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Abstract 

We observe a rapid rise in the number of electric vehicles (EVs) in Norway, and there 
exists a literature that warns that EV charging will cause substantial future costs to the 
local grid, unless measures are put in place. If indeed the aggregate uncoordinated 
charging by EV owners does induce higher costs to local grid companies (hereafter 
DSOs – Distribution System Operators), then Norwegian data would be the first place 
to investigate. Detailed data of all Norwegian DSOs and all registered EVs during the 
last ten years gives a unique opportunity to investigate this relationship. To our 
knowledge, such an empirical analysis has not been done before on real data in a 
country-wide analysis. Findings may have implications for how to regulate DSOs, how 
to price household power usage and how to assess the net social cost of achieving 
emission reduction targets through promoting EVs. We use a fixed effects regression 
model and find that increases in EV stock are associated with positive and statistically 
significant increases in DSO costs when controlling for other DSO outputs and 
applying year dummies. The point estimates also imply that the effect is economically 
significant. However, there is a lot of heterogeneity in these results, where the marginal 
cost estimates are a lot higher for small DSOs in rural areas, and a lot lower for larger 
DSOs in urban areas. 

 

1 Introduction 

Do electric vehicle (EV) owners impose a negative externality on other electricity 
consumers when they plug in their cars at home during peak hours for electricity? In 
the absence of any peak pricing scheme, if the high power consumption of EVs leads 
to higher local grid costs, the resulting increase in uniform grid tariffs will be shared 
among all customers. Simulation exercises suggest that uncoordinated EV charging 
might have an impact on the local grid (see e.g., De Hoog, Alpcan, Brazil, Thomas, & 
Mareels, 2015; Masoum, Deilami, Moses, Masoum, & Abu-Siada, 2011), but the 
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empirical evidence is scarce. What can we learn from actual data in the country with 
the highest EV share, namely Norway? 

The high EV share must be viewed as a result of national climate policy, policy which 
since 2015 aims to fulfill Norway's part of the Paris agreement. The Paris agreement 
aims to limit the global temperature increase in this century to well below 2°C above 
pre-industrial levels. The transport sector accounts for approximately one quarter of 
global energy-related greenhouse gas (GHG) emissions (International Energy Agency, 
2017) and about one third of Norway’s GHG emissions2. This sector would therefore 
need to reduce emissions substantially in order for the Paris agreement to hold.   

Norway’s goal is to ensure that all new passenger cars are zero emission vehicles by 
2025. Low vehicle taxes, toll road exemptions, and access to bus lanes have been put 
in place for EVs, which has resulted in the highest penetration of EVs worldwide. By 
January 2019, there were about 190 000 battery electric vehicles (BEVs) and 90 000 
plug-in hybrids (PHEVs) in Norway, a country with only 5.3 million inhabitants. In 
2018, BEVs accounted for 31 percent and PHEVs for 17 percent of all new vehicles 
(Norwegian Electric Vehicle Association, 2019).  

The Norwegian Water Resources and Energy Directorate (NVE) presents a scenario 
where the growth in BEVs in Norway continues and reaches 100% of the new car 
sales after 2025. This implies 1.5 million BEVs in Norway in 2030, resulting in a 3% 
increase in domestic electricity consumption (Skotland, Eggum, & Spilde, 2016). So 
even with rapid electrification of passenger transport, we can expect aggregate 
electricity generation to cope without major challenges.  

However, while a BEV’s energy consumption may be modest, its power usage could 
be quite high. Currently, power demand per electricity consuming unit in a household 
usually vary from 2.3 to 7.3 kW. Contrast this to fast chargers that currently demand 
more than 50 kW, and likely demand up to 350 kW in the near future. Skotland et al. 
(2016) find through a survey that most BEV owners do their daily charging at home 
(almost 90%). Charging at work or at public charging stations seems at this point to 
be mainly supplemental. NVE’s review indicates that charging of BEVs primarily takes 
place at night, while some also charge their vehicle immediately after work, which is a 
peak period for electricity consumption.  

Uncoordinated charging (or “dumb charging”) will increase electricity consumption 
during the morning and evening peaks (Graabak, Wu, Warland, & Liu, 2016). De Hoog 
et al. (2015) point out that if EV charging is not controlled, adverse impacts on the 
distribution network are expected: power demand may exceed distribution transformer 
ratings; line current may exceed line ratings; phase unbalance may lead to excessive 
current in the neutral line; and voltages at customers’ points of connection may fall 
outside required levels. A similar point is made by Neaimeh et al. (2015). Skotland et 
al. (2016) develop a stress-test for neighborhoods with high BEV density. Assuming 
periods where 70% of the residents charge their BEVs simultaneously during peak 
hours, it finds that power demand can increase by up to 5 kW per household. This 
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results in overload for more than 30% of the transformer stations currently servicing 
the distribution network. 

Our motivation for this paper is as follows: We observe a rapid rise in the number of 
BEVs, and there exists a literature that warns that BEV charging will cause substantial 
future costs to the local grid unless measures are put in place. If indeed the aggregate 
uncoordinated charging from BEV owners does induce higher costs to local grid 
companies (Distribution System Operators - DSOs), then Norwegian data would be 
the first place to investigate. Detailed data of all Norwegian DSOs and all registered 
BEVs during the last ten years gives a unique opportunity to analyze this relationship. 
To our knowledge, such an empirical analysis has not been done before on real data in 
a country-wide analysis. It will therefore push the knowledge frontier on a debated, 
but relatively unexplored topic empirically. Findings may have implications for how to 
regulate DSOs, how to price household power usage and how to assess the net social 
cost of achieving emission reduction targets through promoting EVs. 

This paper complements previous studies that look at the effects low-carbon 
technologies such as BEVS and PHEVs can have on the electricity market. Our 
analysis covers a relatively long time-period of real experiences with increasing BEV 
density (it has reached over 10% of the car fleet in some areas), while most of the 
relevant literature up until now have been simulation exercises in numerical models of 
local grids. Hattam and Greetham (2017) analyze how EVs affect load profiles on 
neighborhood level in low voltage networks. Azadfar, Sreeram, and Harries (2015) 
look at charging behavior in terms of time of day, duration, frequency and electricity 
consumption in light of its implication for electricity network management. Barton et 
al. (2013) look at the challenges for grid balancing when EV charging becomes more 
prominent, and stress the importance of demand side management with time-shifting 
of electricity loads from periods of peak demand to off-peak, and from periods of low 
renewable energy supply to periods of high supply. Other studies also argue for 
demand side management (see e.g., Haidar, Muttaqi, & Sutanto, 2014; Masoum et al., 
2011) as an alternative to costly upgrades of distribution transformer stations. Some 
of these studies also argue for pricing schemes that disincentivize charging during peak 
hours (see e.g., Barton et al., 2013; Clement-Nyns, Haesen, & Driesen, 2011; Masoum 
et al., 2011; O’Connell et al., 2012). In the future, smart-charging technology and 
vehicle-to-grid3 (V2G) and vehicle-to-building (V2B) solutions may also provide a 
means to mitigate capacity problems in both electricity generation and distribution 
(Barton et al., 2013; Clement-Nyns et al., 2011; Mwasilu, Justo, Kim, Do, & Jung, 2014; 
Sioshansi & Denholm, 2010), but bidirectional EV charging is in its infancy (Haidar et 
al., 2014), and seems to come at a relatively high cost due to increased battery 
degradation, energy losses, changes in infrastructure, and extra communication 
between EVs and the grid (Habib, Kamran, & Rashid, 2015).  

