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Abstract

We use recent panel data on Tanzanian farm households to investigate how previous

exposure to weather shocks a↵ects the impact of a current shock. Specifically, we in-

vestigate the impact of droughts on agricultural outcomes and investments in children’s

health, measured by their short- and long-term nutritional status. As expected, we find

that droughts negatively impact yields, with the impact increasing in the severity of the

shock, and that severe droughts have a negative impact on short-term nutritional out-

comes of children. We also find suggestive evidence that the more shocks a household

has experienced in the past, the less crop yields are a↵ected by a current shock. This

suggests that households are able to learn from their past shock experience, and could

imply that households are able to adapt to climate risk. Our results also suggest that the

impact of a shock depends on when the household last experienced a shock. In terms of

child health, we are not able to detect any clear e↵ect of previous shock exposure on the

impact of a current shock, nor do we find any impact on long run nutritional outcomes.
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1 Introduction

The most recent report from the Intergovernmental Panel on Climate Change concludes that

climate change is likely to have severe impacts on agriculture in sub-Saharan Africa with large

consequences for food security, creating an urgent need for adaptation (Niang et al., 2014).

The report finds that although adaptation strategies are already being used to cope with

current climate variability, there are considerable institutional, financial, physical, political

and informational barriers to adapting to climate change for small-scale farmers in Africa.

This paper uses nationally representative panel data from Tanzania, coupled with gridded

weather data, to explore the impact of climate risk on agricultural output and children’s

health. We aim to contribute to the literature on impacts of climate variables on economic

outcomes. There is a large literature on the impact of climate shocks on economic and health

outcomes using cross-sectional data.1 The more recent literature uses panel data to control

for time-invariant factors while exploiting exogenous variation in temperature, precipitation

and extreme events (see Dell et al. (2013) for a recent review). A limitation of these studies is

that using short-run weather variation to predict long-run impacts of climate change requires

out-of sample extrapolations that may not be valid (Dell et al., 2013). For instance, Burke

and Emerick (2012) show that US farmers are unable to adapt to longer term variations

in climate, as opposed to findings based on short-term weather variations. Similarly, when

assessing the impacts of climate risk, defined as the probability of experiencing a negative

climate shock, extrapolating from the impact of one climate shock to impacts of increased

climate variability due to climate change may not be valid. Our contribution is to investigate

whether the impact of a climate shock, more specifically a severe drought, depends on a

household’s previous experience with such shocks. As far as we know, this is the first paper

that does this. Understanding how longer-run exposure to negative climate shocks a↵ects

households can then be used to better understand the scope of adaption to increased climate

variability due to climate change.

We focus on two outcomes in this paper: crop yields and children’s health, measured by

their short-run and long-run nutritional status. Farmers with previous exposure to shocks

may be less severely a↵ected by a new shock if they are able to learn from previous shocks,

for instance through altered crop and input choices, new farming techniques and income

diversification. On the other hand, exposure to repeated shocks could make households more

1We will not attempt a full review, but some examples are Miguel (2005); Feng et al. (2012) and Kudamatsu
et al. (2012).
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vulnerable to new shocks, for instance if the households cope by depleting assets, including

human capital. In this case, we would expect the negative impact of a shock to be increasing

in the number of shocks the household has experienced previously.

In view of the link between agricultural outcomes and weather, particularly in rain-fed

agriculture, several studies have investigated the potential impacts of climate change on

agriculture. An early application of panel data to this task is the study of U.S. agriculture

by Deschênes and Greenstone (2007), the results of which were later discussed by Fisher

et al. (2012). Assessing impacts on African agriculture, Schlenker and Lobell (2010) match

historical country-level yield data on five crops in sub-Saharan Africa to weather data from

1961 to 2002. They use their estimated parameters to predict crop production losses due to

climate change by year 2065, and find that the production of maize, groundnut, sorghum,

millet and cassava is expected to decrease by respectively 22, 18, 17, 17, and 8 percent.

Relevant to our context, Rowhani et al. (2011) use regional panel data on maize-, rice-

and sorghum yields in Tanzania from 1992 to 2005. The data is coupled with observations

from weather stations and gridded, extrapolated weather data. They find that precipitation

variability during the growing season, measured in terms of the coe�cient of variation, has

a negative impact on all three crops. Ahmed et al. (2011) use the same data to investigate

the impact of rainfall and temperature on yields, and the impact of projected future climate

variability on poverty distributions.

Evidence of the impact of weather variability on agriculture at the household level is less

common. Rosenzweig and Binswanger (1993) find that households alter their agricultural

investment portfolio in response to changes in rainfall patterns. Using the ICRISAT village

surveys from India, which include daily rainfall data, they find that a delay in monsoon onset

significantly reduces crop- and total farm profits. Further, they find that farmers exposed to

more weather variability choose less risky and less profitable investments, and that this e↵ect

is stronger for poorer households who are less able to cope with income variability after a

shock.

The impacts of climate variability on households is perhaps better understood when broad-

ening the focus beyond agricultural output. A few papers look at the impacts of climate

variability on consumption, implicitly assuming that the mechanism of impact is through

agriculture. Skoufias and Vinha (2013) use household panel data from Mexico, coupled with

daily historical rainfall station data, interpolated to the municipality level. Using total pre-

cipitation and growing degree days (GDD)2 for the agricultural year and the rainy season,

2GDD is a cumulative measure of temperature.
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they define weather shocks as a period where precipitation or GDD is more than one stan-

dard deviation above or below their historical mean. The authors cannot conclude on a

general shock impact, but find some evidence that households are unable to perfectly smooth

consumption following a shock. Lazzaroni and Bedi (2014) apply two rounds of the Living

Standards and Measurement Survey (LSMS) in Uganda, to investigate the impact of weather

variability on food consumption. Data on precipitation, number of rainy days and temper-

ature for the two seasons preceding each survey are drawn from 13 meteorological stations,

and they define weather indicators as deviations of these measures from the long term local

means.3 Rainfall is not found to a↵ect consumption, but the authors find relatively large,

and significant e↵ects of temperature on food consumption. A one percent increase in the

maximum temperature is expected to decrease food consumption by three percent, according

to their results.

Several studies have analyzed the e↵ect of weather shocks on health, either implicitly or

explicitly assuming an income e↵ect through agriculture. The impact on children’s health

is seen as particularly important – if parents are unable to maintain investments in their

children’s human capital (for instance through schooling or health) during shocks, the e↵ect

of negative shocks may persist over generations (Dercon, 2002). With this motivation, Jensen

(2000) compares children’s health and educational outcomes in Cote d’Ivoire based on their

exposure to a recent weather shock.4 In the exposed areas, malnutrition (defined as weight-

for-height Z-score more than two standard deviations below the reference median) increased

among children aged 0-10 years, school enrollment decreased by more than one third and

the use of medical services for children that were ill decreased, without significant di↵erence

between the exposed and unexposed children prior to the shock. Similarly, Hoddinott and

Kinsey (2001) find that experiencing a drought5 results in a slower growth rate in height for

Zimbabwean children aged 12-24 months old. Maccini and Yang (2009) extend the perspective

to adult outcomes and focus on positive rainfall shocks rather than negative ones. They find

that Indonesian rural females who experienced 20 percent more rainfall than the district mean

as infants attain greater height as adults (0.57 cm on average).6

In terms of short-term nutritional status (weight-for-age), the evidence on impacts of

3The historical period varies between 1960-1990 (precipitation) and 1980-2010 (temperature).
4Defined as rainfall more than one standard deviation below the historical mean.
5Identified as a season with rainfall below the average historical mean.
6Others again analyze the impact of weather shocks on mortality, which can be viewed as the cumulative

result of negative impacts on children’s health. For instance, Rose (1999) explores gender di↵erences in child
mortality following a positive rainfall shock, Kudamatsu et al. (2012) analyze the impact of droughts on infant
mortality among African farming households, whereas (Burgess et al., 2013) assess the di↵erential impact of
extreme temperatures on infant and overall mortality in rural versus urban areas.
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weather shocks are less clear. More rainfall can trigger increased risk of disease that in

part counteracts the income e↵ect (a “disease channel”). Tiwari et al. (2013) investigate

the impact of excess monsoon rainfall on short- and long run nutritional status in Nepal.

Clusters from the Demographic Health Surveys (DHS) are matched with predicted weather

patterns based on rainfall and elevation. A contemporaneous shock (disease channel) results

in lower weight-for-age for infants, whereas a positive shock in the previous season (income

e↵ect) increases weight-for-age for all age-groups below three years old. Height-for-age is only

positively a↵ected by more rainfall in the second year of life, and this holds only for children

aged 12-35 months.7 Lechtenfeld and Lohmann (2014) widen the focus to self-reported illness

among adults and health expenditures, in addition to self-reported anthropometric measures.

