

Policies for Improved Food Security: Lessons from Farm Household Studies

By Stein T. Holden

Workshop on Local Level Food and Nutrition Security & The Role of Subsistence/Smallholder Farms Seville, 9-10. September, 2015.

Lessons from Household Studies I: Land Tenure Policies & Land Markets

- –Lessons from Holden, Otsuka & Place(2009); Holden, Otsuka and Deininger (2013), Holden & Otsuka (2014)++.
- Emerging Land Markets in Africa: Implications
- Past and Potential Future Roles of Land Tenure Reforms and Land Markets in Sub-Saharan Africa
- →The Need for Better Land Governance
- →The Importance of Tenure Security
- →The Link between Tenure Security and Food Security

the emergence of LAND MARKETS IN AFRICA

Impacts on Poverty, Equity, and Efficiency

edited by Stein T. Holden, Keijiro Otsuka & Frank M. Place

ENVIRONMENT FOR DEVELOPMENT Thomas Sterner, Series Editor

The first systematic attempt to address emerging land markets and their implications for poverty, equity, and efficiency across a number of African countries.

Revealed that land rental markets

- Are active in many African countries
- Also in customary tenure systems

The Emergence of Land Markets

• The fear that land sales markets will lead to landlessness and more unequal land distribution

-Some but limited evidence

-Prohibition and restrictions on land sales still common

- Land rental markets more common
 - -Transfer land to more efficient producers
 - -Transfer land to relatively land-poor households
 - -More flexible adjustment of farm sizes with limited capital requirements – facilitate agricultural transformation
 - -More can be done to enhance their efficiency

Published by Palgrave Macmillan

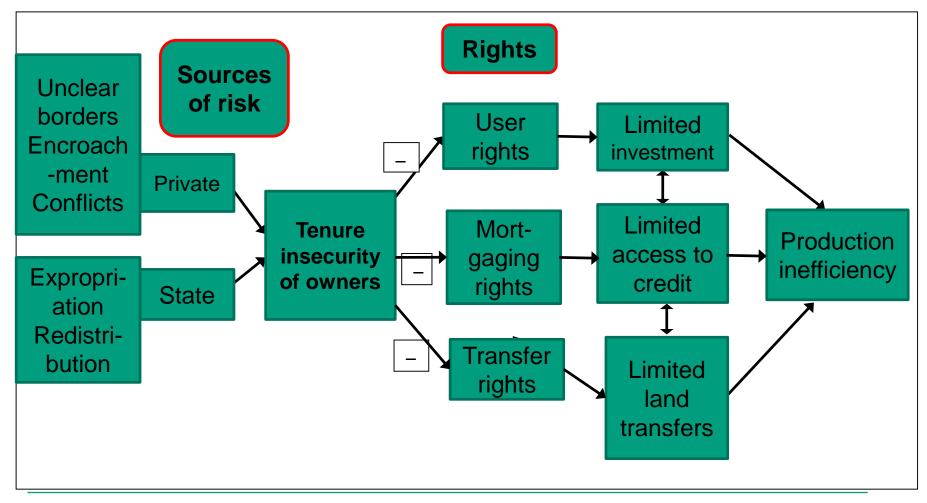
August 2013

- This book examines the impact of land tenure reforms on poverty reduction and natural resource management in countries in Africa and Asia with highly diverse historical contexts
- → Importance of tenure security

Land Tenure Reform in Asia and Africa

Assessing Impacts on Poverty and Natural Resource Management

> Edited by Stein T. Holden, Keijiro Otsuka and Klaus Deininger



Sources of tenure insecurity

- Encroachment by neighbors
- Land grabs by powerful persons (elite capture)
- Unclear or unrecognized (customary) land rights
- State land allocations to investors
- Expropriation by the state
 - -For public use
 - -For investment
 - -Elite capture
- Political conflict areas