Exploiting local differences in the growth of the BEV fleet over time, we investigate 
how an increase in the number of BEVs affects the costs of the local DSO. We look 
at both total costs and individual cost components. We analyze data on 107 DSOs 
over the period 2008-2017 using fixed-effects estimation that account for time-
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invariant characteristics of the DSO. We also control for growth in output indicators 
that could be correlated with growth in the BEV fleet.  

The main finding is that increases in BEV fleet are associated with positive and 
statistically significant increases in costs when controlling for other DSO outputs and 
applying year dummies. The point estimates also imply that the effect is economically 
significant. However, there is a lot of heterogeneity in these results, where the marginal 
cost estimates are a lot higher for small DSOs in rural areas, and a lot lower for larger 
DSOs in urban areas. 

Section 2 presents the regulatory setting for local grid operators in Norway, and why 
the growth in BEVs may exacerbate existing market failures. Section 3 presents the 
methods and data. In section 4 we present the results from our empirical analysis. 
Section 5 discusses the results, and section 6 concludes. 

 

2 EVs and Norwegian DSO regulation 

As mentioned in the introduction, there is reason for concern over the costly impact 
that an increasing number of BEVs and uncoordinated charging behavior may have 
on the local grid. These costs may or may not accrue to the household that demands 
higher capacity. Norwegian DSOs are regulated under a revenue cap model with 
benchmark (or yardstick) competition against other DSOs (see e.g., Decker, 2014, pp. 
103-140), where they set their tariffs based on this revenue cap. The revenue cap is 
composed of 40% cost recovery and 60% cost norm based on benchmark modeling 
using data envelopment analysis (DEA) (NVE, 2015). This means that an increase in 
costs increases the revenue cap, which allows the DSO to raise its tariffs. However, 
the revenue cap, and therefore the tariffs, are constrained by the cost development of 
the other DSOs that comprise the benchmark competition. Eventually, at least some 
of the increase in capital cost will lead to higher tariffs, and these will have to be paid 
by all consumers connected to the local grid, and not just the households demanding 
more capacity. It can be viewed as a pecuniary external cost in an incomplete market 
(Greenwald & Stiglitz, 1986). That is, the households demanding more capacity do not 
face the full cost of the capacity expansion, and indirectly impose costs on other 
consumers. 

We describe the mechanisms for how an increased number of BEVs may lead to higher 
costs to DSOs and subsequently to higher grid tariffs through the following steps: 

1. The BEV share increases in a neighborhood. 
2. Households will charge their BEVs at 3.6-7.2 kW, and the demand for power 

capacity will increase.  
3. With a certain size of the BEV share and a certain share of the owners charging 

simultaneously, the existing distribution transformer and/or the cables between 
the transformer and the household will not be able to handle the power capacity 
demand at certain times of day, certain times of year. This may lead to more 
inspection and maintenance before new investments need to be made. 

4. The DSO invests in capacity expansion in the local grid. The cost of such capacity 
expansion will depend on whether enhancements need to be done for the 
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transformer and/or the cables, the amount of transformer capacity that needs to 
be installed, whether the new transformer fits in the old box that contained the old 
transformer, and the costs of digging (i.e. how many meters of cables need to be 
laid, and the costs per meter, which is generally higher in denser, urban areas).This 
induces new investment costs that otherwise would not have occurred, or at least 
an advancement of investments. 

5. The new investment increases the capital stock for the DSO.  

 Regulation then says that the DSO can charge higher grid tariffs to cover 
costs (subtracted any co-funding of upgraded infrastructure).  

 All of the DSO’s customers have to pay the higher tariffs. 

The case becomes a little different if a household demands higher power capacity than 
currently installed in the household, and this increased capacity demand leads to 
exceedings of the capacity of the local distribution transformer. This household may 
be required to pay for some or all of the capacity expansion of the transformer through 
connection charges, in addition to paying for the capacity expansion in his own house. 
Practices between DSOs seem to vary, but the DSO in the Oslo metropolitan area, 
Hafslund, will in such a case charge the household that induced the new investment in 
proportion to the added installed capacity for that household4. For example, if a 
household wants to install 20 kW extra of capacity, and the DSO replaces a 315 kW 
transformer with a 500 kW transformer, the household has to pay 20/(500-315) = 11% 
of the cost of the capacity increase. Households that expand in-house capacity in the 
future will also have to chip in on this transformer upgrade in proportion to their in-
house expansion. This would mean that less or none of the investment cost will be 
passed on to the other consumers through increased tariffs. Instead the scheme 
provides a price signal to the very households that demand more capacity, thus 
informing their decision to whether the benefits of expanding their in-house capacity 
outweigh the cost.  

The scenario where increased BEV ownership leads to higher capacity demand that 
eventually exceeds the local transformer’s capacity, without any household expanding 
its in-house capacity, is expected to be most prevalent. The reason is that most 
households will have the possibility of charging an EV at 3.6 kW power without the 
need for any in-house capacity expansion (conversation with the DSO Ringeriks-Kraft 
AS). Most would still have to make some adjustments to their in-house electric system 
as charging a BEV is required to be on a separate fuse. 

This will lead to situations where over time some neighborhoods could drive up DSO 
costs as BEV ownership increases, leading to higher tariffs for all customers. Whether 
higher BEV ownership will drive up total neighborhood capacity demand will depend 
on the number of BEVs and their battery sizes, how many that charge at the same time 
during power peak hours, and the existing capacity on the local transformer and cables.  

Currently, no individual household has any incentive to avoid charging at peak hours5. 
Both electricity prices and grid tariffs are the same throughout the day. And there are 

                                                 

4 https://www.hafslundnett.no/artikler/bygge-og-grave/anleggsbidrag/6l51MrL1vyaCi0WsisqAQQ 
5 Some DSOs are experimenting with hour-by-hour pricing experiments, where participating 
households will be informed about and charged according to hour-by-hour prices 
(https://www.frisch.uio.no/prosjekter/?pid=3501&view=project) 
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many arguments for why BEV owners would want to charge the car right away after 
coming home. First, it is convenient. You plug in, and there is no need to spend mental 
capacity on timing. Second, you maximize the probability of always having the battery 
charged for any activity later; planned, spontaneous or emergency.  

DSOs’ profitability is determined by their costs and their regulated revenue cap. If 
policies drive up BEV ownership and subsequently capacity demand, their costs will 
increase, most likely without a corresponding increase in the revenue cap. Since “local 
BEV stock” is currently not a variable in the benchmark competition analysis, the cost 
norm calculation will disfavor DSOs that face increased capacity demand from BEV 
users. A DSO facing such increases in power demand, will see BEV-favoring policies 
as a threat to their profitability. An exception would be a DSO that already is among 
the most productive and remains among them in spite of the increase in capacity 
demand from BEV owners. Such a company would set the cost norm, and will be able 
to pass the entire cost increase on to consumers. If then the cost norm is expanded, 
DSOs who are not exposed to higher capacity demand from BEV owners will get a 
larger revenue cap, but no extra costs. 