They assess the e↵ect of a drought severity index8 on these measures using four rounds of

household panel data from rural Vietnam. A higher drought severity index increases the

probability of illness and reduces weight among adults and children, whereas they find no

significant impact of weight-for-age Z-scores of children below five. They attribute this e↵ect

to an income e↵ect, through increases agricultural yields, and do not discuss a possible disease

channel.

Although several papers have analyzed the reduced form impact of weather shocks on

health, few assess this explicitly through its e↵ect on agriculture - instead implicitly assum-

ing that this is the main channel. A related, and equally important, question is how previous

shock exposure may interact with a new shock in explaining di↵erences in both agricultural

and health outcomes. We exploit detailed plot level data on crop production and anthro-

pometric measures of respondents in the Tanzania National Panel Survey to explore these

questions. Our results show that experiencing severe droughts negatively a↵ects crop yields,

with the impact increasing in the severity of the shock. Our results also indicate that the

more shocks a household has experienced previously, the less severe the impact of a current

shock on yields, suggesting that households may learn from previous shocks how to mitigate

impacts of current shocks. We find that households are not able to protect children from

the most severe shocks – the short run nutritional outcome of young children is negatively

a↵ected by a severe drought in the previous rainy season. On the other hand, we are not

able to detect a negative impact from less severe droughts, and we do not find any evidence

that previous exposure to severe shocks has an impact on how a current severe shock a↵ects

7This contrasts to Maccini and Yang (2009), who find a positive e↵ect on stature from more rainfall in the
first year of life. They use however a more long-term outcome, i.e. adult height.

8Defined as the annually aggregated deviations of monthly district level rainfall shortfall from the local
historical mean.
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nutritional outcomes.

In the following we present our conceptual framework in Section 2, Section 3 gives an

overview of the setting, while the data and the empirical strategy to be employed are described

in Sections 4 and 5. The results are presented in Section 6 and followed by a discussion of

possible caveats and paths for future work in Section 7. Section 8 concludes the paper.

2 Conceptual framework

The impact on farming households of repeated shock exposure, for instance droughts or

flooding, in the context of a rural developing country, is not obvious. Market imperfections

in insurance and savings are often pervasive, leaving households’ response to income shocks

largely dependent on their own endowments, and linking poverty vulnerability to risk (Der-

con, 2002). The e↵ect of a weather shock, such as a drought, and its interaction with previous

shock exposure on households’ consumption and welfare is expected to manifest itself through

agriculture. The majority of the farming households in our sample rely on rain-fed agricul-

ture,9 and we would therefore expect rainfall variability to a↵ect their agricultural output.

Previous exposure may have led the household to develop techniques to better tackle new

shocks, such as shifting the timing of planting or fertilizer application, switching crop vari-

eties and types, and implementing soil- or water conservation technologies (Burke and Lobell,

2010; Di Falco and Veronesi, 2013). Alternatively, their ability to invest in (costly) adaptive

strategies may be reduced. Previous shock exposure may have triggered asset depletion, such

as selling of livestock or other productive assets, or reduced investment in health and edu-

cation (Dercon, 2002), reducing their investment capabilities and their ability to deal with

more recent shocks. A first step to understanding potential long run impacts of climate risk

is therefore to investigate the impact of shocks and repeated shock exposure on agriculture,

and more specifically crop yields.

Rural households may derive income and consumption from other sources than own farm

production. Income diversification (Rose, 2001), asset depletion (Rosenzweig and Wolpin,

1993), self-insurance through savings (Paxson, 1992) and altered labor supply (Kochar, 1995;

Rose, 2001) are possible smoothing strategies to adapt to fluctuations in agricultural income

(Morduch, 1995; Dercon, 2002). The extent to which rainfall variability a↵ects total income

and consumption is therefore not readily derived based on own production only. Moreover,

the combined e↵ect of multiple households’ responses may result in increased food prices and

9In a given year less than 5% of the households in our sample have one or more irrigated plots.
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lower wages when markets are poorly integrated (Jayachandran, 2006), which again a↵ects

households’ consumption depending upon their position in the market.

Even if all income sources were identified, measuring households’ total income would be

problematic. The alternative measure, consumption, is believed to su↵er less from mea-

surement error in rural settings, but is also di�cult to capture (Deaton, 2005). However, a

desirable outcome from income and consumption smoothing is better child health outcomes.

We therefore investigate the e↵ect of a shock and previous exposure to similar shocks on child

health, measured by the short- and long-run nutritional status of children.

Rainfall variability and experience with past rainfall variability may a↵ect children’s nu-

tritional status in several ways. Firstly, is the above-mentioned income e↵ect, whereby house-

holds’ income available for consumption may fall due to lower yields. For households that

are net buyers of food, a related increase in food prices will add to this. The extent to

which a drought a↵ects child nutrition thus depends on the opportunities for income- and

consumption smoothing. If households are able to perfectly smooth consumption when facing

agricultural income shocks, we do not expect any impact on investment in children’s health.

Secondly, rainfall shocks can have an additional direct e↵ect on health, through access to

clean water and the prevalence of vector- and water-borne diseases (Tiwari et al., 2013).

The causal mechanisms behind the impact of shocks and previous shock exposure on child

nutritional outcomes is therefore more complicated than the e↵ect on agricultural outcomes.

However, since the disease environment is a↵ected by current rainfall, and agricultural income

is a↵ected by rainfall in the past growing season, it is possible to separate between the two

channels. This is further discussed in section 5.

We posit four possible scenarios for the e↵ect of households’ previous exposure to droughts

on current drought impacts on children’s health. Firstly, if households are able to learn

income- and consumption smoothing methods from previous shocks, then we expect the

impact of a current shock on child nutrition to be decreasing in the household’s previous shock

experience. If learning mainly occurs through (better) income- and consumption smoothing,

we would expect to find adaptation only for child health outcomes, and not for yield outcomes.

Secondly, if we observe adaptation both for yield and children’s health, we cannot disentangle

adaptation through agricultural measures from adaptation through income- and consumption

smoothing. Thirdly, we may observe adaptation in yield, but no adaptation in terms of child

health, or even a negative e↵ect (depletion). This could indicate that households adapt by

producing less risky, but less nutritious crops, or that agricultural adaptation is costly, and

7



that this is taking place at the expense of children’s health for instance in terms of time

use (Kim, 2009). Lastly, if we observe that previous shock exposure magnifies the negative

impact of a current shock on child nutrition then this could indicate an asset depletion story.

We expect the timing of past shocks to a↵ect the total impact of a new shock, through the

depletion and adaptation responses available to the household. Rebuilding the asset stock

following a shock may take time. Households’ ability to cope with a new shock could therefore

be greater the more time has passed since the last shock, implying a negative relationship

between the impact of a new shock and years since the last shock. On the other hand, it may

be easier to learn from a more recent shock than from shocks that happened a long time ago,

whereby the negative impact of a new shock increases with time. Combined, this would imply

a u-shaped relationship between the time since the last shock the household experienced, and

the absolute impact magnitude of a shock today: (i) Households’ with recent previous shock

exposure, e.g. in the past one or two years, have acquired knowledge on how to better tackle

a new shock. However, given the recent income loss due to the previous shock, their ability

to invest both time or cash in these adaptive techniques is reduced. (ii) If more years have

passed since the last shock occurred, households have more resources to draw upon while at

the same time maintaining the knowledge of how to better tackle a new shock. (iii) Given an

even longer time horizon between the current and last shock, households are likely to have

more resources available. Assuming that their knowledge has dissipated, then their ability to

use their resource base to tackle a new shock is diminished, resulting in a larger total impact

of a new shock.

An alternative scenario is a linear relationship between the absolute impact of a new shock

and the time passed since the previous shock. The more time that has passed, the larger the

resource base the household has manage to rebuild, while at the same timing maintaining

the knowledge of how to best respond to a new shock.

3 Climate and agriculture in Tanzania

We focus on farmers’ behavioral responses to weather variability in Tanzania, where the

climate is characterized by both large regional, inter-seasonal and intra-annual variations.

Northern and eastern regions experience two rainy seasons (bimodal), while the rest of the

country has one single rainy season (unimodal) (McSweeney et al., 2010, 2014). These rainfall

patterns are largely the result of the Inter-Tropical Convergence Zone (ITCZ) and its move-

ment across the country. Climate variability is in addition a↵ected by the El Niño Southern

8



Oscillation10 and La Niña11 (Camberlin et al., 2001; Wol↵ et al., 2011).

Apart from the humid coastal areas, the country is covered by highlands that provide a

temperate climate for farming. Cereals such as maize, rice and sorghum are farmed exten-

sively, with maize being the most common crop. A large share of the maize production takes

place in the southern highlands, whereas sorghum is mostly found in the drier central high-

lands and rice in southern regions (Rowhani et al., 2011). Given the limited use of irrigation,

the timing of agricultural activities is closely linked to the seasonal rainfall patterns. The

rainy season in the unimodal areas (Msimu) usually starts in October-November and lasts

until April-May, with a dry-spell in-between, allowing for harvest from June to August. In

the bimodal areas, the short rainy season (Vuli) typically lasts from October to December,

whereas the long rainy season (Masika) occurs between March and June, with harvesting in

July-August.