\rightarrow Tenure insecurity \rightarrow Food insecurity

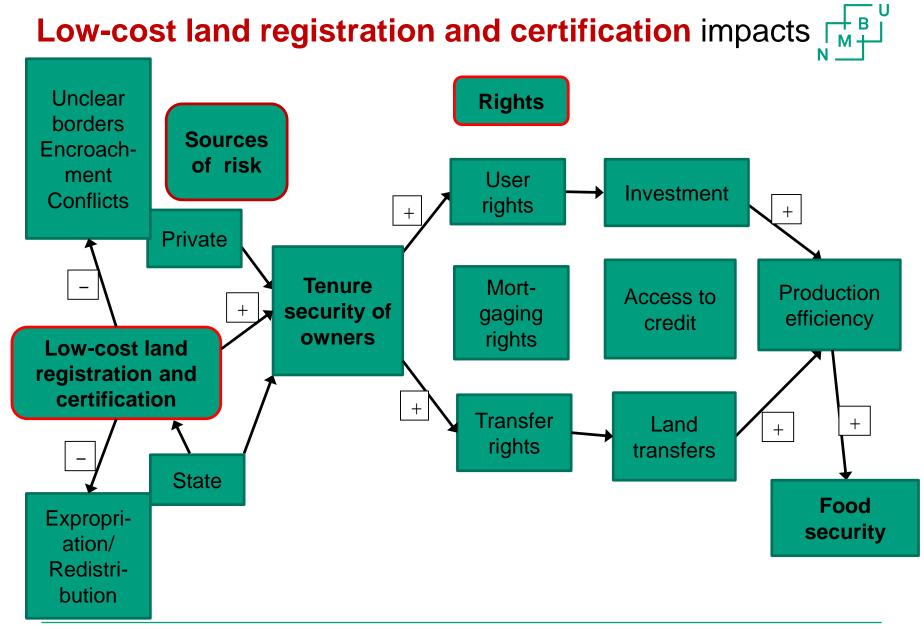
Sources of tenure insecurity and impacts

Source: Holden et al. 2013

Successful tenure reform example:

- Increased investments and productivity
 - Holden, Deininger and Ghebru (AJAE, 2009)
 - Deininger, Ali, Holden and Zevenbergen (WD, 2008)
 - Deininger, Ali and Alemu (LE, 2011)
- Reduced land border conflicts
 - Holden, Deininger and Ghebru (2011)
- Increased land rental market participation, esp. FHH
 - Holden, Deininger and Ghebru (JDS, 2011)
 - Deininger, Ali and Alemu (LE, 2011)
- Positive welfare impacts (food security and nutrition) including Female landlord households
 - Holden and Ghebru (2013)
 - Ghebru and Holden (2013)

Impact of land certification on log of calorie availability per consumer unit, HH FE models


Variable	1997–2010	2000–2010	2003–2010	2006–2010
Years with certificate	0.031***	0.035***	0.071****	0.052
Sex of household head, Female = 1, male = 0	0.097	0.122*	0.136	0.251**
Farm size per consumer unit	0.082****	0.066****	0.050***	0.016
Sex of household head*Years with certificate	0.014*	0.021**	0.019	0.011
Operational holding size/Farm size, tenants	0.076***	0.121***	0.137*	0.182**
Operational holding size/Farm size, landlords	-0.027	-0.048	-0.076	-0.048
Year dummy for 1997	-0.190*			
Year dummy for 2000	-0.235**	-0.193*		
Year dummy for 2003	-0.069	-0.034	0.19	
Year dummy for 2006	0.076	0.085	0.206***	0.107
Constant	7.006****	6.933****	6.593****	6.756****
Prob > chi ²	0.000	0.000	0.000	0.000
Number of observations	1,459	1,161	863	565
R-squared	0.257	0.25	0.163	0.064

U

Impact of land certification on log of calorie availability per consumer unit, HH FE models

	•			N
Variable	Tenants	Landlords	Pure owner- operators	All
Years with certificate	-0.012	0.058**	0.037**	0.031***
Sex of household head, Female = 1, male = 0	-0.183	0.135	0.148	0.097
Farm size per consumer unit	0.183****	0.150****	0.055***	0.082****
Sex of household head*Years with certificate	0.056	-0.005	0.006	0.014*
Operational holding size/Farm size tenants	0.068**			0.076***
Operational holding size/Farm size landlords		-0.137		-0.027
Year dummy for 1997	-0.466	-0.029	-0.127	-0.190*
Year dummy for 2000	-0.386	0.105	-0.364**	-0.235**
Year dummy for 2003	-0.242	0.222	-0.027	-0.069
Year dummy for 2006	0.029	0.234*	0.075	0.076
Constant	7.313****	6.823****	6.977****	7.006****
Prob. > chi ²	0.000	0.000	0.000	0.000
Number of observations	326	370	784	1,459
R-squared	0.259	0.325	0.28	0.257

U

Source: Holden et al. 2013

Conclusions

- Land rental markets enhance the flexibility of agricultural systems and contribute to adaptation to changing external and internal conditions, including multiple sources of risk and shocks
 - -Enhancing equity and efficiency
 - -Facilitate adaptation to climate change
 - -Promotion of agricultural transformation
- The recent increase in demand for land in Africa revealed a need for better land goverance
 - A good understanding of the local context is essential for designing better land policies

