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Abstract

We make cross-sectional comparisons of productivity in a risky agricultural setting. To

make meaningful comparisons, we find it necessary to define a new productivity index

that satisfies important axioms from index number theory (e.g., transitivity). The index

can be computed without any information on output or input prices. However, it cannot

be computed without an estimate of a state-contingent production frontier. We use max-

imum likelihood methods to estimate a state-contingent stochastic production frontier

that explicitly allows for variations in input quality. We find that differences in produc-

tivity are mainly due to differences in environment and scale-mix efficiency. In turn,

we conjecture that differences in scale-mix efficiency are partly driven by variations in

access to input subsidies. The maximum likelihood estimator appears to do a poor job

of disentangling the effects of technical inefficiency and statistical noise.
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1. Introduction

Low agricultural productivity has frequently been blamed for high levels of poverty

and vulnerability in developing countries in sub-Saharan Africa. The Green Revolution

that stimulated agricultural productivity in Asian and Latin-American countries appears

to have been less effective in raising productivity in developing countries elsewhere.

Population growth and climate change are now placing increased pressure on govern-

ments to raise agricultural productivity in Africa. Unfortunately, in African countries,

poor infrastructure, high dependence on rain fed production, climatic variability, the

spatial nature of production, and imperfect information contribute to pervasive mar-

ket imperfections (Binswanger and Rosenzweig, 1986). These conditions impose con-

straints on productivity analysis due to missing and biased price data (Feder, 1985).

Most productivity analyses in such environments have thus focused on returns to land

or labor without attempting to estimate total factor productivity (TFP). Many studies in

the efficiency literature have also failed to take environmental variables into account.

This can lead to upward bias in the estimation of frontiers and downward bias in esti-

mates of technical efficiency (O’Donnell and Griffiths 2006). In this paper, we aim to

illustrate how the two problems of missing prices and a stochastic production environ-

ment can be handled when analysing variations in technical efficiency and TFP.

We develop a general state-contingent stochastic frontier model and apply it in a

small farmer risky environmental setting. We break the agricultural production period

into two sub-periods: in the first sub-period, the firm chooses inputs (land, labor, seed

and fertilizer) in the face of uncertainty about characteristics of the production envi-

ronment (e.g., rainfall); in the second sub-period, Nature resolves this uncertainty by

choosing a value from a set Ω = {1, . . . ,S}. Hereafter, the elements of Ω are referred to

2



as states of Nature (or simply states). Different farmers may experience different states

of Nature and may face different input prices depending on their access to subsidised in-

puts. Access to subsidised inputs stimulates input demand. However, the consequences

for productivity are uncertain because such access can affect the efficiency of input use.

To illustrate our modelling approach, we use a cross-section dataset comprising ob-

servations on small maize producers in Malawi. This is a convenient illustration be-

cause maize is the main crop produced by almost all rural farms. Maize is also the most

important staple food for rural as well as for urban consumers in the country. Maize

production has therefore for many years been stimulated by a national input subsidy

program aiming to improve household and national food security. Very high subsidy

levels are used in the program causing large variations in factor prices depending on

access to targeted subsidies. The high costs of the program in combination with the

vulnerability of maize production to droughts makes the analysis of maize productivity

under different states of Nature (drought, no drought) and access to subsidized inputs

highly relevant.

The paper is structured as follows. In Part 2 the technology assumptions are speci-

fied. A general productivity index is presented in Part 3 and a new way of decomposing

it is presented in Part 4. Firm behaviour is discussed in Part 5 before the econometric

model and estimation method are explained in Part 6. The data are described in Part 7.

We present and discuss the main results in Part 8 before we briefly conclude in Part 9.

2. Technologies and Metatechnologies

In O’Donnell (2015), a technology is defined as “a technique, method or system

for transforming inputs into outputs. . . . . For all practical intents and purposes, it is

convenient to think of a technology as a book of instructions.” Furthermore, “the set of
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technologies available a given period is referred to as a metatechnology. If we think of

a technology as a book of instructions, then we should think of a metatechnology as a

library.” In this paper, we analyse cross-section data, so we are dealing with a single

metatechnology.

Metatechnologies can be represented using various sets and functions. In this paper,

we represent the metatechnology using state-contingent output sets and distance func-

tions. These sets and functions are said to be state-contingent because they are explicitly

conditioned on states of Nature. This is one of the distinguishing features of our paper.