A substantial share of the Tanzanian population relies on agriculture as their main income

source, with around 80 percent of the population residing in rural areas. Population density

is relatively low throughout the country, with some exceptions, but birth rates are high, each

woman on average gives birth to just over five children (TNBS and ICF Macro, 2011).

According to historical records, average annual rainfall has decreased over the past decades

in Tanzania, whereas mean annual temperature has increased (McSweeney et al., 2010, 2014;

Hulme et al., 2001). In terms of extreme rainfall weather events, the pattern is less clear

(McSweeney et al., 2010, 2014). Climate model predictions suggest an increase in mean

temperature, and in particularly so during the dry season, whereas predictions on rainfall are

less clear - Ahmed et al. (2011) note for instance an increase.12

4 Data

4.1 Household panel

We use the Tanzania National Panel Survey (NPS), a panel of nationally representative

household surveys from 2008/09 (NPS1) and 2010/11 (NPS2). Households were sampled

from 409 populated enumeration areas that were drawn from the Tanzania Population and

10Warmer sea surface temperature in Pacific, that may result in more than average rainfall in the short
rainy season but less in the long rainy season (Camberlin et al., 2001).

11Cooler sea surface temperature in Pacific, that may result in droughts in the northern parts of the country,
whereas more than average rainfall is likely to occur in southern parts (Wol↵ et al., 2011).

12Hulme et al. (2001) characterize the predictions from climate models for the African continent as uncertain
due to incomplete and lacking knowledge of the ENSO’s e↵ect and the failure to incorporate changing land
cover/use.
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Housing Census from 2002. The first round covers 3265 households (2063 in rural areas) and

their 4321 farm plots, and was collected in the period October 2008-October 2009. The second

round covers 3924 households, 3168 of them reinterviewed from round 1, and their 3882 farms

plots, and was collected between October 2010 and November 2011. The observations are

matched at the household- and plot-level across the two survey rounds. Around 7 percent

of the plots were measured with GPS in the first round and 80 percent in the second round

(NBS, 2011). A third round of the panel was collected in 2012/13, but this data has not yet

been released. We intend to expand our analysis with this data as soon as it is made publicly

available.

The NPS has the advantage of providing detailed data on both agricultural production

and child anthropometrics, allowing us to investigate our hypotheses from multiple angles.

Moreover, the panel nature of the data makes it possible to compare households within

the same enumeration area, rather than across enumeration areas. Data on agricultural

activities is gathered for the agricultural season preceding the interview. Thus, for NPS1

the agricultural season of interest when matching with climate data is 2007/08, whereas

agricultural data from NPS2 is matched with the 2009/10 season. Figure A1 shows a map of

the enumeration areas from 2008/09 to which the weather data is matched.

In some specifications we use the unbalanced plot panel data, which gives us 5416 obser-

vations when we include households that reside in the same location across the two survey

years and cultivated crops in both seasons.13 The balanced household panel gives us 2436

observations. For children’s nutritional outcomes, we pool14 the data and use nutritional

outcome variables on 3189 children that are 60 months or younger residing in farming house-

holds.15 We cannot include the children measured following the harvest from the rainy season

2010/11, i.e. those measured after April in the unimodal areas and after June in bimodal

areas. We will expand our analysis to all children, including those measured in the period

July-November 2011, upon accessing weather data for 2011.

13We have to drop 542 plot observations due to lack of plot id in 2010/11. Achieving a balanced plot panel
would require dropping an additional 50 percent of the plots, leaving us with 1865 plots that we observe in
both years. Since the results are largely unchanged, we chose to use the unbalanced panel.

14There are unfortunately too few observations on children below 61 months in the same households over
the two rounds of the survey to use the panel structure in this case.

15We include children of farming households that were excluded in the yield analysis due to outliers or
missing observations on agriculture.
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4.2 Climate data

We use University of Delaware (UDel) gridded precipitation and temperature data, described

in Willmott and Matsuura (2012a,b). Each grid cell is 0.5 x 0.5 degrees, equivalent of around

55 x 55 km at the equator. The data is interpolated from weather station observations and

provides monthly data on precipitation in milimeters and monthly mean air temperature in

degrees Celsius.16 Each set of GPS coordinates at the enumeration area level is matched to a

grid cell. This results in the 391 enumeration areas being matched to 149 grid cells covering

mainland Tanzania and Zanzibar, whereby several enumeration areas fall within the same

grid cell.17

4.3 Measuring climate shocks

Previous studies on the impact of climate variability on agricultural output suggests that both

precipitation and temperature are important. We define a negative precipitation shock in

three ways: annual precipitation in (i) the 10th percentile of the local historical distribution,

(ii) the 15th percentile of the local historical distribution, or (iii) the 20th percentile of the

local historical distribution. Basing our definition of a drought period on deviations from the

local precipitation pattern means that we control for the average local climate, which may be

correlated with other characteristics that could influence our outcome variables (Kudamatsu

et al., 2012). Moreover, a relative rather than an absolute measure of drought suggests that

any deviations from the local historical mean, e.g. rainfall in the bottom 10th, 15th or 20th

percent of the distribution, should be orthogonal to other factors that may a↵ect households’

adaptation. In any given year households in a grid cell have 10, 15 or 20 percent probability

of experiencing a shock as defined above. This is choice of a relative measure is in line with

previous work.18

We proceed by identifying the historical distribution of rainfall in each grid cell based on

the monthly precipitation data for the period 1960-2010. We restrict ourselves to the years

following 1960, as it provides a more representative distribution for recent weather patterns

while at the same time giving us su�cient data to construct a distribution from which we

16The climate data from UDel has been used extensively over the past years. We choose to use this data
given its detailed historical and spatial coverage. We plan to do sensitivity analysis using di↵erent climate
data in order to assess the robustness of our results.

17We have to drop 18 enumeration areas due to lack of precipitation data. These are located along the coast
or on islands. Given our focus on agricultural production, we do not believe that omitting these enumeration
areas will bias our results, as many are involved in other occupations than agriculture and the total number
of observations dropped at the household level in total for both years is 134.

18For instance, Burke et al. (2014) define a shock as rainfall below both the 15th percentile of a gamma
distribution, and confirm the findings when using the 10th and 20th percentile.
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draw our historical shocks.19 All measures are constructed for the entire agricultural season,

i.e.. July-June. We also define shocks based on precipitation in the relevant rainy season in

the unimodal and bimodal areas of Tanzania. We assume a fixed growing season, and define

the first month of the growing season as October.20 Unfortunately, the University of Delaware

data only contains monthly mean air temperatures, which prevents us from developing a good

indicator of temperature shocks21, but we include mean temperature during the growing

season as a control in our analysis of agricultural outcomes.

When investigating the impact of shocks on child health we identify the most recent

agricultural season prior to the child’s measurement, since this is the season relevant to the

child’s food consumption prior to being measured. The relevant season di↵ers between the

unimodal and bimodal areas, and we investigate the impact of shocks in the relevant season

depending on when the child was measured. For children in households residing in unimodal

areas, we use the rainfall shock in 2007/08 for all those measured prior to May 2008 in the

first survey round, whereas for those measured in May or later are assigned a shock value

based on the 2008/09 agricultural season. We set the cut-o↵ to June for the bimodal areas.

The same procedure is used for the second survey round. See Figure A2 for a timeline of

child shocks.

We identify previous exposure to the above shocks in two ways. The first method is to

count the number of similar shocks that have occurred over the last 10 year period, in other

words 1997/98-2006/07 for the first survey round, and 1999/00-2008/09 for the second survey

round. This results in a previous exposure variable that is time-variant across the rounds. A

timeline describing the timing of the surveys and agricultural shocks is shown in Figure A3.

The second approach that we take is to count the number of years that have passed since the

household was last exposed to a similar shock. For each survey round, we count backwards

from the relevant agricultural season. We thus obtain a measure of risk exposure that varies

over time.22

Since the previous shock exposure variable is based on the local historical distribution

19The same approach is taken by Burke et al. (2014).
20We choose to define the growing season based on the main rainy season, and in accordance with recorded

planting times for maize which varies from October/November to December/February in the unimodal areas
(Kaliba et al., 1998b,c,a) and from January/February to March/April (Mafuru et al., 1999; Nkonya et al.,
1999; Kaliba et al., 1998b) in the bimodal areas. This di↵ers from Ahmed et al. (2011) who use a general
growing period for the entire country, i.e. from January to June, for maize, rice and sorghum.

21Schlenker and Lobell (2010) and Lobell et al. (2011) use growing degree days (GDD) as a measure of
accumulated temperature exposure for crops during the growing season, and degree days above 30 degrees
celsius as a measure of exposure to extreme heat.