Lessons from Household Studies II: Risk Preferences, Shocks and Technology

- Climate risk represents an increasing threat to poor and vulnerable farmers in drought-prone areas of Africa.
- This study assesses the maize and fertilizer adoption responses of food insecure farmers in Malawi, where Drought Tolerant (DT) maize was recently introduced.
- Combine Household Survey Data and a Field Experiment, eliciting relative risk aversion, loss aversion and subjective probability weighting parameters of farmers
- Study for CIMMYT-project: Adoption Pathways

Risk Preferences, Shocks and Technology Adoption

- Some studies have found that more risk averse people are likely to be late adopters of new technologies
 - –E.g. Liu (2013) found that more risk averse farmers adopted BT cotton (pest resistant variety) later in China
- Can risk aversion therefore hinder efficient adaptation to climate change?
- How does **risk preferences** affect adoption of new technologies that are better adapted to drought conditions?
 - –Is Prospect Theory a better basis for predicting adoption behavior of poor & vulnerable people?
- How does exposure to drought shocks affect adoption of more Drought Tolerant maize varieties?

Setting: Small Farmers in Malawi

- Farm sizes: 0.25 ha 5 ha
- Rain-fed agriculture
- Rainfall variability: Drought in form of dry spells in the rainy season are common
- Main staple crop: Maize planted on most of the land
- Majority are net buyers of maize (deficit producers)
- Large input subsidy program (FISP) provides subsidized fertilizer and maize seeds
- 2011/12: Drought year (70% of sample affected)
 - -Combined hh farm survey and field experiments (to elicit risk preferences)

Field experiments on risk preferences

Norwegian University of Life Sciences

How to measure technology adoption?

- Assess adoption of 3 types of maize:
 - -LM (Local maize)
 - **-DT** (Drought Tolerant) maize varieties **-OIMP** (Other improved) maize varieties
- Assess Adoption and Intensity of Adoption for each type of maize
 - Intensity measured as area planted to each type of maize (measured by GPS)
- Assess Intensity of Fertilizer Use on each type of maize (measured as kg Fertilizer by maize type)

Rapid Adoption of DT maize in Malawi:

Year		Local maize	DT maize	OIMP maize	Total
2006	No of plots	295	20	525	840
	% of plots	35.1	2.4	62.5	100.0
2009	No of plots	273	130	225	628
2012	% of plots	43.5 143	20.7 249	35.8 163	100.0 555
	% of plots	25.8	44.9	29.4	100.0
Total	No of plots	711	399	913	2,023
	% of plots	35.2	19.7	45.1	100.0

Double hurdle model: Maize adoption: First hurdle: Average Partial Effects

Maize type	DT		OIMP		LM	
Hurdle 1: Growing maize	APE	Bootstr.	APE	Bootstr.	APE	Bootstr.
type		SE		SE		SE
Relative risk aversion	0.329**	0.132	-0.288**	0.132	0.363**	0.146
coefficient						
Subjective probabilty	-0.160	0.125	0.039	0.126	-0.035	0.135
weight (alpha)						
Loss aversion coefficient	0.020**	0.009	0.006	0.009	-0.007	0.011
(lambda)						
Number of shocks last 3	0.051*	0.031	0.030	0.031	-0.104***	0.034
years						
Drought 2011, dummy	0.246**	0.100	-0.099	0.092	-0.121	0.102
Drought 2010, dummy	0.232	0.383	-0.147	0.189	-0.005	0.117
Age of household head	-0.003*	0.002	-0.001	0.002	0.007****	0.002
Received subsidized	0.180***	0.061	0.032	0.067	-0.027	0.073
seed voucher						
Non-agricultural	-0.072	0.055	0.098*	0.055	-0.014	0.059
business, dummy						

Censored tobit models for **intensity of fertilizer use** Dependent variable: log(kg Fertilizer+1).

