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Abstract 

We observe a rapidly rising share of the passenger car fleet becoming electric as policy makers 
keep making the purchase and use of electric vehicles (EVs) more favorable in the pursuit of 
reducing pollution. The electrification of transport will make the transport and energy systems 
more intertwined: EV-friendly transport policies increase the demand for power, thus 
challenging the distribution grid’s capacity, while electricity policies immediately impact on the 
generalized costs of driving EVs. This paper develops a stylized economic model for passenger 
transport in the greater Oslo area where the agents’ endogenous choice of car ownership, 
transport pattern and EV home charging is determined jointly in equilibrium. If enough EV-
owning agents charge during power peak hours, costly grid expansions may be needed. We 
examine how the distribution grid company can respond in order to mitigate these costs with 
different pricing schemes and how this in turn affects the transport equilibrium. We find that 
applying peak tariffs for the grid will help strike a better balance between investment costs and 
EV-owners’ disutility of charging during off-peak hours.  
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1 Introduction 

The Paris agreement was adopted in 2015 and came into force in 2016 as a response to the 
imminent threat of climate change. It aims to limit the global temperature increase in this century 
to well below 1.5°C above pre-industrial levels. The transport sector accounts for approximately 
one quarter of global energy-related greenhouse gas emissions (International Energy Agency, 
2017) and about one third of Norway’s greenhouse gas emissions2. It is therefore required to 
deliver major emissions cuts in this sector to meet the objectives of the Paris agreement.   

The electrification of transport is viewed as a potent measure to reduce greenhouse gas emissions 
(International Energy Agency, 2017; WWF, 2012). Several initiatives to promote electric vehicles 
(EVs) have been launched worldwide, including the Clean Energy Ministerial’s EV30@30 
campaign for a 30 percent sales share for EVs by 2030. Norway’s strategy is to ensure that all new 
passenger vehicles are zero emission vehicles by 2025. EV-friendly transport policies – including 
low vehicle taxes, toll road exemptions, and access to bus lanes – have therefore been put in place, 
which has resulted in the highest penetration of EVs worldwide. By January 2019, there were about 
190,000 battery electric vehicles (BEVs) and 90,000 plug-in hybrids (PHEVs) in Norway, a country 
with only 5.3 million inhabitants. In 2018, BEVs accounted for 31 percent and PHEVs for 17 
percent of all new vehicles (Norwegian Electric Vehicle Association, 2019).  

According to the Norwegian energy regulator, 1.5 million EVs in Norway in 2030 would only 
amount to a 3 percent increase in the domestic electricity consumption (Skotland, Eggum, & 
Spilde, 2016). Hence the main challenge is not expected to be that of aggregate electricity 
generation. While an EV’s energy consumption may be modest, its power consumption could be 
quite high. The current power demand per electricity consuming unit in a household is normally 
of the order of from 2.3 to 7.3 kW. Fast chargers currently demand more than 50 kW, and are 
expected to reach 350 kW in the near future (Skotland et al., 2016).  

There are larger reasons to be concerned about power consumption and capacity. Uncoordinated 
charging (also known as dumb charging) will increase the electricity consumption during the 
morning and evening peaks (Graabak, Wu, Warland, & Liu, 2016). De Hoog, Alpcan, Brazil, 
Thomas, and Mareels (2015) point out that if vehicle charging is not controlled, adverse impacts 
on the distribution network are expected: power demand may exceed distribution transformer 
ratings; line current may exceed line ratings; phase unbalance may lead to excessive current in the 
neutral line; and voltages at customers’ points of connection may fall outside required levels. A 
similar point is made in Neaimeh et al. (2015).  

Several studies look at the effects low-carbon technologies such as BEVS and PHEVs can have 
on the electricity market. Hattam and Greetham (2017) look at how EVs affect load profiles on 
neighborhood level in low voltage networks. Azadfar, Sreeram, and Harries (2015) asses charging 
behavior from EV users in terms of time of day, duration, frequency and electricity consumption 
in light of its implication for electricity network management. Barton et al. (2013) look at the 
challenges for grid balancing when EV charging, heat pumps and the use of combined heat and 
power (CHP) become more prominent, and stress the importance of demand side management 
with time-shifting of electricity loads from periods of peak demand to off-peak, and from periods 
of low renewable energy supply to periods of high supply. Other studies also argue for demand 
side management (see e.g., Haidar, Muttaqi, & Sutanto, 2014; Masoum, Deilami, Moses, Masoum, 
& Abu-Siada, 2011) as an alternative to costly upgrades of distribution transformers. On the other 
hand, Daina, Sivakumar, and Polak (2017a) points out that the impact of demand management 
schemes like smart charging managed by a charging service provider may be overestimated if they 
do not take into account the heterogeneity in charging behavior. Some of these studies also argue 