22The first method of capturing previous shock exposure is similar to the approach taken by Burke et al.
(2014).
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of rainfall over the past 50 years, all households across grid cells have an equal probability

of experiencing a shock in a given year (withstanding temporal correlation). Consequently,

areas that experience more weather shocks in the past decade should not di↵er systematically

from areas that experience more shocks in any other decade of the 50 years period we have.

4.4 Measuring agricultural output

We vary our measure of (log) agricultural output, employing maize, cereal and total yield

(output per hectare) at both the plot and household level. Total yield includes all crops,

including legumes, vegetables, roots, tubers and cash crops. Around 60 percent of the plots

are covered with mono- or intercropped maize, followed by around 12 percent allocated to rice

paddy. Beans, groundnuts and pigeon peas are typical crops used for intercropping, whereas

few farmers have cash crops, such as tobacco, cotton and cashew nuts. For each output

measure we exclude the lower and upper 1 percentile of the plot observations, in addition to

plots exceeding 100 hectares.23

Each measure has both disadvantages and advantages. We suspect that using total yield

is likely to bias our results upwards. Households that experienced a shock may be more likely

to harvest cassava (heavy weight) than those that did not experience a shock, thus resulting

in a higher total yield. The five cereals (maize, sorghum, millet (bulrush and finger), wheat

and rice) that enter into the cereal yield variable are on the other hand more homogenous

in weight, and we avoid to a greater extent di↵erences in drought-tolerant characteristics

when using maize yield only. Restricting the agricultural yield data to only maize or cereal

reduces on the other hand our number of observations, primarily at the plot level, but also

at household level.

4.5 Descriptive statistics

In Table 1 we report descriptive statistics at the plot and household level. The household

head is on average 49 years of age, and one fourth of the households are female headed. Four

percent of the households experience rainfall below the first decile in one of the surveyed

agricultural seasons, e.g. 2007/08 and/or 2009/10, whereas 11 percent have experienced

rainfall below the second decile in these same seasons. In terms of previous exposure, the

households have experienced between zero and four shocks, defined as rainfall below the first

decile, over the past decade. The number of years since a similar shock occurred varies

23Based on this we drop 184, 99, 82 plot observations for total-, cereal and maize yields, respectively.
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between one and 41 years for the rainfall below the first decile, and one and 20 years for

rainfall below the second decile. Maize yields average around 800 kg per hectare, whereas

cereal and total yield is somewhat higher.

4.6 Measuring children’s health

We use three measures of children’s nutritional status as outcome variables. Firstly, (i)

weight-for-age, which is referred to as the “classical index” in WHO (1986), capturing un-

derweight, and can be supplemented or replaced by the following two; (ii) weight-for-height,

which reflects short-run nutrition, and recovers quickly after period of insu�cient nutrition

(wasting, index of acute malnutrition) and (iii) height-for-age, which captures long-run nu-

trition (stunting, index of chronic malnutrition). It is important to use both stunting and

wasting as outcome variables separately, since they react di↵erently to the nutritional state,

and are di↵erent biological concepts. Wasting is more prevalent between 12 and 24 months

of age, while stunting is more prevalent above 24 months. Growth is a slow process, and

cannot be reversed (you cannot lose height), while weight may react quickly to nutrition and

disease (WHO, 1986). According to WHO (1986) it is most appropriate to look at these

outcome variables for children younger than 5 years. The weight-for-age, weight-for-height

and height-for-age of the children in our sample are linked to the WHO reference population

by creating Z-scores.24 The standard allows us to create Z-scores for individuals aged 0-60

months.

We report the summary statistics on anthropometric measures for children belonging to

farmers (e.g. having positive total yield) in Table 2. In line with Alderman et al. (2006)

we drop individuals with Z-scores below -6 or above 6, resulting in the exclusion of 75 ob-

servations. Children are on average 1.8 and 0.9 standard deviations below the international

reference population for height-for-age and weight-for-age, respectively. There are in other

words more cases of stunting than wasting.

24We subtract median and divide by standard error of appropriate sex and age category of reference popu-
lation.
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5 Empirical specification

5.1 Agricultural yield

To investigate how previous exposure to shocks a↵ects the impact of a shock on agricultural

yield, we estimate the following regression:

Yphct = ↵p + �1Shockct + �2Shockct ⇥ PrevShockct + �3PrevShockct + �4Xhct + uphct (1)

where Yphct is the outcome of interest (log of total yield) for plot p in household h in enu-

meration area c at time t, and ↵p is a plot-specific intercept. Shockct is a dummy equal to

one if precipitation was below the 10th, 15th or 20th percentile at time t, PrevShockct is the

number of years an enumeration area c was exposed to such a shock in the past. We look here

at the number of shocks experienced over a 10-year period prior to the observed agricultural

seasons, which varies across the two survey rounds. uphct is a mean zero error term, with

clustering at the plot- or household level. The same specification applies to the household

panel analysis, dropping the subscript p for plots.

The choice of which control variables to include is not obvious. Following the recom-

mendation in Dell et al. (2013) we only include regressors that can credibly be viewed as

exogenous. Controlling for input use or crop choice when looking at agricultural yield would

be problematic, since these variables are likely to be influenced by whether or not the house-

hold experiences a shock; in fact they may be important channels through which a household

may adapt to climate risk. Angrist and Pischke (2008) calls this a “bad control problem”

and shows that including regressors that are not exogenous to the weather variables we are

interested in would bias the estimates of �1 and �2. Xhct consists therefore only of a set of

control variables at the household level, more specifically the age and gender of household

head and whether the households’ plots were measured with GPS or not.

The coe�cient �1 can be interpreted as the e↵ect of being exposed to a shock without

having been exposed to shocks over the past 10-year period. The average e↵ect of a shock is

thus �1 + �2 ⇥ ¯PrevShock where ¯PrevShock is the average number of shocks experienced. �2

is thus the coe�cient of main interest here. �2 < 0 indicates that previous exposure to shocks

makes the household less able to deal with a current shock (depletion), while �2 > 0 indicates

that households are able to learn from previous shock exposure to mitigate the impact of a

current shock (adaptation). �3 is interpreted as the e↵ect of previous shock exposure when

there is no current shock.
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Since we are controlling for plot fixed e↵ects, we are only exploiting variation within each

plot over time. Any variation in the PrevShock variable is thus variation in the number

of shocks a plot has been exposed to between the first and the second survey round, and in

the first years that enter into the 10-year period. This means that an increase in previous

shock exposure must come from experiencing a shock in the 2007/08 season and/or the

2008/09 season, whereas a decrease in shock exposure would occur if when moving the 10-

year window forward results in a shock year dropping out. When estimating the coe�cient

on the interaction between previous shock exposure and experiencing a current shock, we are

thus only looking at plots in the second survey round that experience a shock, and that have

experienced a change in shock exposure between the two seasons.

We also capture the e↵ect of previous shock exposure on the impact of a current shock

through LastShockct, replacing PrevShockct. This variable is based on counting the number of

years since a similar shock, i.e. rainfall in 10th, 15 or 20th percentile, occurred. As described

above, we expect that the timing of previous shock exposure may matter for the impact of a

current shock. For instance, having recently experienced a similar shock could magnify the

negative e↵ect of a contemporaneous shock if households have depleted their asset stock, and

adaptation to a new shock is costly. As the time passes since the household last experienced

a shock, their asset stock may be rebuilt, but knowledge of how to adapt to a shock may

dissipate over time. We also include a squared term LastShock2ct interacted with the current

shock, to test for a non-linear e↵ect of the time since a previous shock on the impact of a

current shock. Our second specification is as follows:

Yphct = ↵p + �1Shockct + �2Shockct ⇥ LastShockct

+ �3Shockct ⇥ LastShock2ct + �4LastShockct + �5Xhct + uphct

(2)

where the average e↵ect of a shock is �1+ �2⇥ ¯LastShock+ �3⇥ ¯LastShock
2
. We include the

same control variables as in the first specification.

5.2 Child health outcomes

We employ a reduced form model to investigate the impact of shocks and their interaction

with previous shocks on child health outcomes.

Yihgrt = ↵r+�1Shockgrt+�2Shockgrt⇥PrevShockgrt+�3PrevShockgrt+�4Xihgrt+uihgrt (3)
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where Yihrt is a measure of the nutritional status for child i in household h in grid cell c in

region r at time t, and ↵r is a region-specific intercept. We employ three outcomes: height-for-

age (stunting), weight-for-age (wasting) and weight-for-height (underweight). Xihgrt includes

a set of child-specific characteristics on age and gender. As discussed above, precipitation

may also have a direct e↵ect on child short-term nutritional outcomes through its e↵ect on

the disease environment. We therefore include total precipitation in the month the child was

interviewed to control for this in the regressions with weight-for-age and weight-for-height.

This will vary across children within the same enumeration area. Shockgrt refers to the last

agricultural season prior to child measurement in grid cell g in region r at time t We use

region-level fixed e↵ects rather then enumeration area fixed e↵ects, as we are not using the

entire sample of children from the second survey round. Note that one region can be covered

by several grid cells.