A second distinguishing feature of our paper is the way we deal with variations in

input quality. In practice, it is common to deal with this issue by disaggregating inputs

into homogeneous groups (e.g., by dividing the number of employees into numbers

of skilled and unskilled employees; or by disaggregating the capital input into land,

buildings and equipment). One problem with this approach is that the number of inputs

can become very large, and this can make it difficult to obtain reliable estimates of

economic quantities of interest (in econometric jargon, we get multicollinearity). In this

paper, we avoid this problem by introducing separate measures of input quality directly

into the definitions of state-contingent output sets.

To make these concepts more concrete, let x = (x1, . . . ,xM∗)
′, q = (q1, . . . ,qN∗)

′ and

a = (a1, . . . ,aG∗)
′ denote vectors of input quantities, output quantities, and input at-

tributes respectively. In this paper, the set of outputs that can be produced in state s

using inputs x having attributes a is formally defined as P(x,a,s)≡ {q : x with attributes

a can produce q in state s}. This is a state-contingent output set that explicitly accounts

for variations in input quality. In this paper, we make assumptions about the metate-

chnology by way of assumptions about this set. To be specific, we make the following

assumptions:
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O1 0 ∈ P(x,a,s) for all x≥ 0 (inactivity);

O2 P(x,a,s) is bounded for all x≥ 0;

O3 q≥ 0⇒ q /∈ P(0,a,s) (weak essentiality; no free lunch);

O4 q ∈ P(x,a,s) and 0≤ q̃≤ q⇒ q̃ ∈ P(x,a,s) (outputs strongly disposable);

O5 q ∈ P(x,a,s) and x̃≥ x⇒ q ∈ P(x̃,a,s) (inputs strongly disposable); and

O6 P(x,a,s) is closed for all x ≥ 0 and L(q,a,s) ≡ {x : q ∈ P(x,a,s)} is closed for all

q≥ 0.

If these assumptions are true, then equivalent representations of P(x,a,s) include (state-

contingent) output and input distance functions. In this paper, the output distance func-

tion is formally defined as DO(x,q,a,s) ≡ inf{ρ > 0 : q/ρ ∈ P(x,a,s)}. The input

distance function is defined as DI(x,q,a,s)≡ sup{θ > 0 : q ∈ P(x/θ ,a,s)}. If input at-

tributes do not change and there is only one state of Nature, then these distance functions

collapse to the distance functions of Shephard (1970, pp. 206, 207).

If assumptions O1–O6 are true, then the output (resp. input) distance function is

nonnegative (NN), non-decreasing (ND) and homogeneous of degree one (HD1) in out-

puts (resp. inputs). As we shall see in Part 3, these three properties mean that distance

functions can be used to construct sensible output, input and TFP indexes. Output and

input distance functions can also be used for another purpose: the value of the out-

put distance function is a measure of output-oriented technical efficiency (OTE), and

the reciprocal of the value of the input distance function is a measure of input-oriented

technical efficiency (ITE). These concepts of technical efficiency can be traced back at

least as far as Debreu (1951) and Farrell (1957).
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Finally, if there is only one ex post output, as in this paper, then an equivalent rep-

resentation of P(x,a,s) is the (state-contingent) production function. In this paper, the

production function is formally defined as F(x,a,s) ≡ 1/DO(x,1,a,s). If assumptions

O1–O6 are true, then the production function is NN and ND in inputs. An example is

the following Cobb-Douglas (CD)1 function:

F(x,a,s) = exp

(
αs +

G∗

∑
g=1

ψgsag +
M∗

∑
m=1

βms lnxm

)
(1)

where βms ≥ 0 is a state-contingent output elasticity and rs = ∑m βms ≥ 0 is a state-

contingent elasticity of scale. The state-s production function exhibits decreasing re-

turns to scale (DRS), constant returns to scale (CRS) or increasing returns to scale (IRS)

as rs is less than, equal to, or greater than one.

3. A General Productivity Index

It is convenient at this point to introduce firm subscripts into the notation so that,

for example, qi = (q1i, . . . ,qN∗i)
′ now denotes the output vector of firm i. In O’Donnell

(2012), an output quantity index that compares qi with qk is defined as any variable of the

form QIki≡Q(qi)/Q(qk) where Q(.) is an NN, ND and HD1 scalar aggregator function.