If capacity demand from BEV owners becomes a major cost driver for DSOs, there 
are at least two measures the regulator can take. The first is to incorporate a measure 
of “local EV stock” in their benchmarking model for calculating the cost norm for the 
sector, so that the relatively low costs for DSOs with low BEV density are not mistaken 
for efficiency. The second is to allow for peak power tariffs. NVE argues that the 
introduction of power-based tariffs will provide incentives to shift charging outside 
peak-hours. An official proposal has been drafted and is currently out on a public 
hearing6. Power-based tariffs have become technologically feasible after January 1st 
2019, when smart meters became compulsory for all Norwegian households. This will 
enable households to closely monitor their temporal consumption profile of electricity, 
and both distribution grid companies and electricity retailers to bill accordingly. 

 

3 Methods and data 

3.1 Model concept 

The main objective of our empirical analysis is to isolate the effect that changes in the 
BEV stock has on DSO costs. Parts of the data that we use to analyze this is the very 
same data that NVE uses for regulation by calculating the annual revenue cap for 
DSOs. The main outcome variable for our analysis is the DSOs annual total costs 
(tot_cost) as this is the main basis for calculating the revenue cap. The total costs are the 
sum of operational costs (opex), capital costs (cap_cost), depreciation costs (dep_cost), 
CENS - cost of energy not supplied (cens) and cost of energy network losses (eloss_cost). 

In the benchmarking competition DSOs performance is measured by the output 
variables number of subscribers (subscribers), number of transformer substations 

                                                 

6 NVE is currently working on a new proposal and there is expected to be a hearing in the first quarter 
of 2019 https://www.nve.no/reguleringsmyndigheten/nytt-fra-rme/nyheter-reguleringsmyndigheten-
for-energi/nve-legger-opp-til-ny-horing-om-nettleiestruktur/ [in Norwegian, last accessed 03.12.2019].  

https://www.nve.no/reguleringsmyndigheten/nytt-fra-rme/nyheter-reguleringsmyndigheten-for-energi/nve-legger-opp-til-ny-horing-om-nettleiestruktur/
https://www.nve.no/reguleringsmyndigheten/nytt-fra-rme/nyheter-reguleringsmyndigheten-for-energi/nve-legger-opp-til-ny-horing-om-nettleiestruktur/
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(substations) and kilometers of high voltage grid, including overhead lines, underground 
cables and subsea cables (voltline).  

In the regulatory DEA calculations, NVE controls for a set of contextual factors that 
can be seen as external cost-driving factors. This is in order not to mistake a difficult 
operating climate for some DSOs for inefficiency. All of the contextual variables are 
assumed to be time-invariant in NVE’s analysis. The applied variables are displayed in 

Figure 1. In the model below, all these variables are covered by the vector 
iX . 

To summarize, in NVE revenue cap calculation the DSO costs are assumed to be 
driven by three output measures and external cost-driving factors. In our analysis, we 
want to investigate whether the registered number of BEVs in their operational area is 
an external cost driving factor that currently is not accounted for. Figure 1 gives an 
illustration of how we expect the relationship between the variables to be. 

 

Figure 1: Direction of impacts from outputs and external cost-driving factors to costs 

Due to substantial skewness in the distribution of DSO costs (see Table 1), we have 
decided to transform the model into a log-log format. We will discuss this in section 
3.3. Conceptually, our economic model looks like the following: 

(1) 31 2 4_ it it it it itot cost ASubscribers Voltline Substations BEV X
      

When we do a log-log transformation, we get: 

External cost-driving factors:

(Time invariant, not included)

Inclination

Forest

Micro power plants

Wind

Islands

Share of high voltage sea cables

Average snow depth

Latitude

Average number of hours where 

ice load exceeds threshold

Temperature

Share of underground cables

(Time invariant, included)

NUMBER OF ELECTRIC 

VEHICLES

Outputs:

Number of subscribers

Total length of high voltage grid

Number of substations

DSO  costs:

Tot_costs

Opex 

Cap_cost 

Dep_cost 

CENS 

Eloss_cost
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(2) 
1 2

3 4

( _ ) ( ) ( )

( ) ( ) ( )

it it

it it i

log tot cost log subscribers log voltline

log substations log BEV log X

  

  

  

  
  

Here, ln( )A   and the beta coefficients can be interpreted as cost elasticities. We 

expect them all to be positive. Beta coefficient values of 1 imply constant returns to 
scale for a given variable, whereas values above 1 imply decreasing returns to scale 
(disproportionate cost increases) and values between 0 and 1 imply increasing returns 
to scale. Our default assumption is that these elasticities are constant, but we will in 
section 4 investigate whether the beta coefficients could depend on the level of the 

explanatory variable, e.g., 
1 10 11 ( )log subscribers    , by adding squared 

transformations of the variable. 

 

3.2 Data and variables 

We have combined 3 datasets. 1) NVE’s data for DSO costs and outputs applied for 
regulation, with 2) NVE’s data for the DSOs legal operational area, with 3) 
municipalities, which finally can be merged with Statistics Norway’s (SSB) data over 
registered cars at municipal level.  

NVE’s data for DSO costs and outputs applied for regulation 

The data is extracted by running an R-script according to instructions from NVE’s 
web pages (NVE, 2017). The data consists of cost measures and other characteristics 
(in total 164 variables) of 134 grid companies operating in either the local grid or the 
regional grid. Our analysis will only focus on the local grid, so we end up with 114 
DSOs for the time period 2008-2017. We want the dataset to consist of all DSOs that 
distribute electricity to households, as these are the ones that may be affected by home 
charging of EVs. This leads to an additional 7 grid companies being dropped from the 
data set, as these are grid companies supplying industry parks or military bases. That 
leaves us with 107 DSOs supplying households all across Norway. 

Following NVE’s instructions, operational costs are adjusted to reflect 2015-prices 
using the consumer price index for the service sector. CENS is adjusted to reflect 2015 
prices using the consumer price index. Annual capital costs (or the regulator-allowed 
return on invested capital) are calculated by multiplying the value of the regulatory 
assets (regulat_assets), which is the value of the total capital stock excluding co-paid 
assets (co-paid_assets – which customers pay for themselves), with the NVE-calculated 
regulatory interest rate for each year. The contextual variables mentioned in the 
previous section also follows with this dataset. Since all the contextual variables in 

vector iX  are time-invariant, they drop out of the fixed effects regressions in this 

paper.  

NVE’s data for the DSOs legal operational area  

NVE’s hydrology department have given us access to data on DSOs’ legal operational 
area and matched this with municipalities. In total 149 companies have areas for grid 
operation. Using the organizational number as a unique identifier, we can merge 
together cost data and operational area data. These two data sets were also combined 
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in Orea, Álvarez, and Jamasb (2018) for the purpose of efficiency analysis using a 
spatial econometric approach.  

Statistics Norway’s data over registered cars at municipal level 

The StatBank of SSB contains data on registered cars at municipal level categorized by 
fuel type. We have extracted the number of electric passenger cars for each of the years 
2008-2017 for all Norwegian municipalities. This can then be merged with the rest of 
the dataset, using the municipal number as the unique identifier.  

Not all municipalities and DSO operational areas match one-to-one. Where a 
municipality has its area covered by more than one DSO, it is assumed that the DSO’s 
share of the municipality reflects the share of households in the municipality and 
subsequently the share of EVs. Arguably, this introduces some measurement error into 
the data, but we expect this error to be small, as 90% of the municipalities have 95% 
or more of their area covered by a single DSO. This means that observed EVs at 
municipal level are aggregated up to DSO level and weighted by area to the variable 
we call BEVs. 