                                                 

2 Statistics Norway: “Emissions of greenhouse gas emissions, by source. Last year” (in Norwegian) 
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for pricing schemes that disincentivize charging during off-peak hours (see e.g., Barton et al., 2013; 
Clement-Nyns, Haesen, & Driesen, 2011; Masoum et al., 2011; O’Connell et al., 2012). The 
Norwegian Energy Regulator opts for a power-based distribution tariff to meet increasing power 
demands3. In the future, vehicle to grid4 (V2G) may provide also a means to mitigate capacity 
problems in electricity distribution (see e.g., Barton et al., 2013; Clement-Nyns et al., 2011; Green 
II, Wang, & Alam, 2011; Hagem, Greaker, & Proost, 2019; Mwasilu, Justo, Kim, Do, & Jung, 
2014), but bidirectional EV charging is in its infancy (Haidar et al., 2014), and seem to come at a 
relatively high cost due to energy losses, changes in infrastructure, and extra communication 
between EV and grid (Habib, Kamran, & Rashid, 2015).  

When summing up the points made in this introduction, we can make our motivation for this 
paper clear. We observe a rapidly rising share of the passenger car fleet becoming electric, and we 
have found that a shift to EVs is key to reach ambitious CO2-targets at least cost. However, the 
calculation of these costs did not consider the cost of enhancing the local grid to meet the demand 
for charging by EV-users. The electrification of transport will make the transport and energy 
systems more intertwined: EV-friendly transport policies increase the demand for electricity and 
thus impacting the grid, while electricity policies immediately impact on the generalized costs of 
driving EVs. As discussed above, there exists some literature that looks at how the electrified 
transport will affect the need for grid investments and/or demand management in order have 
sufficient power capacity. Most of these studies assume that transport demand, and therefore EV 
users’ demand for electricity, is exogenous (see also Daina et al., 2017a; Daina, Sivakumar, & Polak, 
2017b). This paper contributes to the literature by looking at the mechanisms and outcomes in 
both the transport and energy market, and the feedback in-between them. We use a stylized 
transport and energy model for the greater Oslo area to study costs and benefits in both the 
electricity market and transport market jointly. The model allows the agents to choose type of car 
(or no car), their transport pattern and (if they own an EV) how much to home charge during 
power peak and off-peak hours. To our knowledge, it is the first time these features have been 
applied in the same modeling framework. The analysis will give insight into the feedback between 
the transport market and electricity market and how policies in one market can affect the 
equilibrium in the other. With this we can assess how polices can be optimized to reach policy 
goals at least cost. 

In summary, we have two research questions: 1) When we factor in the current uniform grid tariff 
system, what are the welfare impacts of today’s EV policies and polices for reaching CO2-targets 
at least cost? 2) How can these welfare costs be affected by a better pricing of electricity 
distribution?  

Section 2 briefly discusses policies and market distortions relevant for electromobility and power 
distribution. Section 3 presents the theoretical model. In section 4 and 5 we present the numerical 
model, and describe the scenarios we run. In section 6 and 7 we present, analyze and discuss the 
model results. Section 7 concludes.  

 

                                                 

3 The Regulator’s is currently working on a new proposal and there is expected to be a hearing in the first quarter of 
2019 https://www.nve.no/nytt-fra-nve/nyheter-reguleringsmyndigheten-for-energi/nve-onsker-innspill-til-arbeidet-
med-ny-tariffstruktur/ [in Norwegian].  
4 V2G involves using EVs as storage for electricity. 

https://www.nve.no/nytt-fra-nve/nyheter-reguleringsmyndigheten-for-energi/nve-onsker-innspill-til-arbeidet-med-ny-tariffstruktur/
https://www.nve.no/nytt-fra-nve/nyheter-reguleringsmyndigheten-for-energi/nve-onsker-innspill-til-arbeidet-med-ny-tariffstruktur/
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2 Policies for electromobility and power distribution 

2.1 The Norwegian power system and electrified transport 

The rapid rise in EVs in Norway is to a large degree a result of incentives in Norwegian transport 
policy (Figenbaum & Kolbenstvedt, 2016; Fridstrøm & Østli, 2018). As pointed out in the 
introduction, the rise in EVs will entail an increase in power consumption. The focus of this paper 
is solely on the lower end of the electricity sector value-chain, with the power consumption of 
households, and capacity in the low-voltage distribution grid. 