On the input side, an input quantity index that compares xi with xk is any variable of

the form XIki ≡ X(xi)/X(xk) where X(.) is an NN, ND and HD1 scalar aggregator

function. Output and input indexes of this form satisfy important axioms from index

number theory, including identity, transitivity and circularity. The transitivity axiom,

for example, says that if firm B produces (resp. uses) twice as much as firm A, and firm

1The CD terminology derives from the fact that if input attributes do not change, there is only one
state of Nature, and there are only two inputs involved in the production process, then (1) collapses to the
production function of Cobb and Douglas (1928).
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C produces (resp. uses) twice as much as firm B, then firm C produces (resp. uses) four

times as much as firm A. Indexes that do not satisfy this axiom include the well-known

Fisher and Törnqvist indexes.

Any NN, ND and HD1 aggregator functions can be used for purposes of construct-

ing output and input quantity indexes. If assumptions O1–O6 are true, then the menu

of suitable aggregator functions includes Q(q) ∝ DO(x̄,q, ā, s̄) and X(x) ∝ DI(x, q̄, ā, s̄)

where s̄ is a representative state of Nature, q̄ is a representative vector of outputs,

and x̄ and ā are representative vectors of input quantities and attributes. The asso-

ciated output and input quantity indexes are QIG
ki = DO(x̄,qi, ā, s̄)/DO(x̄,qk, ā, s̄) and

XIG
ki = DI(xi, q̄, ā, s̄)/DI(xk, q̄, ā, s̄). These indexes are general (G) in the sense that they

nest several other indexes as special cases. For example, if input attributes do not change

and there is only one state of Nature, then they collapses to the output and input quantity

indexes defined by Färe and Primont (1995, pp. 36, 38).

Finally, a TFP index is a measure of output change divided by a measure of input

change. For example, the index that compares the TFP of firm i with the TFP of firm

k is a variable of the form T FPki ≡ QIki/XIki. Again, any output and input quantity

indexes can be used for purposes of constructing a TFP index. Dividing QIG
ki by XIG

ki ,

for example, yields the following general TFP index:

T FPIG
ki =

DO(x̄,qi, ā, s̄)
DO(x̄,qk, ā, s̄)

DI(xk, q̄, ā, s̄)
DI(xi, q̄, ā, s̄)

. (2)

Different assumptions concerning metatechnologies have important practical implica-

tions for the form of this index. For example, if there is only one ex post output involved
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in the production process and the production function is given by (1), then:

T FPIG
ki =

(
qi

qk

) M∗

∏
m=1

(
xmk

xmi

)λms̄

(3)

where λms̄ ≡ βms̄/rs̄ ≥ 0 and ∑m λms̄ = 1.

4. The Components of Productivity Change

In theory, any TFP index can be decomposed into measures of environmental change

and efficiency change.2 In practice, the number and type of components depends in part

on the assumed properties of the metatechnology. For example, if assumptions O1–O6

are true and there is only one ex post output involved in the production process, as in this

paper, then we can write qi = F(xi,ai,s)exp(−usi) where usi ≡− lnDO(xi,qi,ai,s)≥ 0

is a technical inefficiency effect.3 Similarly, in the case of firm k, we can write qk =

F(xk,ak,r)exp(−urk). Substituting these equations into (3) yields:

T FPIG
ki =

[
F(xi,ai,s)
F(xk,ak,r)

M∗

∏
m=1

(
xmk

xmi

)λms̄
][

exp(−usi)

exp(−urk)

]
. (4)

The first term in brackets on the right-hand side of this equation is an environment and

output-oriented scale-mix efficiency index (EOSMEI). The second term is an output-

oriented technical efficiency index (OTEI). Whether or not the EOSMEI component can

be further decomposed into separate measures of environmental change, scale efficiency

change and/or mix efficiency change depends on whether the production function is

2In a time-series or panel data context, any TFP index can be decomposed into a measure of technical
change as well as measures of environmental change and efficiency change. Details can be accessed from
O’Donnell (2015).