The variables 

For this analysis we will conduct separate regressions with the different dependent 
variables; tot_cost and its sub-components opex, cap_cost, dep_cost, cens, and eloss_cost. 
Descriptive statistics of these variables are given in Table 1. We will also conduct 
regressions with the variables regulat_assets (which should yield similar coefficients as 
cap_costs) and copaid_assets. With regards to the latter, it would be interesting to see if 
growth in BEV ownership is associated with growth in customers co-paying directly 
for upgraded infrastructure (e.g. when setting up a fast-charging stations).  

The independent variables will be the DSO output variables subscribers, substations, and 
voltline and our main variable of interest BEVs. We expect the coefficients for the three 
DSO output variables to be positive for total costs and all the sub-components, as 
more output should ceteris paribus drive up costs. We expect he coefficient for BEVs to 
be positive for total costs and all the sub-components, but also to have the most 
significant coefficient in the regression on cap_costs. This is because the impact that 
EVs may have on costs for DSOs, if any, would be that they drive up investments in 
more capacity (cf. Section 2). 

We exclude the variable substations as there could be cases where DSOs would build 
more substations to meet local capacity demand increases stemming from BEV 
charging, cf. the literature referenced to in Section 2. In such cases, the variable 
substations could be considered what Angrist and Pischke (2008) calls a “bad control”. 
When bad controls are applied the coefficient estimates of the independent variables 
will be biased and lose their causal interpretation. It is not clear whether we should 
expect increases in BEVs to drive increases in the number of substations (as it probably 
would be more common to reinforce existing ones), but in order to stay on the safe 
side we only include the variable substations in robustness checks with alternative 
specifications.  

A linear model in absolute terms would give the easiest interpretation. Then 
interpretation would be “For every new BEV registered among the customers of the 
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DSO, we can expect a 
EV  NOK increase in the DSO’s cost, ceteris paribus”. However, 

the cost variables have very high numbers for skewness and kurtosis (see Table 1), 
making it less suited for OLS. This is not surprising given that the Norwegian DSO 
sector consists of many small operators and a few very large ones. Transforming the 
main cost variable to a cost-per-customer variable, or taking the logarithm gets it closer 
to a normal distribution. The log-transformed cost variable is somewhat closer to a 
normal distribution compared to the per-customer transformation. This can be seen 
in the two bottom rows of Table 1. We therefore proceed with the log-log7 model in 
this paper, and use a per-customer model as a robustness check (see Appendix A).  

Table 1: Descriptive statistics 

 Mean 1st percentile Median 99th percentile Skewness Kurtosis 

Tot_cost 120 048 7 652 42 935 909 365 5.05 35.39 

Opex 62 234 4 445 24 281 415 189 5.78 45.90 

Cap_cost 20 433 809 6 361 207 649 4.29 25.46 

Dep_cost 21 733 816 7 231 217 133 4.04 22.44 

CENS 4 861 61 1 271 58 898 4.02 21.65 

Eloss_cost 10 786 342 2 928 89 277 6.74 58.96 

Subscribers 26 980 999 6957 208 411 6.57 54.79 

Voltline 932 51 339 7138 3.87 21.16 

Substations 1177 59 377 10 626 4.47 27.38 

BEVs 367 0 6 7900 14.98 276.80 

       

Tot_cost_per 
subscriber 

6.53 3.10 6.29 12.90 0.96 4.41 

Log_tot_cost 10.86 8.94 10.66 13.72 0.83 3.66 

Note: Cost figures in 1000 NOK. All costs are in 2015-prices. N = 1070 (107 DSOs over 10 years; 2008-2017). 

With a log-transformations of the model, along with the included variables gives us 
the following preferred model specification: 

(3) 
( ) ( ) ( )

( )

1 it 2 it

4 it t i it

log tot_cost =α+β log subscribers +β log voltline

+β log BEV     
  

This equation includes DSO fixed effects i , year dummies t  and the random error 

term it . As discussed above, time-invariant contextual variables ( iX ) drop out of our 

fixed effects analysis, and substations drop out because it is considered a bad control. 

 

                                                 

7 For variables for which some values are zero for some DSOs in some years, we add a constant of 1 
(e.g. log_ev = log(average_EVs+1)). 



 11 

3.3 Fixed effects regression 

In this paper we conduct a panel data analysis using a fixed effects regression model 
on a panel with annual data for 107 DSOs over the time period 2008-2017. This gives 
us a balanced panel containing in total 1070 observations. 

The goal is to investigate how the time varying explanatory variable BEVs influence 
the time-dependent endogenous variable tot_cost. A good way to do this is applying 
fixed effects regression, as the fixed effects will capture all time-constant variation, 
both time-invariant explanatory variables and unmeasured time-invariant variables 
(Mehmetoglu & Jakobsen, 2016, pp. 241-242). There has been large variation in when 
and where the growth in BEVs has taken place, making it a suitable candidate for such 
analysis. In 2008, more than 25% of the DSOs had zero BEVs registered in their area, 
and the numbers here have grown to between 1 and 625 in 2017. On the other end of 
the spectrum, the single DSO with over a 1000 EVs in 2008 has seen the BEV stock 
grow to over 55 000 in 2017. To illustrate this variation in status and growth, we show 
the distribution of BEVs in 2008 and 2017 in Figure 2. Because of the large differences 
in scale, we display these differences in status and growth of EVs across DSOs in the 
form of BEVs per subscriber. 

 

Figure 2: Large variation in BEV numbers across DSOs and over time 

 

The fixed effects model will capture the variation from the time-invariant variables 
that NVE uses for regulation, some of which may have a relatively strong correlation 
with the number of BEVs. Most notably are perhaps Latitude, which we expect is 
negatively correlated with the number of BEVs as most of BEVs are registered in the 
southern half of Norway, and Temperature, which we expect is positively correlated with 
the number of BEVs as colder winters have a negative impact on the range of the 
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BEVs (Figenbaum & Weber, 2017). In addition, there are unmeasured time-invariant 
variables that we expect to have an effect on both our explanatory variable of interest 
and the endogenous variable, so controlling for it in the fixed effects model reduces 
the problem of spurious relationships leading to biased estimates. An example of this 
could be distances between populated areas within a DSO’s operational area, i.e. how 
sprawled people live. This can be expected to drive up DSO costs (need for more 
infrastructure per customer) and drive down EV demand as such distances would 
indicate a need for driving range that would make most EVs less favorable.  

As for the question of reverse causality, there are a priori reasons to believe that this is 
unlikely. As we discussed in the previous section we expect higher BEV density to 
drive up the cost for DSOs, but even if higher costs for DSOs would lead higher tariffs 
for their customers, dramatic price hikes would be needed to make noticeable changes 
in EV demand. In the calculations in Wangsness (2018), the cost of electricity 
comprises about 15% of the distance-based cost for EVs. And grid rent makes up less 
than half of the total electricity bill before taxes. And it is not certain that the DSO can 
pass on all of their cost increase to their customers, as they are regulated by a revenue 
cap based on yardstick competition with other DSOs. In other words, we expect EVs 
to affect grid costs, and have very little feedback the other way around. 