�2 < 0 would indicate a depletion story, where repeated previous exposure to droughts

makes child health increasingly vulnerable to recent shocks. For short-term nutritional out-

comes, we expect the impact mechanism to be through the income of the household, where

the impact on household consumption is increasing in previous shock exposure, perhaps due

to asset depletion and lack of consumption smoothing mechanisms. �2 > 0 would, on the

other hand, indicate that households are able to learn from previous shocks, through improved

income- and consumption smoothing and/or through agricultural adaptation, depending on

the sign of �2 from specification 1.

For height-for-age, we expect �2 = 0 regardless of whether the household is able to learn

from previous shocks, since this outcome reflects accumulated nutritional shocks. We expect

a contemporaneous shock (rainfall below first or second decile) to have a negative impact

(�1 < 0) on short-term nutritional outcomes, i.e. weight-for-age and weight-for-height, but

less so for height-for-age as this measure does not react quickly to changes in consumption.

On the other hand, previous exposure to shocks (in the child’s lifetime) is expected to a↵ect

height-for-age negatively, which could imply �3 < 0 depending on when the previous shocks

occurred.
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6 Results

6.1 Agricultural yield

6.1.1 Plot panel results

We start o↵ by presenting our results for agricultural outcomes, in line with the first empirical

specification in eq. (1), using the plot-level panel. In tables 3, 4 and 5 we report the results

from using log of total agricultural yield, cereal yield and maize yield, respectively, as the

outcome variable. Plot-level fixed e↵ects are included throughout, and we are therefore

exploiting the within-plot level variation. When we only include the shock variables, we find

that experiencing a negative precipitation shock defined as rainfall in the 10th, 15th and 20th

percentile of the local historical precipitation distribution, on average results in lower yield.

This holds for all three outcome variables, and is statistically significant at the 5 percent level

for the two most severe shock definitions for all three outcomes, and at the 10 percent level for

rainfall in the 20th percentile for total yield. Rainfall in the 10th decile results in a reduction

in yield of between 23 and 28 percent depending on the outcome variable, with strongest

e↵ects found for cereals and maize. As expected, the impact magnitude is increasing in the

severity of the shock, with an average 11 percent decrease in total yields with rainfall in the

20th percentile, 21 percent with rainfall in the 15th percentile, and a 23 percent decrease

with rainfall in the 10th percentile.

Next, we include an interaction term between the number of shocks experienced and a

shock this agricultural season, while controlling for the number of shocks experienced, thus

estimating the full specification in eq. (1). The only case where both coe�cients of interest

are statistically significant is for log of total maize yield, when looking at the impact of

precipitation in the 20th percentile this agricultural season, and previous experience with the

same type of shocks. The e↵ect of the shock is negative and statistically significant at the

10 percent level, and the magnitude indicates that a shock reduces maize yield by as much

as 25 percent. However, the coe�cient on the interaction term between a current shock and

the number of previous shocks is positive. This corresponds to �1 < 0 and �2 > 0 in eq.(1)

of our empirical specification, indicating that the negative e↵ect of a shock on maize yields

is less severe the more shocks the household has previously been exposed to. The coe�cient

on the interaction term is positive and statistically significant at the 1 percent level. Since

we are only exploiting within plot variation we are essentially estimating the coe�cient on

the interaction term based on plots that experienced a shock between the two survey rounds.
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Based on the results, it seems that plots that have recent shock experience are less a↵ected

by a current shock. The magnitude indicates that experiencing a shock between the survey

rounds reduces the impact of a current shock by as much as 16 percentage points. This means

that the impact of a current shock for those that recently experienced a shock is less than

half of the impact for those with no recent shock experience. This could indicate that there

is some adaptation or learning from recent shocks that enables farmers to better cope with

new shocks. We also find a positive and statistically significant coe�cient on the interaction

term when looking at rainfall in the 20th percentile for cereal yield and the 15th percentile

for maize yields, but the shock coe�cient is not statistically significant in these specifications.

The results are similar when defining rainfall shocks as rainfall in the lower percentiles of the

rainfall distribution of the rainy season, as shown in tables A1-A3 in Appendix I.

The coe�cient on the number of shocks experienced in the past (�3 in eq. (1) ) is

positive in most specifications. This implies that past shock experience is positive for current

yields and which is a finding that needs to be explored further. One potential explanation

could be that plots are left fallow during droughts, which improves fertility in following

seasons. Another potential explanation is that shocks cause local prices to increase, perhaps

for a while after the shock, creating incentives to invest in crop production and increase

yields. Alternatively, adaptation might be yield increasing (for instance adoption of improved,

drought resistant varieties). These potential mechanisms are further discussed in Section 7.

Next we investigate whether and how the time lag since the plot last experienced a similar

shock a↵ects current agricultural yield, based on eq.(2). Results from this specification are

reported in tables 6, 7 and 8. We saw previously that a rainfall shock results in reduced

agricultural yield. When we include a variable capturing the time span since a similar shock

occurred and its interaction with a contemporaneous shock, we find a negative shock impact

and a positive coe�cient on the interaction term in all specifications, but the coe�cients are

only statistically significant in the specification with total yield as the dependent variable and

rainfall in the 20th percentile. The negative coe�cient on the shock variable is statistically

significant at the 5 percent level and the coe�cient on the interaction term is significant at

the 10 percent level, and correspond to �1 < 0 and �2 > 0 in eq. (2). The more time that has

passed since the household last experienced rainfall in the 20th percentile, the smaller the

impact of a shock in the current season, indicating that the households may need to rebuild

its asset stock to be able to cope with another shock. There is no statistically significant

coe�cient on the squared interaction term (�3), and the results are not clear when looking
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at maize yields and cereal yields as outcome variables. Too little variation in a present-year

shock may account for our inability to identify a robust e↵ect.

The coe�cient on the number of years since last shock is negatively signed, small in

magnitude, and statistically significant at the 1 percent level. This pattern holds for all three

measures of agricultural yield, with the exception of previous exposure to rainfall in the 10th

percentile for total yield.

6.1.2 Household panel results

We also investigate the impact of shocks and its interaction with previous exposure using the

household panel. This yields similar results, available upon request. However, the opposite

of what we expected occur when including the interactions for total yield for the most severe

shock – the shock appears to have a positive and significant e↵ect on total yield while the

interaction term is negative and significant. An on average higher average weight for more

drought-tolerant crops, e.g. cassava - a typical crop, may be driving this result. At the

household level, we observe yields from all plots, and in the case of a severe drought the

household may cope by harvesting cassava, which is drought tolerant once established and

can be harvested throughout the year (Barratt et al., 2006). If this is the case, the negative

sign on the interaction term may reflect that the stock of cassava could be depleted if the

household deals with several shocks in this way.

6.2 Child health outcomes

In tables 9, 10 and 11 we report the results on child anthropometric outcomes. Region-, birth

month- and interview month- fixed e↵ects are included but not reported. We are therefore

comparing children within the same region, born in the same month (in part accounting for

their exposure to rainfall shocks) and interviewed in the same month. We also control for the

disease channel when investigating the impact of shocks on short-run nutritional outcomes,

by including precipitation in the month of interview. The rainfall shocks are defined as

precipitation in the 10th or 20th percentile of the local historical rainfall distribution in the

months of the rainy season (the long rainy season in the bimodal areas).

We do not find any statistically significant e↵ect of shocks in the rainy season before

the child was measured on height-for-age, which is not unexpected since height-for-age is a

measure of long run nutritional status. However, experiencing rainfall in the 10th percentile

of the local historical rainfall distribution in the rainy season prior to being measured, has
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a negative impact on short nutritional outcome, measured by the weight-for-age Z-score

of children 5 years and younger. The coe�cient is negative and statistically significant at

the 10 percent level and indicates that the most severe rainfall shock on average reduces

weight-for-age by 0.22 standard deviations. We are not able to uncover any impact of less

severe shocks (rainfall in the 20th percentile in the last rainy season), or any impact on the

weight-for-height. This could be because households are able to avoid negative impacts of

less severe shocks on children, or because we do not have enough within-region variation in

shocks to estimate this coe�cient. We do not find any statistically significant impact on the

interaction between previous shocks and a current shock (�2 in eq. (3)) when it comes to

weight-for-age Z-scores, but the coe�cient on the interaction term is negative and significant

in the specification with weight-for-height as dependent variable. If previous shock exposure

makes children more vulnerable to current shocks, despite our findings of the opposite for

agricultural outcomes, this could indicate that adaptation is somehow costly. If reducing the

impact of shocks on yields is costly in terms of for instance time use, this could mean that

the benefits of adaptation do not “trickle down” to children. This hypothesis requires further

investigation.

7 Caveats and future work

7.1 Endogenous placement and selection issues

In the above analysis we have treated previous exposure as orthogonal to household charac-

teristics. There are several reasons why this assumption could be problematic.