3If N∗ = 1, then DO(xi,qi,ai,s) = qiDO(xi,1,ai,s) = qi/F(xi,ai,s)⇒ qi =F(xi,ai,s)DO(xi,1,ai,s)⇒
qi = F(xi,ai,s)exp(−usi).
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multiplicatively separable in inputs, input attributes and state variables.

5. Firm Behaviour

It is useful at this point to say something about firm behaviour. In this paper, we sup-

pose that firms maximise welfare. The exact form of the welfare-maximisation problem

depends on the variables that the firm can and cannot choose. In the state-contingent lit-

erature, it is common to assume that firms can choose inputs and ex ante outputs freely,

and that prices are known at the time these choices are made (e.g., because they are

fixed under a contract). Again suppose there is only one ex post output. In this case, the

welfare-maximisation problem of firm i is:

W (wi, pi,ai) = max
x≥0,q≥0

{W (piq1−w′ix, . . . , piqS−w′ix) : qs ≤ F(x,ai,s) for all s ∈Ω}

where wi is a vector of input prices, pi is a scalar output price, q = (q1, . . . ,qS)
′ is a

vector of ex ante outputs, and W (.) is a utility function that is nondecreasing in ex ante

outputs and nonincreasing in inputs. The input vector that solves this problem is an input

demand correspondence of the form x(wi, pi,ai). To say that the firm maximises welfare

is to say that xi = x(wi, pi,ai). Among other things, this means that, if necessary, input

and output prices can be used as instrumental variables when estimating production

frontiers. Access to subsidized inputs implies lower input prices for those with access

and this may stimulate input demand. Ricker-GIlbert et al. (2011) estimated that one

extra unit of fertilizer input was associated with 0.78 units increase in total fertilizer use,

implying a crowding out effect of 0.22 unit.
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6. Ex Post Econometrics

If there is only one ex post output, then the relationship between the variables in-

volved in the production process can be written as yi = lnF(xi,ai,s)−usi where yi≡ lnqi

is the ex post log-output and usi ≡ − lnDO(xi,qi,ai,s) ≥ 0 is the technical inefficiency

effect introduced in Part 4. If the functional form of F(.) is unknown, as in this paper,

then we can write yi = f (xi,ai,s)+ vsi− usi where f (.) is an approximating function

of our own choosing and vsi = lnF(xi,ai,s)− f (xi,ai,s) is an unobserved error that is

commonly referred to as statistical noise. In this paper, we choose a CD approximating

function and write:

yi = αs +
G

∑
g=1

ψgsagi +
M

∑
m=1

βms lnxmi + vsi−usi. (5)

Here, vsi accounts for functional form errors [i.e., the possibility that the true produc-

tion function is not, in fact, given by (1)], omitted variables (i.e., the possibility that

G≤ G∗ and/or M ≤M∗) and other sources of noise (e.g., errors in the measurement of

output). In this paper, to estimate the unknown parameters in (5), we make the following

assumptions:4

A1 vsi is an independent N(0,σ2
v ) random variable, and

A2 usi is an independent N+(0,σ2
u ) random variable.

If A1 and A2 are true, then ordinary least squares (OLS) estimators of the slope parame-

ters in (5) are consistent, and maximum likelihood (ML) estimators of the intercept and

slope parameters are consistent, asymptotically normal and asymptotically efficient.

4In this context, the term independent means, inter alia, that Cov(agi,vsi − usi) = Cov(lnxmi,vsi −
usi) = 0 for all g, s, m, and i. If Cov(agi,vsi−usi) 6= 0 and/or Cov(lnxmi,vsi−usi) 6= 0, then the explanatory
variables are said to be endogenous.
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Finally, if the relationship between the variables involved in the production process

is written as yi = f (xi,ai,s)+ vsi−usi, then the TFP index (3) can be decomposed as:

T FPIG
ki =

[
exp[ f (xi,ai,s)]
exp[ f (xk,ak,r)]

M∗

∏
m=1

(
xmk

xmi

)λms̄
][

exp(−usi)

exp(−urk)

][
exp(vsi)

exp(vrk)

]
. (6)

The first term in brackets on the right-hand side of this equation is still an environment

and output-oriented scale-mix efficiency index (EOSMEI). The second term is still an

output-oriented technical efficiency index (OTEI). The last term is a statistical noise in-

dex (SNI). Thus, (6) says that TFPI = EOSMEI × OTEI × SNI. If assumptions A1 and

A2 are true, then (i) a consistent estimator of the TFP index itself can be obtained by

replacing the unknown state-contingent output elasticities with their ML estimators, (ii)

a consistent estimator of the OTEI component can be obtained using the OTE estimator

of Jondrow et al. (1982), (iii) a consistent estimator of the SNI component can be ob-

tained by netting the OTEI component out of the (change in) the ML residuals, and (iv)

a consistent estimator of the EOSMEI component can be obtained using the fact that

EOSMEI = TFPI/(OTEI × SNI). If σ2
v = 0, then there is no statistical noise and (6)

collapses to (4).