 

4 Results 

Table 2 shows the effect of the size of the local BEV fleet on the total cost of the 
DSO, based on six different specifications. Table 4 presents estimates for each of the 
cost components. All of the models use robust standard errors clustered at DSO level, 
acknowledging that even though observations are assumed to be independent across 
DSOs, there could be correlation between yearly observations for the same DSO. 
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Main results 

Table 2: Fixed effects regression on the relationship between BEV stock (log_ev) in a DSOs operational area 
and DSO costs (log_tot)  

 (1) (2) (3) (4) (5) (6) 

log_ev 0.013*** 0.011 0.018** 0.019** 0.014* 0.019** 

 (0.004) (0.007) (0.008) (0.009) (0.008) (0.008) 

       

log_subscribe 0.383** 0.326 0.967 0.840 0.534 1.154 

 (0.193) (0.245) (0.917) (1.117) (1.049) (1.001) 

       

log_voltline 0.291** 0.280* 1.698*** 1.706*** 1.526** 1.539** 

 (0.147) (0.146) (0.628) (0.635) (0.713) (0.726) 

       

log_subscribe2   -0.036 -0.029 -0.019 -0.047 

   (0.049) (0.061) (0.060) (0.052) 

       

log_voltline2   -0.131** -0.132** -0.114* -0.118* 

   (0.058) (0.059) (0.067) (0.065) 

       

log_ev2    -0.000   

    (0.001)   

       

_cons 5.594*** 6.173*** -0.197 0.283 2.595 -0.546 

 (1.616) (2.217) (4.310) (4.908) (4.392) (4.558) 

Year dummies No Yes Yes Yes Yes Yes 

Removed 

outliers 

No No No No Removed 3 

largest DSOs 

Removed 3 

smallest DSOs 

N 1070 1070 1070 1070 1040 1040 

r2_within 0.200 0.276 0.291 0.291 0.299 0.289 

Standard errors in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01 

In the first column we report the results where we only control for the size of the 
customer base and kilometers of high voltage line. The estimated effect of log_ev is 
positive, as expected, and significant at 1% level. This is the naivest regression model 
where we do not control for any time effects. We provide more controls by adding 
year dummies in column 2. The estimated coefficient for log_ev is similar to that in 
column 1, but is statistically insignificant.  

In column 3 we add the squared terms log_subscribe2 and log_voltline2 as controls. There 
is a good theoretical argument for testing whether these cost elements display declining 
cost elasticities, as DSOs are expected to show increasing returns to scale. After all, 
they are regulated as natural monopolies. As expected, the squared terms are negative. 
Compared to column 2, this specification improves the explanatory power of the 
model (larger within R2), but it also increases both the size and precision of the log_ev 
coefficient.  

In column 4 we use the same model as in column 3, but we add the squared term 
log_ev2 to see if the cost elasticity for BEVs change significantly with changes in BEV 
stock. The estimated coefficient for log_ev2 is negative but close to zero, and highly 
insignificant. The size and precision of the coefficient for log_ev does not change much. 
We therefore proceed with column 3 as our preferred specification.  
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Finally, in column 5 and 6 we test if the preferred model is robust to the removal of 
outliers. In the former column we have removed the three largest DSOs in terms of 
annual costs during the period 2008-2017. In the latter column we have removed the 
three smallest DSOs in terms of costs. In the former column the coefficient becomes 
somewhat smaller and is only significant at 10% level. In the latter column both the 
point estimate and standard error remains largely unchanged. The confidence intervals 
for the coefficient in these models largely overlap with each other, and the original 
model. We can conclude that the original model is relatively robust to removal of 
outliers. 

The point estimates from our preferred specification indicates that a 1 % increase in 
the number of BEVs in a DSOs area is associated with a 0.018 % increase in cost. In 
order to translate this into monetary value, we look at the median values for DSOs in 
2017. The median values were 44 mill. NOK (about €4.4 mill.) in total costs for about 
7300 customers with in total 78 registered BEVs. If this DSO experienced a 10% 
increase in BEVs in 2018 (8 cars), ceteris paribus, the model would predict about 
80 000 NOK increase in costs. This would translate into a cost of about 10 000 NOK 
per BEV imposed on the DSO, which can be considered economically significant. 
However, if these estimates are applied to the DSO with the highest BEV stock in its 
area (the Oslo area), the cost per BEV is about 600 NOK. Such scale effects follow 
naturally from a log-log model with a coefficient between zero and one, as this implies 
a positive but declining marginal cost per BEV in absolute terms. However, a constant 
cost elasticity is a fairly strong assumption. We therefore investigate the heterogeneity 
in the effect from BEVs in different parts of the sample. 

Heterogeneity 

As the example above illustrates, there is substantial heterogeneity among the DSOs. 
We will use the regressors from column 3 when investigating the heterogeneity in the 
results, which is shown in Table 3. 
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Table 3: Fixed effects regression on the relationship between BEV stock (log_ev) in a DSOs operational area 
and DSO costs (log_tot). Heterogeneity test with sample splits along 3 dimensions 

 (1) (2) (3) (4) (5) (6) 

 (lower half 

customers) 

(upper half 

customers) 

(lower half 

BEV 

density) 

(upper half 

BEV 

density) 

(lower half 
costs per 

customer) 

(upper half 
costs per 

customer) 

log_ev 0.036*** 0.005 0.032** 0.008 0.015 0.032*** 

 (0.012) (0.009) (0.014) (0.011) (0.009) (0.011) 

       

log_subscribe 0.408 2.576 0.445 2.333** 0.011 1.779 

 (2.247) (1.729) (1.882) (0.965) (1.093) (1.877) 

       

log_subscribe2 -0.002 -0.104 -0.018 -0.086* 0.018 -0.078 

 (0.140) (0.084) (0.112) (0.050) (0.056) (0.113) 

       

log_voltline 1.111 -0.628 1.920** 0.798 2.049 1.086 

 (1.075) (2.207) (0.930) (0.913) (1.424) (0.987) 

       

log_voltline2 -0.067 0.022 -0.135 -0.077 -0.166 -0.072 

 (0.104) (0.154) (0.092) (0.082) (0.108) (0.096) 

       

_cons 2.828 -0.279 1.399 -4.839 3.287 -2.775 

 (8.477) (8.117) (7.096) (4.843) (5.977) (6.676) 

Year dummies Yes Yes Yes Yes Yes Yes 

N 540 530 540 530 540 530 

r2_within 0.315 0.314 0.287 0.333 0.264 0.343 

Standard errors in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01 

 

In Table 3 we show split-sample heterogeneity in the regression results along the 
following dimensions; DSO size as measured by the number of customers, BEV 
density in DSO areas (average over the period of analysis) and cost per customer. We 
see that there is considerable heterogeneity in the results. The effect of BEV stock on 
cost seems to vary considerably between different parts of the sample, underlying our 
point earlier that a constant elasticity is a fairly strong assumption. If anything, the cost 
elasticity for accommodating BEVs seems to be declining. 

We find effects of BEVs on cost that are statistically significant and with point 
estimates almost twice as large in the sample halves with the fewest customers, lowest 
BEV density and highest cost per customer, compared to the full sample. The 
strongest effect is found in the sample half with lower-than-median number of 
customers. However, it is worth noting that these 54 DSOs serve less than 7% of the 
total customers in the sample.  

In the other halves of the sample the estimated coefficient are closer to zero and far 
form statistically significant. This could indicate that at the levels observed until now, 
the cost elasticity for accommodating BEVs may be declining rather than constant. 
Since a constant elasticity between zero and one already implies decreasing marginal 
costs in absolute terms, a declining elasticity implies that the marginal cost decreases 
even faster as the BEV stock increases.  