Households’ adaptive behaviour may include migration, as documented by Munshi (2003)

in the Mexican setting. The households we observe who are still in agriculture after several

shocks may be di↵erent from the ones that have left agriculture or migrated. They may

be better at agriculture, so that the coe�cient on our interaction term is overestimated,

or they may be less skilled, and thus unable to find other income sources. By comparing

households that exit and stay in agricultural production across the two survey rounds, we

can assess whether selection e↵ects are driving our results. A more long term perspective

on selection into migration might be analyzed using the urban samples of households that

have migrated from rural areas. We will also investigate how common income diversification

outside agriculture is.

A similar reasoning holds for the child health outcomes and the crops observed. The
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children we observe may be more resilient. They have survived several shocks, and have not

been sent away to other family members. In order to address some of these concerns we

will assess child mortality, based on reported deaths in the household over the past year and

since the last survey round, and assess how common it is to send children away in response

to shocks. Likewise, the crops we observe in our total yield variables are also “selected” –

households may for instance harvest more cassava, which has a higher yield, after a drought.

We will investigate how common it is to switch crops (in our case, the switch is between our

two periods of data).

So far we have assumed that the household that experienced a contemporaneous shock,

is the same household that experienced similar shocks over the past 10 years. The estimated

learning e↵ect from previous shock exposure will be downward biased if the household we

observe in the panel is not the same household that operated the observed plots 10 years ago.

Fortunately, the survey asks how long each individual has lived in the community, enabling

us to assess to what extent this might be a↵ecting our results.

We compare the characteristics of households based on their previous shock exposure

over the past 10 years, dividing them into two groups: those that have experienced no

shocks and those that have experienced at least one. If our results are driven by positive

selection into agriculture, resulting in an overestimated interaction coe�cient on adaptation,

then the households who are still farming despite repeated exposure are expected to have

among other higher levels of education and better housing. We investigate this by comparing

households based on their previous shock exposure, and the results are shown in table 12.

The results show that the households with no shock experience are on average larger, and a

larger share is female headed. There is no significant di↵erence in age of household head or

years of education of the household head at the 5 percent level of significance. However, since

these are characteristics of households after experiencing shocks, all household characteristics

are essentially endogenous to the shocks. Especially in terms of household wealth, we could

expect households that have experienced more negative shocks to be less wealthy. Indeed, our

results show that households with no shock experience on average have better quality housing,

measured by the share that has metal roofing. We would ideally like to observe households

before they experience shocks to test whether households that experience shocks are di↵erent

than those that do not. Since each cluster has the same probability of experiencing a shock,

there should be no di↵erence between households prior to the shock. We therefore investigate

whether households that experienced shocks in 2010/11 were di↵erent in 2008/09. The results
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are shown in Table 13. We find that households that experience a shock “next season” on

average have older and less educated household heads, and a larger share are female-headed.

We find no significant di↵erence in terms of housing quality before the shock occurs.

7.2 Climate data - satellite vs extrapolated

We intend to replicate our results using another source of climate data. More specifically, we

intend to replicate the analysis using ERA Interim reanalysis data obtained from the Euro-

pean Centre for Medium-Term Weather Forecasting (ECMWF). This data has the advantage

that it is less reliant on local rainfall gauge stations. A downside is that each grid cell covers

0.75x0.75 degrees, thus giving us less variation.

8 Conclusion

In this paper we have investigated to what extent previous shock exposure a↵ects the impact

of contemporaneous shocks on households. We focus on two outcome variables, crop yield and

child health outcomes. We find that experiencing a drought, when defined as rainfall below

the second decile, is less detrimental to cereal and maize yield given previous recent exposure

of droughts of similar magnitude. This holds when controlling for plot-level time-invariant

unobservables, and we also find suggestive results when using household fixed e↵ects. In terms

of child health outcomes, we find that experiencing a severe negative rainfall shock in the

agricultural season preceding child measurement results in lower weight-for-age, whereas we

find no e↵ect on height-for-age or weight-for-height. We will in the future include the NPS3-

2012/13 as soon as the data is made publicly available, and address the concerns discussed

above.
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Table 1: Summary statistics

Variable Mean Std. Dev. Min. Max. N

Plot level
Total yield (kg/hect) 875.07 1050.29 18.42 11943.43 5416
Cereal yield (kg/hect) 889.74 930.95 29.16 5991.05 4313
Maize yield (kg/hect) 798.73 764.12 10.16 4447.90 3297

Household level
Age hh head 48.695 15.345 19 105 2436
Female headed hh 0.25 0.433 0 1 2436
Year 2010/2011 0.5 0.5 0 1 2436
GPS measured plots 0.571 0.495 0 1 2436
Rainfall below 10th percentile this season 0.042 0.201 0 1 2436
No. of seasons with rainfall below 10th perc., last 10 yrs 1.166 1.071 0 4 2436
Rainfall below 10th perc. * No. of similar shocks last 10 yrs 0.095 0.484 0 3 2436
Years since rainfall below 10th percentile 9.362 9.638 1 41 2436
Rainfall below 10th perc. * Years since last similar shock 0.122 0.603 0 4 2436
Rainfall below 15th percentile this season 0.071 0.257 0 1 2436
No. of seasons with rainfall below 15th perc., last 10 yrs 1.625 1.277 0 5 2436
Rainfall below 15th perc. * No. of similar shocks last 10 yrs 0.198 0.804 0 4 2436
Years since rainfall below 15th percentile 6.273 6.675 1 35 2436
Rainfall below 10th perc. * Years since last similar shock 0.122 0.603 0 4 2436
Rainfall below 20th percentile this season 0.112 0.316 0 1 2436
No. of seasons with rainfall below 20th perc., last 10 yrs 2.418 1.552 0 7 2436
Rainfall below 20th perc. * No. of similar shocks last 10 yrs 0.337 1.085 0 5 2436
Years since rainfall below 20th percentile 3.622 3.265 1 20 2436
Rainfall below 20th perc. * Years since last similar shock 0.382 1.434 0 18 2436
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Table 2: Summary statistics: Z-scores for children 0-59 months old

Variable Mean Std. Dev. Min. Max. N

Length/height-for-age Z-score -1.618 1.527 -5.93 5.93 3189
Weight-for-age Z-score -0.893 1.16 -5 5.43 3190
Weight-for-length/height Z-score 0.031 1.278 -5.58 5.65 3184
Age in months 35.58 20.6 0 77 4203
Female 0.503 0.5 0 1 4439
Year 2010/2011 0.461 0.499 0 1 4439
Unimodal/bimodal rainfall below 10th percentile season before child measured 0.083 0.276 0 1 4439
No. of seasons with rainfall below 10th perc., last 10 yrs 1.483 1.025 0 4 4439
Unimodal/bimodal rainfall below 10th perc. * No. of similar shocks last 10 yrs 0.163 0.638 0 4 4439
Unimodal/bimodal rainfall below 20th percentile season before child measured 0.203 0.402 0 1 4439
No. of seasons with rainfall below 20th perc., last 10 yrs 2.567 1.381 0 6 4439
Unimodal/bimodal rainfall below 20th perc. * No. of similar shocks last 10 yrs 0.524 1.275 0 6 4439
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Table 3: Dep. var.: Total yield (log). Plot FE. Rainfall below 10th, 15th, 20th percentile this season and past 10 seasons.

(1) (2) (3) (4) (5) (6)
Rainfall below 10th percentile this season -0.231⇤⇤ 0.019

(0.108) (0.251)

No. of seasons with rainfall below 10th perc., last 10 yrs 0.095
(0.064)

Rainfall below 10th perc. * No. of similar shocks last 10 yrs -0.094
(0.129)

Rainfall below 15th percentile this season -0.208⇤⇤ 0.043
(0.086) (0.219)

No. of seasons with rainfall below 15th perc., last 10 yrs 0.215⇤⇤⇤

(0.045)

Rainfall below 15th perc. * No. of similar shocks last 10 yrs 0.000
(0.074)

Rainfall below 20th percentile this season -0.106⇤ -0.042
(0.060) (0.125)

No. of seasons with rainfall below 20th perc., last 10 yrs 0.249⇤⇤⇤

(0.045)

Rainfall below 20th perc. * No. of similar shocks last 10 yrs 0.047
(0.046)

Number of Obs. 5416 5416 5416 5416 5416 5416
Mean of Dep. Var. 6.21 6.21 6.21 6.21 6.21 6.21

Standard errors clustered at plot level in parentheses.

Survey year, age and sex of household head, GPS measurement of plot and average temperature in growing season included but not reported.
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Table 4: Dep. var.: Total cereal yield (log). Plot FE. Rainfall below 10th, 15th, 20th percentile this season and past 10 seasons.