	Models without endogenous variables			Models with endogenous variables			
	Fertilizer on	Fertilizer on	Fertilizer on	Fertilizer on	Fertilizer on	Fertilizer on	
RHS variables	DT	OIMP	LM	DT	OIMP	LM	
Relative risk aversion coefficient	-0.433	-3.235***	-0.587	-0.811	-1.413	-0.761	
	(0.816)	(1.063)	(0.904)	(0.653)	(0.973)	(0.776)	
Subjective probabilty weight	2.054***	3.613***	1.297	2.082****	2.912**	1.292*	
	(0.754)	(1.192)	(0.818)	(0.571)	(1.126)	(0.736)	
Loss aversion coefficient	-0.022	0.051	0.010	0.012	0.004	-0.009	
	(0.065)	(0.066)	(0.067)	(0.055)	(0.056)	(0.059)	
Number of shocks last 3 years	-0.018	-0.254	-0.304	0.222	-0.101	0.047	
	(0.158)	(0.250)	(0.270)	(0.140)	(0.232)	(0.246)	
Drought 2012, dummy	0.109	-0.740	0.017	-0.171	-0.841	-0.207	
	(0.662)	(0.684)	(0.615)	(0.512)	(0.563)	(0.593)	
Drought 2011, dummy	-0.262	1.011*	0.157	-0.220	0.598	0.527	
	(0.434)	(0.583)	(0.625)	(0.313)	(0.559)	(0.573)	
Drought 2010, dummy	0.220	-0.959	-0.591	0.266	-0.748	-0.562	
	(0.334)	(0.817)	(0.711)	(0.319)	(0.878)	(0.583)	
Average rainfall, mm	-0.009**	0.011***	-0.003	-0.009***	0.007**	-0.003	
	(0.004)	(0.003)	(0.004)	(0.003)	(0.003)	(0.003)	
Received subsidized fertilizer vouc	her			1.958****	1.254***	1.920****	
				(0.331)	(0.473)	(0.427)	
Received subsidized seed voucher				-0.475	-0.519	-0.104	
				(0.351)	(0.473)	(0.384)	
Log of savings for fertilizer purchas	se			0.078**	-0.004	0.074*	
				(0.030)	(0.054)	(0.044)	

Summary of findings

- Perceived riskiness of technologies matters for adoption
- Relative riskiness of technologies affects how risk aversion affects their adoption
 - –More risk averse households were more likely to adopt DT maize (risk averse hhs may not necessarily be late adopters: Liu, 2013!)
 - Exposure to drought shocks stimulated adoption of DT maize
- Subjective probability weighting (over-weighting of low probabilities → lower intensity of fertilizer use)

Implications for policy

- Extreme weather events may be used to promote promising technologies (e.g. DT maize) as well as test the performance of alternative technologies
- Adoption of DT maize was stimulated by the input subsidy program (FISP)

References

- Holden, S. T., Otsuka, K. and Place, F. (Eds) (2008). The Emergence of Land Markets in Africa: Impacts on Poverty, Equity and Efficiency. Resources For the Future Press, Washington, D.C.
- Holden, S. T., Deininger, K. and Ghebru, H. (2009). Impacts of Low-cost Land Certification on Investment and Productivity. American Journal of Agricultural Economics 91 (2): 359-373.
- Holden, S. T., Deininger, K. and Ghebru, H. (2011). Tenure Insecurity, Gender, Low-cost Land Certification and Land Rental Market Participation. Journal of Development Studies 47(1): 31-47.
- Holden, S. T., Otsuka, K. and Deininger, K. (Eds.) (2013). Land Tenure Reform in Asia and Africa: Assessing Impacts on Poverty and Natural Resource Management. Palgrave Macmillan 2013.
- Ghebru, H. and Holden, S. T. (2013). Links between Tenure Security and Food Security: Evidence from Ethiopia. CLTS Working Paper No. 2/2013. Centre for Land Tenure Studies, Norwegian University of Life Sciences, Ås, Norway.
- Holden, S. T. and Otsuka, K. (2014). The Roles of Land Tenure Reforms and Land Markets in the Context of ٠ Population Growth and Land Use Intensification in Africa. Food Policy 48: 88–97.
- Holden, S. T. and Fischer, M. (2015). Can Adoption of Improved Maize Varieties Help Smallholder Farmers Adapt to Drought? Evidence from Malawi. CLTS Working Paper No. 1/2015. Centre for Land Tenure Studies, Norwegian University of Life Sciences, Aas, Norway.
- Holden, S. T. and Fischer, M. (in press). "Subsidies Promote Use of Drought Tolerant Maize Varieties Despite Variable Yield Performance under Smallholder Environments in Malawi. Food Security (forthcoming).
- Holden, S. T. (2014). Risky Choices of Poor People: Comparing Risk Preference Elicitation Approaches in Field Experiments. CLTS Working Paper No. 10/2014. Centre for Land Tenure Studies, Norwegian University of Life Sciences, Aas, Norway.
- Holden, S. T. (2015). Risk Preferences, Shocks and Technology Adoption: Farmers' Responses to Drought Risk. CLTS Working Paper No. 3/2015. Centre for Land Tenure Studies, Norwegian University of Life Sciences, Aas, Norway.