Another possibility which has been mentioned in conversations with representatives 
from DSOs may complement the explanation that it is costlier for small, rural DSOs 
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to accommodate BEVs. It could be costlier to accommodate BEVs in some rural areas 
where the need for investing in high capacity in all parts of the distribution grid has 
historically been relatively low. In such areas, if there is a need to upgrade parts of the 
old high voltage network or a distribution transformer to accommodate a few dozen 
BEVs, it may be a noticeable increase in total costs. We will look closer at this in the 
last part of this section. 

Regressions for cost components 

We now dig deeper into which cost components, through which EVs contribute to 
higher costs. This is shown in Table 4. The first five columns show the major cost 
components sorted from left to right according to their relative importance for total 
costs. Column 6 represents the reported stock of assets reported to the regulator from 
which they calculate annual capital cost for regulation. Column 7 represents the stock 
of co-paid assets, where the customer of the DSO pays for some or all of an increase 
in capital stock, e.g. a new substation to accommodate a fast-charging station for 
BEVs. 

Table 4: Fixed effects regression on the relationship between the number of BEVs registered in a DSOs 
operational area and 5 different cost components and capital stock  

 (1) (2) (3) (4) (5) (6) (7) 

 log_opex log_cap log_cens log 

_depres 

log_ 

eloss_cost 

log_regulat 

_assets 

log_copaid 

_assets 

log_ev 0.020* 0.011 0.024 0.017 -0.026* 0.011 -0.031 

 (0.011) (0.012) (0.032) (0.013) (0.015) (0.012) (0.050) 

        

log_subscribe 2.790** -0.216 -2.184 0.294 2.261 -0.216 -6.594 

 (1.303) (1.226) (3.497) (1.399) (1.699) (1.226) (4.332) 

        

log_subscribe2 -0.138** 0.022 0.137 -0.009 -0.058 0.022 0.299 

 (0.065) (0.064) (0.170) (0.076) (0.086) (0.064) (0.262) 

        

log_voltline 2.101** 0.044 6.063** 2.167 1.844 0.044 5.856 

 (1.016) (1.064) (3.025) (1.369) (1.338) (1.064) (3.593) 

        

log_voltline2 -0.181* 0.036 -0.453* -0.175 -0.116 0.036 -0.408 

 (0.094) (0.097) (0.257) (0.128) (0.113) (0.097) (0.279) 

        

_cons -9.309 7.462 -4.251 0.497 -14.087** 10.061 24.231 

 (6.231) (6.443) (15.417) (7.004) (6.697) (6.443) (16.960) 

Year dummies Yes Yes Yes Yes Yes Yes Yes 

N 1070 1070 1070 1070 1070 1070 1070 

r2_within 0.163 0.833 0.127 0.513 0.199 0.686 0.416 

Standard errors in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01 

 

In column 1 we run the model with operational costs as the dependent variable. Here 
BEVs have a positive and significant relation (at 10% level) with DSOs operational 
costs. We also find a positive relationship between EVs and capital costs in column 2, 
but this is not significant at the 10% level. Given the operational costs share of total 
costs (see Table 1), it looks like it would be through this component where BEVs 
would have the strongest impact on total cost. We are a bit surprised that BEVs would 
have a stronger effect on operational costs than capital costs on average, but it matches 
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the experience of one of the DSOs with whom we have talked8. This is a relatively 
small DSO on the west coast of Norway, and they have had a few incidents over the 
last few years where they have upgraded their infrastructure more than they would 
otherwise have, because of BEVs. In some of these incidents they have received co-
payments from customers for the hardware to upgrade the infrastructure, but all other 
costs (in particular labor costs) were registered as operational costs. Our model may 
also have problems picking up the impact BEVs have on capital costs, as the size and 
timing of investments may not match the growth in BEV stock in a given year. In 
Appendix B we regress the difference in cost on the difference in BEV stock between 
the end of the sample period and the start of the period. This model seems to pick up 
a stronger relationship between BEV growth and growth in capital costs but it is still 
not statistically significant. 

In column 3 and 4 we also find small positive but highly non-significant effects on 
log_depres and log_cens, respectively. The results in column 5 may require some more 
explanation. Here we find a negative and significant (at the 10% level) relationship 
between EVs and grid energy losses. A drop in energy losses for DSOs with many EV 
owners in their operational area could be consistent with the DSOs upgrading their 
infrastructure faster, meaning a faster upgrade from 230 Volts grid to a 400 Volts grid. 
The energy losses are lower in an electric grid with higher voltage (Haugen, Haugland, 
Vingås, & Jonhnsen-Solløs, 2004).  

In column 6 we look at the relationship between EVs and the size of the regulatory 
asset base, and find, as expected, the exact same relationship as with capital costs used 
for regulation. In column 7 we look at the relationship between BEVs and the capital 
investments that are wholly or partially paid for by consumers [in Norwegian: 
anleggsbidrag]. It could be the case that if more EVs drive up costs for DSOs, the EV 
owners are actually paying for it themselves. However, we find only a highly non-
significant relationship between log_EV and log_copaid_assets.  

Alternative specifications 

We test some alternative specifications of the model in order to assess the robustness 
of our findings. We show this in Table 5.  

  

                                                 

8 In total we have had discussions with representatives from six DSOs; two relatively large, and four 
relatively small. Only one of them, one of the small ones, could confirm that BEVs had caused 
noticeable costs. 
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Table 5: Alternative specifications on fixed effects regressions on the relationship between BEV stock in a 
DSOs operational area and DSO costs   

 (1) (2) (3) (4) (5) 

log_ev 0.039* 0.018** 0.018** 0.018** 0.018** 

 (0.023) (0.008) (0.008) (0.008) (0.008) 

      

log_subscribe 0.338 0.969 0.955 1.050 0.994 

 (1.196) (0.920) (0.899) (0.886) (0.921) 

      

log_subscribe2 0.000 -0.037 -0.038 -0.042 -0.039 

 (0.065) (0.049) (0.048) (0.047) (0.049) 

      

log_voltline 1.533** 1.693*** 1.713*** 1.651** 1.677*** 

 (0.649) (0.631) (0.624) (0.630) (0.629) 

      

log_voltline2 -0.117* -0.131** -0.131** -0.128** -0.130** 

 (0.061) (0.058) (0.058) (0.058) (0.058) 

      

log_ev x log_voltline -0.003     

 (0.003)     

      

wintertemp  0.001    

  (0.005)    

      

event   0.004**   

   (0.002)   

      

log_hh_inc    -0.431  

    (0.334)  

      

log_substation     0.025** 

     (0.012) 

      

_cons 2.869 -0.182 -0.056 5.344 -0.336 

 (5.682) (4.295) (4.260) (6.486) (4.328) 

Year dummies Yes Yes Yes Yes Yes 

N 1070 1070 1070 1070 1070 

r2_within 0.292 0.291 0.294 0.293 0.291 

Standard errors in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01 

 

In column 1 we investigate whether we can find support for the hypothesis that the 
marginal cost of accommodating more BEVs is higher for small DSOs in rural areas 
with little grid capacity (here measured as km with high voltage line) compared to larger 
city areas, that usually have invested more in capacity. We add an interaction term 
between log_ev and log_voltline. Here we see that the marginal cost of more BEVs is 
decreasing in the amount of high voltage line (though not statistically significant), 
supporting that more capacity makes it less costly to accommodate more BEVs. This 
corroborates our interpretation of the main results and heterogeneity tests, and also 
the conversations with representatives from a handful DSOs.  
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We add the control variable wintertemp, a measure of average winter temperature in a 
given year at county level9, in column 2. We expect lower winter temperatures to drive 
DSO costs upwards, and perhaps capture some of the costs per BEV, as lower average 
temperatures would generally require more electricity for heating, and more electricity 
for an average BEV-km. However, the control variable is highly statistically 
insignificant. A lot of the variation over time is captured by the year dummies. As for 
the coefficient for log_ev, it has become slightly larger and slightly less precise, but still 
significant at 5% level. 