(1) (2) (3) (4) (5) (6)
Rainfall below 10th percentile this season -0.260⇤⇤ -0.103

(0.103) (0.260)

No. of seasons with rainfall below 10th perc., last 10 yrs 0.149⇤

(0.077)

Rainfall below 10th perc. * No. of similar shocks last 10 yrs -0.035
(0.125)

Rainfall below 15th percentile this season -0.182⇤⇤ -0.143
(0.092) (0.286)

No. of seasons with rainfall below 15th perc., last 10 yrs 0.286⇤⇤⇤

(0.050)

Rainfall below 15th perc. * No. of similar shocks last 10 yrs 0.108
(0.094)

Rainfall below 20th percentile this season -0.106 -0.166
(0.065) (0.143)

No. of seasons with rainfall below 20th perc., last 10 yrs 0.308⇤⇤⇤

(0.051)

Rainfall below 20th perc. * No. of similar shocks last 10 yrs 0.117⇤⇤

(0.052)
Number of Obs. 4313 4313 4313 4313 4313 4313
Mean of Dep. Var. 6.31 6.31 6.31 6.31 6.31 6.31

Standard errors clustered at plot level in parentheses.

Survey year, age and sex of household head, GPS measurement of plot and average temperature in growing season included but not reported
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Table 5: Dep. var.: Total maize yield (log). Plot FE. Rainfall below 10th, 15th, 20th percentile this season and past 10 seasons.

(1) (2) (3) (4) (5) (6)
Rainfall below 10th percentile this season -0.287⇤⇤ -0.217

(0.116) (0.285)

No. of seasons with rainfall below 10th perc., last 10 yrs 0.239⇤⇤⇤

(0.090)

Rainfall below 10th perc. * No. of similar shocks last 10 yrs 0.037
(0.141)

Rainfall below 15th percentile this season -0.207⇤⇤ -0.513
(0.104) (0.317)

No. of seasons with rainfall below 15th perc., last 10 yrs 0.305⇤⇤⇤

(0.061)

Rainfall below 15th perc. * No. of similar shocks last 10 yrs 0.239⇤⇤

(0.105)

Rainfall below 20th percentile this season -0.092 -0.253⇤

(0.070) (0.152)

No. of seasons with rainfall below 20th perc., last 10 yrs 0.320⇤⇤⇤

(0.061)

Rainfall below 20th perc. * No. of similar shocks last 10 yrs 0.163⇤⇤⇤

(0.058)
Number of Obs. 3297 3297 3297 3297 3297 3297
Mean of Dep. Var. 6.22 6.22 6.22 6.22 6.22 6.22

Standard errors clustered at plot level in parentheses.

Survey year, age and sex of household head GPS measurement of plot and average temperature in growing season included but not reported
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Table 6: Dep. var.: Total yield (log). Plot FE. Rainfall below 10th, 15th, 20th percentile this season and years since last shock.

(1) (2) (3) (4) (5) (6)
Rainfall below 10th percentile this season -0.633 -2.416

(0.442) (2.051)

Years since rainfall below 10th percentile -0.009 -0.009
(0.007) (0.007)

Rainfall below 10th perc. * Years since last similar shock 0.136 1.440
(0.132) (1.436)

Rainfall below 10th perc. * Years since last similar shock sq. -0.218
(0.235)

Rainfall below 15th percentile this season -0.245⇤⇤ -0.438⇤⇤

(0.105) (0.214)

Years since rainfall below 15th percentile -0.022⇤⇤⇤ -0.022⇤⇤⇤

(0.005) (0.005)

Rainfall below 15th perc. * Years since last similar shock 0.017 0.091
(0.014) (0.071)

Rainfall below 15th perc. * Years since last similar shock sq. -0.002
(0.002)

Rainfall below 20th percentile this season -0.247⇤⇤ -0.182
(0.118) (0.241)

Years since rainfall below 20th percentile -0.038⇤⇤⇤ -0.038⇤⇤⇤

(0.009) (0.009)

Rainfall below 20th perc. * Years since last similar shock 0.059⇤ 0.032
(0.030) (0.088)

Rainfall below 20th perc. * Years since last similar shock sq. 0.002
(0.005)

Number of Obs. 5416 5416 5416 5416 5416 5416
Mean of Dep. Var. 6.21 6.21 6.21 6.21 6.21 6.21

Standard errors clustered at plot level in parentheses.

Survey year, age and sex of household head, GPS measurement of plot and average temperature in growing season included but not reported
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Table 7: Dep. var.: Cereal yield (log). Plot FE. Rainfall below 10th, 15th, 20th percentile this season and years since last shock.

(1) (2) (3) (4) (5) (6)
Rainfall below 10th percentile this season -0.451 0.116

(0.408) (1.866)

Years since rainfall below 10th percentile -0.021⇤⇤⇤ -0.021⇤⇤⇤

(0.008) (0.008)

Rainfall below 10th perc. * Years since last similar shock 0.070 -0.344
(0.127) (1.319)

Rainfall below 10th perc. * Years since last similar shock sq. 0.069
(0.219)

Rainfall below 15th percentile this season -0.196⇤ -0.247
(0.119) (0.231)

Years since rainfall below 15th percentile -0.027⇤⇤⇤ -0.027⇤⇤⇤

(0.005) (0.005)

Rainfall below 15th perc. * Years since last similar shock 0.014 0.034
(0.023) (0.083)

Rainfall below 15th perc. * Years since last similar shock sq. -0.001
(0.003)

Rainfall below 20th percentile this season -0.190 -0.083
(0.128) (0.272)

Years since rainfall below 20th percentile -0.043⇤⇤⇤ -0.043⇤⇤⇤

(0.009) (0.010)

Rainfall below 20th perc. * Years since last similar shock 0.044 0.001
(0.034) (0.102)

Rainfall below 20th perc. * Years since last similar shock sq. 0.002
(0.006)

Number of Obs. 4313 4313 4313 4313 4313 4313
Mean of Dep. Var. 6.31 6.31 6.31 6.31 6.31 6.31

Standard errors clustered at plot level in parentheses.

Survey year, age and sex of household head, GPS measurement of plot and average temperature in growing season included but not reported
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Table 8: Dep. var.: Maize yield (log). Plot FE. Rainfall below 10th, 15th, 20th percentile this season and years since last shock.

(1) (2) (3) (4) (5) (6)
Rainfall below 10th percentile this season -0.387 0.324

(0.449) (2.298)

Years since rainfall below 10th percentile -0.032⇤⇤⇤ -0.032⇤⇤⇤

(0.009) (0.009)

Rainfall below 10th perc. * Years since last similar shock 0.045 -0.476
(0.139) (1.650)

Rainfall below 10th perc. * Years since last similar shock sq. 0.087
(0.274)

Rainfall below 15th percentile this season -0.046 -0.266
(0.131) (0.254)

Years since rainfall below 15th percentile -0.028⇤⇤⇤ -0.028⇤⇤⇤

(0.008) (0.008)

Rainfall below 15th perc. * Years since last similar shock -0.024 0.062
(0.026) (0.090)

Rainfall below 15th perc. * Years since last similar shock sq. -0.003
(0.003)

Rainfall below 20th percentile this season -0.116 -0.107
(0.144) (0.318)

Years since rainfall below 20th percentile -0.036⇤⇤⇤ -0.036⇤⇤⇤

(0.010) (0.010)

Rainfall below 20th perc. * Years since last similar shock 0.024 0.021
(0.038) (0.117)

Rainfall below 20th perc. * Years since last similar shock sq. 0.000
(0.006)

Number of Obs. 3297 3297 3297 3297 3297 3297
Mean of Dep. Var. 6.22 6.22 6.22 6.22 6.22 6.22

Standard errors clustered at plot level in parentheses.

Survey year, age and sex of household head, GPS measurement of plot and average temperature in growing season included but not reported
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Table 9: Dep. Var.: Height-for-age Z-score

(1) (2) (3) (4)
Unimodal/bimodal rainfall below 10th percentile season before child measured -0.125 -0.140

(0.115) (0.152)

No. of seasons with rainfall below 10th perc., last 10 yrs 0.028
(0.051)

Unimodal/bimodal rainfall below 10th perc. * No. of similar shocks last 10 yrs 0.016
(0.062)

Unimodal/bimodal rainfall below 20th percentile season before child measured 0.065 0.042
(0.088) (0.131)

No. of seasons with rainfall below 20th perc., last 10 yrs -0.015
(0.040)

Unimodal/bimodal rainfall below 20th perc. * No. of similar shocks last 10 yrs 0.006
(0.043)

Number of Obs. 3189 3189 3189 3189
Mean of Dep. Var. -1.62 -1.62 -1.62 -1.62

Standard errors clustered at household level in parentheses. Sample: individuals aged 0-60 months from farming households.