7. Data

The data come from a household-farm survey in Malawi. Stratified random sampling

was used in six districts in Central and Southern Regions of the country including some

of the most densely populated rural areas in the country in the south, with varying market

access and tenure systems (Lunduka, 2009). While the population has been surveyed

four times (2006, 2007, 2009 and 2012), we only use the data for 2012 as an illustrative

example. One advantage of these data is the strong dominance of a single crop, maize,
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in the farming system. Maize is also the dominant staple food of the rural small-scale

producers, many of whom are net buyers of maize due to the small size of farms. A

second advantage of these data is that maize area and farm size were measured with

GPS, so errors in the measurement of the land input should be small. A third advantage

is that many households in the sample were exposed to a quite severe drought in form

of a dry spell in the early rainy season in 2011/12, making a state-contingent frontier

analysis relevant.

In the process of assembling the data for econometric analysis, some outlier obser-

vations, some missing input data, and some inconsistencies in the data were discovered.

Consequently, 15 observations were deleted from the dataset, leaving 287 observations

for the final analysis. There were S = 2 states of Nature: a normal state (227 observa-

tions) and a drought state (60 observations). The variables used in the analysis were:

q = total maize output (kg); x1 = land (ha); x2 = labor (days); x3 = seed (kg) (all va-

rieties, including seed used for replanting); x4 = fertilizer (kg); a1 = land slope index;

and a2 = soil fertility index. In this dataset, lower values of the soil fertility index in-

dicate higher levels of fertility. Descriptive statistics for these variables are reported in

Table 1.

8. Results and Discussion

We used ML to estimate the state-contingent stochastic frontier model given by (5)

and assumptions A1 and A2. A Hausman test was use to test the null hypothesis that the

explanatory variables are uncorrelated with the composite error term (the discussion in

Part 5 led us to use output and input prices as instruments). We found no evidence that

the explanatory variables are endogenous (the null hypothesis could not be rejected at

the 10% level of significance). Assumption O5 (strong disposability of inputs) implies
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that the production function is ND in inputs, so we constrained all output elasticities to

be nonnegative. Inequality-constrained ML estimates of the unknown parameters are

reported in Table 2. The estimates of β31 and β22 are zero, with standard errors of zero,

because the inequality constraints on these parameters are binding (this is a well-known

shortcoming of the sampling theory approach to inference).

Table 2 shows that the land area is the most important determinant of maize output.

Land scarcity is also therefore the most important explanation for small farm produc-

tion. The average maize farm size is only 0.72 ha (Table 1). Fertilizer application also

contributes to a substantial increase in output in a normal year but less so in a drought

year as seen by the smaller coefficient (estimated output elasticity). The impact of the

drought is particularly evident when comparing the estimated intercept terms in the nor-

mal year and drought year, indicating that the state of Nature can give rise to a large

change in expected output in addition to changes in output elasticities.

The other estimates reported in Table 2 are plausible insofar as they indicate the

following: returns to scale in a normal (resp. drought) season are greater (resp. less)

than one; more land, more labor, more seed, more fertilizer and higher levels of soil

fertility all lead to more output; and the estimate of λ ≡ σu/σv is significantly different

from zero indicating that there is technical inefficiency in this dataset. The fact that

some coefficients are statistically insignificant indicates that our approach to dealing

with input quality may not have fully eliminated the multicollinearity problem.