After conversations with representatives from a handful of DSOs we have also decided 
to include extreme weather events as a control variable10, as many spikes in costs for 
different DSOs at different times can be attributed to such events. We see in column 
3 that event has a statistically significant impact on DSO costs, but adding this variable 
does not bring much change to the coefficient for log_ev, nor its p-value. 

It is worth discussing whether variations in BEV growth could be correlated with 
variations in an underlying growth in power usage and demand for modern appliances 
that require more power capacity, like induction stoves and heat pumps. If this is true, 
then our estimated coefficients for log_ev would be biased upwards, overstating the 
effect. Ideally, we would like to control for household ownership of modern appliances 
and their power usage from these appliances, but it is reasonable to expect that this 
should correlate with income. Figenbaum and Kolbenstvedt (2016) show at least that 
most BEV buyers until now have generally higher-than-median income. We therefore 
want to control for income. In column 4 we introduce average household income as a 
control variable. The income variable is aggregated from municipal level data, retrieved 
from Statistics Norway. This is a variable that does not display much variation over 
time during the sample period, and some of the variation over time is also captured by 
the year dummies. The coefficient for income is not statistically significant and the 
coefficient for log_ev and its standard error is unaffected. 

Finally, in column 5 we introduce the variable log_substations. As discussed in Section 3, 
substations are an important part of regulators DEA calculation, but it is potentially a 
bad control when trying to estimate the impact of BEVs of cost. Compared to the 
preferred model, the coefficient for log_ev is largely unchanged and the p-value is 
almost the same. There still may be a theoretical argument for leaving log_substations 
out of the regression, but it does not seem to make much difference in practice. 

 

5 Discussion  

The results of our preferred model specification show that an increase in the BEV 
stock in the operational area of a DSO is associated with an increase in local grid costs. 
This finding is robust to the addition of several controls and removal of outliers. The 
estimated cost increases are also economically significant, as they imply additional costs 

                                                 

9 Retrieved from https://www.yr.no/klima/  
10. County-level data on extreme weather events according to the definition from the Norwegian 
Meteorological Institute: https://no.m.wikipedia.org/wiki/Liste_over_ekstremvær_i_Norge [In 
Norwegian. Last accessed October 1st 2019] 

https://www.yr.no/klima/
https://no.m.wikipedia.org/wiki/Liste_over_ekstremvær_i_Norge
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of several thousand NOK per BEV when the BEV stock is low. With a constant cost 
elasticity of 0.018, the per-BEV cost becomes relatively low when the stock has 
reached the higher levels in the sample. 

The results indicate that there is fairly large heterogeneity in the effect of BEVs on 
DSO costs. In particular, the effect is a lot smaller for DSOs that have a higher-than-
median number of customers, and over the period has had a higher-than-median BEV 
density. We tried to test whether the effect of BEVs could be higher in areas with less 
installed capacity, usually rural areas. The point estimates gave some support to this, 
but they were not very precise.  

Because of this heterogeneity, it seems like including EVs as a variable in NVE’s 
regulatory calculations would be premature. Adding BEVs to NVE’s analysis could 
simply lead to more noise without strengthening the analysis with any certainty. And 
if it is the case that the cost imposed from more BEVs is increasing but at a decreasing 
rate, then any cost differences between DSOs stemming from more BEVs will be 
decreasing over time as the stock of BEVs continues to grow nationwide. 

The heterogeneity also indicates that costs imposed on DSOs by BEV owners, is not 
a problem that will affect a large number of consumers. The half of the sample with 
largest DSOs serve over 93% of the customers in the entire sample. The effect of 
BEVs on costs in that sample half is a lot smaller than the full-sample estimate, and 
statistically insignificant. If BEV owners are imposing pecuniary externalities in the 
incomplete local grid market, these externalities do not seem to be very large for most 
Norwegians. A minority of unlucky DSO customers may have to bear some cost as 
their DSOs seem to have a hard time accommodating BEVs.  

The analysis in this paper should be revisited in later years as the stock of BEVs in 
Norway continues to grow. In this dataset the highest level of BEVs in any of the 
DSOs operational area amounts to 8.3 per 100 customers. Even though the cost of an 
additional BEV seems to be positive but decreasing up until now, it could be that when 
we reach substantially higher levels in a matter of years we would detect larger cost 
impacts, unless measures are put in place. A recent analysis from DNV GL and Pöyry 
Management Consulting (2019) estimates investment costs up to 15 bn NOK by 2040 
in local grid components nationwide unless a significant amount of BEV charging can 
be pushed to off peak hours. It has gone relatively painless so far, as the current BEV 
stock – the most concentrated in the world – has not yet substantially stress-tested the 
local grid in most places. In Section 2 we referred to NVE stress-test that found that 
if 70% of the residents charge their EVs simultaneously during peak hours, they would 
expect overload for more than 30% of the current transformers. Norway is not there 
yet.  

It is worth noting a few caveats at the end. The main caveat is that our model applies 
for analyzing the statistical relationship between DSO costs and the number of BEVs 
registered in the DSOs area. We do not have data on the charging behavior of the BEV-
owners, or what kind of equipment they have installed. In addition, the number of 
registered BEVs in one DSO operational area does not need to correspond completely 
to where the BEV charging is taking place. There could be cases where DSOs 
experience costs from BEVs charging, but these are not BEVs registered in their area. 
This could e.g., apply to municipalities with many cabins, which typically lie in areas 
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where the local grid is not dimensioned for high capacity11. Our model would not be 
able to pick up any of that cost if it is there. However, to include cabin owners with 
BEVs to the analysis could be an interesting venue for future research, when more 
data is available. 

 

6 Summary and conclusions 

In this paper, we have used a complete dataset of Norwegian DSOs outputs, costs and 
registered BEVs in their operational area over the time period 2008-2017 to analyze 
the effect increasing BEV numbers have on DSO costs. We have also investigated 
through which mechanisms, i.e. cost components, do we see this effect. 

We use a fixed effects regression model and find that increases in BEV stock are 
associated with positive and statistically significant increases in DSO costs when 
controlling for other DSO outputs and applying year dummies. The point estimates 
also imply that the effect is economically significant. A 10% increase in BEV stock s 
associated with a 0.18% increase in DSO costs. This translates into over 10000 NOK 
(about €1000) per new BEV for the median DSO, but a little less than 600 NOK 
(about €60) per BEV for the DSO with the highest BEV density.  

There is substantial heterogeneity in the results, with larger and effects for smaller 
DSOs and DSOs with the lowest levels of BEV density. For the other half of the 
sample, with larger DSOs and higher BEV densities, the effect is close to zero and is 
not statistically significant. 