Controls for age, sex, survey year, region, birth- and interview month included but not reported.
⇤ p < 0.10, ⇤⇤ p < 0.05, ⇤⇤⇤ p < 0.01
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Table 10: Dep. Var.: Weight-for-age Z-score

(1) (2) (3) (4)
Rainfall (mm) in month of interview 0.001⇤⇤ 0.002⇤⇤ 0.001⇤ 0.001⇤

(0.001) (0.001) (0.001) (0.001)

Unimodal/bimodal rainfall below 10th percentile season before child measured -0.224⇤⇤ -0.131
(0.107) (0.133)

No. of seasons with rainfall below 10th perc., last 10 yrs 0.092⇤

(0.050)

Unimodal/bimodal rainfall below 10th perc. * No. of similar shocks last 10 yrs -0.064
(0.052)

Unimodal/bimodal rainfall below 20th percentile season before child measured 0.109 0.076
(0.096) (0.118)

No. of seasons with rainfall below 20th perc., last 10 yrs 0.046
(0.038)

Unimodal/bimodal rainfall below 20th perc. * No. of similar shocks last 10 yrs 0.041
(0.044)

Number of Obs. 2094 2094 2094 2094
Mean of Dep. Var. -0.90 -0.90 -0.90 -0.90

Standard errors clustered at household level in parentheses. Sample: individuals aged 0-60 months from farming households.

Controls for age, sex, survey year, region, birth- and interview month included but not reported.
⇤ p < 0.10, ⇤⇤ p < 0.05, ⇤⇤⇤ p < 0.01
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Table 11: Dep. Var.: Weight-for-height Z-score

(1) (2) (3) (4)
Rainfall (mm) in month of interview 0.000 0.001 0.001 0.001

(0.001) (0.001) (0.001) (0.001)

Unimodal/bimodal rainfall below 10th percentile season before child measured -0.090 0.028
(0.111) (0.124)

No. of seasons with rainfall below 10th perc., last 10 yrs 0.094⇤

(0.049)

Unimodal/bimodal rainfall below 10th perc. * No. of similar shocks last 10 yrs -0.086⇤

(0.051)

Unimodal/bimodal rainfall below 20th percentile season before child measured 0.124 0.101
(0.105) (0.126)

No. of seasons with rainfall below 20th perc., last 10 yrs 0.072⇤

(0.038)

Unimodal/bimodal rainfall below 20th perc. * No. of similar shocks last 10 yrs 0.043
(0.045)

Number of Obs. 2089 2089 2089 2089
Mean of Dep. Var. 0.09 0.09 0.09 0.09

Standard errors clustered at household level in parentheses. Sample: individuals aged 0-60 months from farming households.

Controls for age, sex, survey year, region, birth- and interview month included but not reported.
⇤ p < 0.10, ⇤⇤ p < 0.05, ⇤⇤⇤ p < 0.01
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Table 12: Comparison of households by exposure to rainfall shocks

Variable Risk exposure N Mean St. Dev p

Age hh head
No shock last 10 years 758 50.75 15.10

0.000
At least one shock last 10 years 1678 47.77 15.37

Household size
No shock last 10 years 758 5.72 2.90

0.126
At least one shock last 10 years 1678 5.51 3.17

Years of education hh head
No shock last 10 years 758 4.23 3.67

0.037
At least one shock last 10 years 1678 4.54 3.24

Female hh head
No shock last 10 years 758 0.26 0.44

0.449
At least one shock last 10 years 1678 0.25 0.43

Metal roof
No shock last 10 years 758 0.62 0.48

0.000
At least one shock last 10 years 1678 0.44 0.50

Households in balanced panel, “last 10 years” refers to 1997/98-2006/07 for the first survey year, and
1999/00-2008/09 for the second survey round. A shock is defined as rainfall in the 10th percentile of the
local historical rainfall distribution.

Table 13: Comparison of households in first survey round by rainfall shock in second survey round

Variable Risk exposure N Mean St. Dev p

Age hh head
Rainfall in 10th percentile 2009/10 28 48.04 18.79

0.891
No shock 1190 47.64 15.21

Household size
Rainfall in 10th percentile 2009/10 28 3.90 2.04

0.006
No shock 1190 5.46 2.96

Years of education hh head
Rainfall in 10th percentile 2009/10 28 4.07 3.41

0.506
No shock 1190 4.5 3.37

Female hh head
Rainfall in 10th percentile 2009/10 28 0.39 .50

0.068
No shock 1190 0.24 0.43

Metal roof
Rainfall in 10th percentile 2009/10 28 0.75 0.44

0.004
No shock 1190 0.47 0.50

Households in balanced panel, characteristics in 2008/09 survey. Shocks based on percentiles in local his-

torical rainfall distribution. Results are similar for shocks defined as rainfall in 15th or 20th percentile.
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Appendix I

Figure A1: Enumeration Areas from NPS1 2008/09
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2007 2008 2009

J F M A M J J A S O N D J F M A M J J A S O N D J F M A M J J A S O N D

Survey round 1, 2008/09

Unimodal children measured Meaured

Bimodal children measured Meaured

Interview month precipitation

Unimodal year 2007/08 Unimodal year 2008/09

Bimodal 2007/08 Bimodal 2008/09

Unimodal shock 2007/08 Unimodal shock 2008/09

Bimodal 2007/08 Bimodal 2008/09

Figure A2: Timeline: child shock, survey round 1 (NPS1)
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2009 2010 2011

J F M A M J J A S O N D J F M A M J J A S O N D J F M A M J J A S O N D

Survey round 2, 2010/11

Rainfall year 2009/10 Rainfall year 2010/11

Unimodal year 2009/10 Unimodal year 2010/11

Bimodal 2009/10 Bimodal 2010/11

Agricultural shock 2009/10

Figure A3: Timeline: agricultural shock, survey round 2 (NPS2)
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Table A1: Dep. var.: Total yield (log). Plot FE. Rainfall below 10th/20th percentile this season and past 10 seasons.

(1) (2) (3) (4)
Unimodal/bimodal rainfall below 10th percentile this season -0.289⇤⇤⇤ 0.166

(0.092) (0.225)

No. of seasons with rainfall below 10th perc., last 10 yrs 0.145⇤

(0.079)

Unimodal/bimodal rainfall below 10th perc. * No. of similar shocks last 10 yrs -0.156
(0.101)

Unimodal/bimodal rainfall below 20th percentile this season -0.109⇤ 0.123
(0.059) (0.138)

No. of seasons with rainfall below 20th perc., last 10 yrs 0.302⇤⇤⇤

(0.048)

Unimodal/bimodal rainfall below 20th perc. * No. of similar shocks last 10 yrs 0.031
(0.057)

Number of Obs. 5416 5416 5416 5416
Mean of Dep. Var. 6.21 6.21 6.21 6.21

Standard errors clustered at plot level in parentheses.

Survey year, age and sex of household head, GPS measurement of plot and average temperature in growing season included but not reported.
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Table A2: Dep. var.: Cereal yield (log). Plot FE. Rainfall below 10th/20th percentile this season and past 10 seasons.

(1) (2) (3) (4)
Unimodal/bimodal rainfall below 10th percentile this season -0.217⇤⇤ 0.153

(0.101) (0.242)

No. of seasons with rainfall below 10th perc., last 10 yrs 0.346⇤⇤⇤

(0.089)

Unimodal/bimodal rainfall below 10th perc. * No. of similar shocks last 10 yrs -0.052
(0.108)

Unimodal/bimodal rainfall below 20th percentile this season -0.124⇤⇤ -0.207
(0.063) (0.154)

No. of seasons with rainfall below 20th perc., last 10 yrs 0.371⇤⇤⇤

(0.052)

Unimodal/bimodal rainfall below 20th perc. * No. of similar shocks last 10 yrs 0.174⇤⇤⇤

(0.061)
Number of Obs. 4313 4313 4313 4313
Mean of Dep. Var. 6.31 6.31 6.31 6.31

Standard errors clustered at plot level in parentheses.

Survey year, age and sex of household head, GPS measurement of plot and average temperature in growing season included but not reported.
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Table A3: Dep. var.: Maize yield (log). Plot FE. Rainfall below 10th/20th percentile this season and past 10 seasons.

(1) (2) (3) (4)
Unimodal/bimodal rainfall below 10th percentile this season -0.200⇤ 0.329

(0.118) (0.263)

No. of seasons with rainfall below 10th perc., last 10 yrs 0.385⇤⇤⇤

(0.105)

Unimodal/bimodal rainfall below 10th perc. * No. of similar shocks last 10 yrs -0.131
(0.128)

Unimodal/bimodal rainfall below 20th percentile this season -0.102 -0.280⇤

(0.069) (0.167)

No. of seasons with rainfall below 20th perc., last 10 yrs 0.404⇤⇤⇤

(0.063)

Unimodal/bimodal rainfall below 20th perc. * No. of similar shocks last 10 yrs 0.228⇤⇤⇤

(0.071)
Number of Obs. 3297 3297 3297 3297
Mean of Dep. Var. 6.22 6.22 6.22 6.22

Standard errors clustered at plot level in parentheses.

Survey year, age and sex of household head, GPS measurement of plot and average temperature in growing season included but not reported.
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