Selected indexes of firm performance are reported in Table 3. These indexes com-

pare the performance of a subset of farm households with the performance of household

300 (hereafter HH 300). The results in Table 3 have been ordered from the most pro-

ductive household in the sample to the least productive. Thus, the most productive

household in the sample is HH 389, and the least productive is HH 74. The interpreta-
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tion of the indexes is straightforward. For example, the results in the first few columns

of the first row indicate that HH 389 produced 6.2% less output and used 82.4% less

input than HH 300 (QI = 1− 0.052 = 0.938 and XI = 1− 0.824 = 0.176). Conse-

quently, HH 389 was found to be 5.3 times more productive than HH 300 (TFPI =

QI/XI = 0.938/0.176 = 5.319). The last three columns in Table 3 attribute differences

in TFP to differences in efficiency and statistical noise. Again, the interpretation of these

results is straightforward. For example, the entries in the first row indicate that HH 389

was 5.3 times more productive than HH 300 due to the combined effects of (i) technical

efficiency (TI = 1.950 > 1⇒ a positive effect), (ii) the production environment and/or

economies of scale and scope (EOSMEI = 11.544� 1⇒ a large positive effect), and

(iii) other factors that we cannot identify (SNI = 0.236� 1⇒ a large negative effect).

Finally, the indexes reported in Table 3 are transitive, which means it is meaningful to

make comparisons across rows and columns. For example, the first and last entries en-

tries in the TFPI column indicate that HH 389 was more than 85 times more productive

than HH 74 (TFPI = 5.319/0.062 = 85.86).

To obtain further insights into the sources of TFP change, we will look more closely

at selected households reported at the top, middle and bottom of Table 3. We start with

HH 300 (the reference, or benchmark, household). This household produced 800 kg of

maize (improved variety) on an area of 0.73 ha, using 49 days of labor (= 67 days/ha in

hoe-based farming), 2 kg of seed (= 2.7 kg/ha), and 80 kg of fertiliser (= 109.4 kg/ha) in

a normal season (no drought) on land with slope index = 1 and fertility index = 1. Half

of the fertilizer (40 kg) was obtained through the subsidy program. Among the highly

productive households, HH 389 produced 750 kg of maize (OPV) on an area of 0.21

ha, using 50 kg fertilizer obtained through the subsidy program. This farm household

was land-poor and a net buyer of maize and had casual off-farm jobs (ganyu) to make
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ends meet. HH 289 is another highly productive household producing 1800 kg of hybrid

maize on 0.66 ha (slightly smaller than the benchmark), using 51 days of labor (= 77.8

days/ha, similar to the benchmark), 3 kg of seed (= 4.6 kg/ha, much higher than the

benchmark), and 50 kg of fertiliser (= 76.2 kg/ha, much lower than the benchmark) in

a normal season (same as the benchmark) on land with slope index = 1 (same as the

benchmark) and fertility index = 2 (less fertile than the benchmark). Thus, EOSMEI

= 2.737 because of the combined effects of different input mix (higher seeding rate

and lower fertiliser rate = a positive effect) and less fertile soil (a negative effect). This

household was a net seller of maize but also had casual off-farm jobs to make ends meet.

Households 389 and 289 obtained good maize yields partly because they were lo-

cated in places that were not badly affected by the 2011/12 drought. On the other hand,

HH 77 was affected by the drought and the maize had to be replanted using a drought

tolerant short duration maize variety. HH 77 produced 1500 kg of maize on 0.44 ha

using 100 kg fertilizer of which 50 kg was received through the subsidy program. The

household had a treadle pump and could thus to some extent irrigate the crop (our failure

to include the treadle pump as an input is a source of statistical noise). This household

therefore produced substantially more maize than other households in this drought af-

fected area. The household was therefore a net seller of maize also in this drought year.

HH 229 was affected by drought but has still been able to get a reasonable production

output of 1350 kg maize from 0.48 ha, using 100 kg fertilizer (obtained through the

subsidy program), and was one of the few net sellers of maize in its area in the drought

year.

At the bottom of the table, we find HH 74 which has 0.31 ha of land with maize

(local maize) but produced only 20 kg of maize on this area in 2012 due to the severe

drought (it produced 250 kg maize in 2011 and 350 kg maize in 2010 showing the
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severity of the drought). It used 12.5 kg fertilizer on the maize but did not get any

inputs from the subsidy program. HH 74 produced some cassava and pigeon pea (more

drought tolerant crops) and had casual off-farm employment to make ends meet. The

next unproductive household is HH 175 which produced only 200 kg of maize on 2.1

ha while using 100 kg fertilizer of which 50 kg was received from the subsidy program.