When looking closely at individual cost components, we see that increases in BEV 
numbers are associated statistically significant increases in operational costs, but 
statistically insignificant increases in other components. The exception is the cost 
component grid energy losses, where increases in BEV numbers are associated with 
cost reductions. Lower energy losses could stem from newer infrastructure in places 
with higher capital investments. Energy losses are in any case a relatively minor cost 
component (see Table 1), so this finding would not influence the impact on total cost 
much. The results indicate that BEVs impact DSO costs mainly through operational 
costs. We found this somewhat surprising, but it does corroborate the experiences of 
one of the DSO representatives that we have been in contact with in this project. 

Already before we consider the cost impacts BEVs may have on the distribution grid, 
several papers have documented that the CO2 abatement costs from policies that 
promote a shift from conventional to electric cars are fairly large (see e.g., Bjertnæs, 
2016; Fridstrøm & Østli, 2017; Wangsness, 2018; Wangsness, Proost, & Rødseth, 
2018). These costs may come in the form of higher costs for a given quality level of 
the car stock, a loss in government revenue that has to be funded by distortionary taxes 
elsewhere, and higher congestion levels in cities because of low energy costs and low 
tolls. Should we in addition to these costs worry about BEVs imposing higher costs 

                                                 

11 https://www.distriktsenergi.no/artikler/2019/1/16/elbilene-gjor-at-stromnettet-i-hytteomradene-
ma-oppgraderes/ [Electric cars leads to a need to upgrade the electric grid in cabin areas (Article from 
DistriktsEnergi in Norwegian, last accessed 05.12.2019)]  

https://www.distriktsenergi.no/artikler/2019/1/16/elbilene-gjor-at-stromnettet-i-hytteomradene-ma-oppgraderes/
https://www.distriktsenergi.no/artikler/2019/1/16/elbilene-gjor-at-stromnettet-i-hytteomradene-ma-oppgraderes/
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on the local grid and passing on the cost to all customers, and subsequently want the 
regulators to take action?  

As many economists before us, we expect there to be efficiency gains if the regulator 
allowed for a well-designed peak pricing system. That would incentivize more efficient 
use of local grid capacity with regards to all electric appliances, including BEVs. And 
with a fast-growing number of BEVs, the gains from introducing such a pricing 
scheme would be even larger. Many BEV owners would probably respond by installing 
smart charging systems, which would ease the household cost minimization and ensure 
more efficient grid capacity utilization, even with small hour-to-hour price differences.  

With regards to including “BEV stock” as a variable in the regulatory analysis, our 
cautiously optimistic interpretation of the findings suggest that this would be a bit 
premature. Although we find a statistically significant relationship between BEV stock 
and DSO costs, the marginal cost is positive but decreasing, and for the half of the 
DSOs that serve more than 93% of the Norwegian customers, the point estimates are 
actually quite close to zero. DSOs and regulators should keep an eye on developments, 
but for now grid costs stemming from higher BEV ownership rates do not need to be 
at the top of their list of worries. 
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Appendix A: Regressions with a per-customer 
model 

As discussed in section 3, there was a need to transform the data because of the very 
skewed distribution of DSOs. The log-log transformation was preferred because the 
dependent variable was closer to a normal distribution than was a per-customer-
transformation. Still, a per-customer model can work as a robustness check. Table 6 
below is the counterpart of Table 2, but with a per-customer transformation. The 
variable of interest is EV_percent, which is the number of BEVs per 100 customers. 

Table 6: Fixed effects regression on the relationship between EV density in a DSOs operational area and 
DSO costs per customer (measured in 2015-NOK)    

 (1) (2) (3) (4) (5) (6) 

     (removed 

3 largest 

DSOs) 

(removed 

3 smallest 

DSOs) 

EV_percent 61.94** 52.40 42.45 23.00 24.80 39.48 

 (30.46) (44.27) (46.74) (98.96) (48.85) (47.55) 

       

1000subscribers -15.64*** -20.11*** -20.18*** -20.93*** -31.99** -20.12*** 

 (4.36) (4.98) (5.18) (4.62) (12.76) (5.35) 

       

Meters of high 

voltage line per 

subscriber  

42.35*** 49.38*** 6.69 5.95 -15.11 -3.95 

(15.58) (15.55) (54.61) (54.93) (48.16) (53.99) 

       

Meters of high 

voltage line per 

subscriber^2 

  0.27 0.28 0.46 0.32 

  (0.37) (0.37) (0.30) (0.36) 

       

EV_percent2    3.68   

    (11.59)   

       

_cons 4453.49*** 4034.52*** 5431.13*** 5471.29*** 6044.53*** 5818.63*** 

 (917.65) (922.36) (1826.46) (1837.35) (1761.20) (1814.01) 

Year dummies No Yes Yes Yes Yes Yes 

N 1070 1070 1070 1070 1040 1040 

r2_w 0.03 0.13 0.13 0.13 0.15 0.13 

Standard errors clustered at DSO level in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01 

We find that the coefficient for EV_percent is positive under all specifications, just 
like we find with the log-log model. However, with the exception of the most naïve 
specification in column 1, we do not find any statistically significant effects from 
registered BEVs (per customer) on DSO costs (per customer). However, compared 
to the log-log model, the per-customer model does a worse job explaining the 
variation in the data. Given a choice between specifications, it is clear that the log-log 
model is preferable. 
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Appendix B: Aggregation over periods 

Here we investigate whether we pick up a stronger relationship between BEV stock 
and capital costs when we look at the change over the entire sample period instead of 
year-to-year changes. We want to minimize the year-to-year noise in the data, so we 
take the average of the first three years of the sample (2008-2010) and the last three 
years of the sample (2015-2017). We then take the differences between these two 
averages and run regressions for total costs, capital costs and operating costs. The 
results are shown in Table 1Table 7. 

Table 7: Regression on the relationship between over-period-differences in the number of BEVs registered in a 
DSOs operational area and the differences in the DSOs total costs, capital costs and operational costs. 

 (1) (2) (3) 

 diff_log_tot diff_log_cap diff_log_opex 

diff_log_EV 0.045*** 0.020 0.054*** 

 (0.012) (0.022) (0.018) 

    

diff_log_subsciber 1.714 0.045 3.292* 

 (1.279) (2.339) (1.883) 

    

diff_log_subsciber2 -0.078 0.009 -0.166 

 (0.073) (0.133) (0.107) 

    

diff_log_voltline 2.361** 0.222 3.174* 

 (1.162) (2.123) (1.710) 

    

diff_log_voltline2 -0.196* 0.020 -0.284* 

 (0.105) (0.192) (0.155) 

    

_cons -0.084* 0.203** -0.207*** 

 (0.046) (0.084) (0.067) 

N 107 107 107 

r2 0.186 0.036 0.159 

Standard errors in parentheses * p < 0.10, ** p < 0.05, *** p < 0.01 

 

In column 1 we see that the estimated coefficient for the effect of change in BEV 
stock is statistically significant and even larger than the coefficient estimated in our 
preferred model in Table 2. We also see that there is a relatively stronger and relation 
between differences in BEV stock and differences in capital costs relative to what we 
see in Table 4. However, it is not statistically significant. On the other hand, the 
relationship between over-period-differences in BEV stock and operational cost is 
stronger and more precise compared to what we found earlier. This model 
strengthens our conclusion that the relation between total DSO costs and BEV stock 
is significant and robust. 
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