110                              | 131                        | 86                             | 218                                                       | 251                                                    | 146                  | 152                  | 151                            | 156                        | 129                               | 117                              |
| luft-mengde NIT<br>71      | m³/h | 1067                                                   | 944                  | 906                  | 217                              | 900                              | 991                        | 900                            | 855                                                       | 708                                                    | 893                  | 895                  | 830                            | 815                        | 862                               | 208                              |
| luft-mengde NIT<br>74      | m³/h | 1086                                                   | 941                  | 904                  | 891                              | 898                              | i vask                     | 900                            | 858                                                       | 702                                                    | 890                  | 898                  | 831                            | 816                        | 863                               | 950                              |
| vann-mengde<br>SED7        | l/s  | 494                                                    | 325                  | 328                  | 338                              | 372                              | 438                        | 308                            | 721                                                       | 853                                                    | 568                  | 584                  | 498                            | 491                        | 525                               | 488                              |
| vann-mengde SED<br>8       | l/s  | 453                                                    | 306                  | 324                  | 335                              | 357                              | 441                        | 285                            | 731                                                       | 844                                                    | 536                  | 571                  | 495                            | 530                        | 524                               | 480                              |
| slam SED 7                 | I/s  | 9,27                                                   | 8,7                  | 9,17                 | 9,81                             | 10,97                            | 10,29                      | 7,03                           | 6,47                                                      | 4,13                                                   | 10,94                | 7,75                 | 11,14                          | 11,14                      | 11,17                             | ?                                |

| Runde | SerielD: | Dato:  | Tilstand | Beskrivelse     | NIT 71 | NIT 74 | DEN 71 | DEN 74 |
|-------|----------|--------|----------|-----------------|--------|--------|--------|--------|
|       |          |        |          |                 |        |        |        |        |
| 1     | С        | 08.feb | Vask     | Rett før vask   | 24     | 24     | 24     | 24     |
| 1     | D        | 11.feb | Vask     | Rett etter vask | 0,5    | 0      | 2,5    | 3,5    |
| 3     | S, T     | 12.mai | Vask     | Rett før vask   | 12     | 14     | 6      | 20     |
| 3     | U,W      | 13.mai | Vask     | Rett etter vask | 3,5    | 1      | 1,3    | 2      |