This household also had casual off-farm work to make ends meet and was a net buyer

of maize. The drought may have been an important reason for the low maize yields but

poor management may also play an important role as yields in previous years with more

favourable weather conditions were also low (OTE scores are relatively low). HH 163

produced 200 kg maize on 0.65 ha while using as much as 400 kg fertilizer of which

50 kg was received through the subsidy program. This farm household was therefore

badly affected by the drought. It still managed to produce quite a bit of tomatoes for

the market as the main source of cash income. HH 58 produced 350 kg of maize on

1.56 ha while using 80 kg fertilizer of which 50 kg was from the subsidy program. The

drought was so severe that the maize had to be replanted. Some of the replanted area

was planted with drought tolerant early maturing maize and some with another type of

hybrid maize. This farm household also had additional income from casual off-farm

employment as well as a non-agricultural business (having a sewing machine).

To summarize, these brief farm household stories reveal that all maize farms are

small and they have to varying degrees been affected by the drought. Access to irriga-

tion water, ability to replant the crop after the drought with an early maturing variety,

late arrival of subsidized inputs and managerial ability appear as important reasons for

variation in the TFPI and EOSMEI.

A clearer picture of the variation and drivers of TFP change is given in Figures 1 to

4. These figures summarise results for all 287 households, again ordered from most pro-
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ductive (HH 389) to least productive (HH 74). Figure 1 presents indexes of output, input

and TFP change; these are the types of results we would expect to see reported in the

growth accounting literature. Figure 1 tells us that input levels are fairly similar across

firms, and that large difference in TFP are due to large differences in output.5 Figure 2

presents TFP and EOSME indexes together with an output-oriented technical efficiency

and statistical noise index (OTESNI = OTEI × SNI); these are the types of results we

would expect to see from SFA researchers who estimate the model using least squares

(LS) methods (LS methods cannot disentangle technical inefficiency and noise). Figure

2 is also where the contribution of our paper lies: it indicates that differences in TFP

are mainly due to differences in the environment and scale-mix efficiency (the EOSMEI

component). Figure 3 is the type of analysis we might get from SFA researchers who

estimate the model using ML (assumptions A1 and A2 allow us to disentangle the OTEI

and SNI components). Unfortunately, Figure 3 suggests that the (standard) ML assump-

tions we have used in this paper may not be correct. Assumption A2, for example, says

that all noise errors have a mean of zero. However, Figure 3 suggests that the noise

errors for more productive households have lower means than the noise errors for un-

productive households. Figure 4 presents estimates of OTE levels (not indexes). This

figure reveals that levels of OTE ranged from less than 0.1 to approximately 0.8. This

indicates that even the most technically efficient household in the sample could increase

its output by as much as 25% by making better use of available technologies.

Finally, in an attempt to isolate the state of Nature effect, we predict output levels

5Growth accountants, who have interesting concepts of causality, might say that large differences
in output were due to large differences in TFP. If prices were constant, then this would equivalent to
saying that large differences in sales were due to large differences in profits. In our case, there are large
differences in factor prices depending on the access to subsidized inputs (i.e. inputs with which have
highly subsidized prices.
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in two different states of Nature holding the inputs fixed for all observations in the

dataset. To be more specific, our measure of the environmental effect is ENV = Q1/Q0

where Q1 is predicted output in a drought season and Q0 is predicted output in a normal

season. In the case of HH 389, for example, ENV = 0.955, indicating that, all other

things being equal, output in a drought is only 95.5% of what it is in a normal season

(assuming that households do not change their input mix when they are facing drought).

The average value of ENV across all households is 0.63, indicating that, all other things

being equal, output in a drought is on average 37.1% lower than in a normal season.

Figure 5 summarises these results. Most of the bars in Figure 5 are below the horizontal

line at 1, indicating that drought generally leads to lower output (all other things being

equal). However, for about 15 households, their inputs are such that drought would have

led to higher output (in one case output would have more than doubled; the maximum

value of ENV is 2.13). This is partly because of the estimated output elasticities: the

estimated seed (resp. labor) elasticity is zero in a normal season (resp. drought).

9. Conclusion

We have made cross-sectional comparisons of total factor productivity in a risky

agricultural setting with imperfect input markets. A new productivity index is con-

structed that satisfies important axioms from index number theory. This index can be

computed without any information about input or output prices and is based on the

estimated coefficients from state-contingent production frontiers. A maximum likeli-

hood approach was used to estimate frontiers for two states of Nature, drought and no

drought.

We find that most of the cross-sectional variation in productivity can be explained

by variation in environment and output-oriented scale-mix efficiency (EOSME). Further
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dissagretion of this measure by state of Nature indicated that average output was 37.1%

lower in the drought state of Nature than the normal state of Nature, all other things

being equal (i.e., holding inputs and input attributes fixed).

We found significant technical inefficiency in the data (efficiency scores ranged from

0.1 to 0.8). Variation in access to input subsidies and late arrival of subsidized inputs

in addition to variation in managerial skills may explain this. However, there are in-

dications that the maximum-likelihood estimation methodology has failed to properly

separate output-oriented technical efficiency from statistical noise.

The data also show that the average maize farm was small (0.72 ha) and that land

scarcity was a limiting factor causing many maize farmers to be deficit producers. Maize

is their main staple food, and a large share of the small farmers therefore depend on

access to casual off-farm work (ganyu) to make ends meet. The results suggest that

households are vulnerable to drought, and that subsidized inputs can, to a limited ex-

tent, protect them against drought shocks. This suggests that complementary policies

and livelihood strategies are needed in years with more extreme weather conditions.
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Table 1: Descriptive Statistics

Variable Mean St. Dev. Min. Max.

q output 754.07 940.42 20.00 7920.00
x1 land 0.72 0.66 0.01 8.45
x2 labor 55.05 41.13 4.00 276.00
x3 seed 21.28 28.77 0.20 360.00
x4 fertilizer 76.66 79.01 1.00 501.00
a1 slope 0.29 0.61 0.00 3.00
a2 soil fertility 0.38 0.78 0.00 3.00
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Table 2: ML Parameter Estimates

Estimate St. Err. p-value

Normal Season (s = 1)

α1 constant 6.8839∗∗∗ 0.7362 < 0.001
β11 log-land 0.7714∗∗∗ 0.1207 < 0.001
β21 log-labor 0.0207 0.1470 0.8880
β31 log-seed 0.0000 0.0000 n.a.
β41 log-fertilizer 0.2449∗∗∗ 0.0672 0.0003
ψ11 slope −0.1064 0.1753 0.5440
ψ21 soil fertility −0.0013 0.1708 0.9940

Drought Season (s = 2)

α1 constant −0.1850 0.7889 0.8146
β11 log-land 0.4349∗∗∗ 0.0695 < 0.001
β21 log-labor 0.0000 0.0000 n.a.
β31 log-seed 0.0204 0.0504 0.6854
β41 log-fertilizer 0.1957∗∗∗ 0.0282 < 0.001
ψ11 slope 0.1824∗∗ 0.0797 0.0220
ψ21 soil fertility −0.3990∗∗∗ 0.0971 < 0.001

λ ≡ σu/σv 1.9153∗∗∗ 0.2506 < 0.001
σ ≡

√
σ2

v +σ2
u 1.0133∗∗∗ 0.0028 < 0.001
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Table 3: Selected Indexes of Household Performance

Household QI XI TFPI OTEI EOSMEI SNI

389 0.938 0.176 5.319 1.950 11.544 0.236
289 2.250 0.849 2.649 1.629 2.737 0.594
77 1.875 0.794 2.360 1.849 3.522 0.362
229 1.688 0.841 2.008 1.742 2.384 0.483
2 1.719 0.884 1.944 1.751 2.346 0.473
: : : : : : :

300 1.000 1.000 1.000 1.000 1.000 1.000
: : : : : : :

271 0.375 1.216 0.308 0.449 0.533 1.288
58 0.438 1.638 0.267 0.639 0.358 1.168
163 0.250 1.339 0.187 0.550 0.279 1.219
175 0.250 2.057 0.122 0.447 0.211 1.290
74 0.025 0.404 0.062 0.196 0.196 1.616
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Figure 1: Output, Input and TFP Change
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Figure 2: The Economic Components of TFP Change
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Figure 3: The Economic Components of TFP Change
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Figure 4: Levels of Output-Oriented Technical Efficiency
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Figure 5: Environmental Effects
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