The energy sector is preparing for the electrification of transport. The Norwegian energy regulator 
NVE (The Norwegian Water Resources and Energy Directorate) has recently produced two 
technical reports that assess the strain that electric cars put on electricity transmission. The first 
report (Skotland et al., 2016) pays attention to how the diffusion of electric vehicles can impact 
the electricity distribution network. In a scenario where all new vehicles are EVs in 2025, and 
where the stock of EVs are 1.5 million in 2030 (but where the transport demand per vehicle is as 
today) the EVs would consume 4 TWh of electricity annually. NVE estimates that 75 percent of 
the charging of EVs takes place at home, 15 percent at work, and 10 percent is fast charging. NVE 
finds that 70-80 percent of EV drivers seldom use fast charging. However, NVE expects the 
demand for fast charging to increase in the future as the next generation of EV owners may not 
be able to charge at home.  

NVE’s review indicates that charging of electric vehicles primarily takes place at night, while some 
also charge their vehicle immediately after work. Figure 1 shows their expected power 
consumption profile for an average household, with and without home charging of EVs. 

 
Figure 1: Average household power consumption per hour on a cold day (blue line), and total power consumption for the 
household when the assumed patter for home charging EV is included (green line). From Figure 4.3 in Skotland et al. (2016). 

NVE argues that the introduction of power-based tariffs will provide incentives to postpone 
charging until after peak-hours. They have recently submitted a proposal for a new electricity tariff 
based on the demand for power. This is now technologically feasible after January 1st 2019, when 
smart meters became compulsory for all Norwegian households. This will enable households to 
closely monitor their temporal consumption profile of electricity, and both distribution grid 
companies and electricity retailers to bill accordingly. 

NVE develops stress-tests for neighborhoods with high EV-density. Assuming periods where 70% 
of the residents charge their EVs simultaneously, it finds that the power demand can increase by 
up to 5 kW per household. This results in overload for more than 30 percent of the transformers 
currently servicing the distribution network. NVE’s follow-up report (Skotland & Høivik, 2017) 

Household consumption on a cold day Household consumption + EV charging 
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concludes that a full-scale electrification of transport (including also buses and ferries) is primarily 
a threat to transformers. The upgrade of several of these components is planned today, which 
reduces the problem of overload in the future. Yet, NVE reports that few of the electricity 
distribution companies account for the electrification of transport when forecasting the demand 
for power. As we will discuss below, this could materialize into substantial costs. Skotland and 
Høivik (2017) assess the costs of upgrading components in the local, regional and transmission 
grid due to electrification of cars, buses and ferries. They find that they range from NOK 300 000 
to NOK 7 000 000 (approx. € 30 000 to € 700 000), where the lower cost components are mainly 
at the local grid level, whereas the high cost components are at the transmission grid level. The 
largest share of the needed upgrades is due to electric ferries, and electric cars have the second 
largest share (mostly on the local grid level).  

On the local grid level, the capacity may need to be expanded for the transformer or for the cable 
between the transformer and the households, or both. In a metropolitan area there will be large 
variations in neighborhoods’ ability to absorb increases in peak power demand with the current 
infrastructure. And given the need to invest in more capacity, the cost will also vary greatly between 
neighborhoods. The cost will depend on whether enhancements need to be done for the 
transformer and/or the cables between the households, the amount of transformer capacity that 
needs to be installed, whether the new transformer fits in the old box that contained the old 
transformer, and the costs of digging (i.e. how many meters of cables need to be laid, and the costs 
per meter, which is generally higher in denser, urban areas).  

These costs may or may not accrue to the household that demands higher capacity. Let’s say that 
some households increase their capacity demand so that total capacity demand in the 
neighborhood exceeds the capacity of the local distribution transformer. The local grid company 
will invest in a higher capacity distribution transformer, thus undertaking an increase in its capital 
costs. Local grid companies (or Distribution System Operators – DSOs) are regulated under a 
revenue cap model, where they set their tariffs based on this revenue cap. The revenue cap is 
composed of 40% cost recovery and 60% cost norm based on benchmark modeling. This means 
that at least some of the increase in capital cost will lead to higher tariffs, and these tariffs will have 
to be paid by all electricity consumers connected to the local grid company, and not just the 
households demanding more capacity. It can be viewed as a pecuniary external cost (Greenwald 
& Stiglitz, 1986). That is, the households demanding more capacity do not face the full cost of the 
capacity expansion, and indirectly impose costs on other consumers. 

The case becomes a little different if a household demands higher power capacity than currently 
installed in the household, and this increased capacity demand exceeds the capacity of the local 
distribution transformer. This household may be required to pay for some or all of the capacity 
expansion of the transformer through connection charges, in addition to paying for the capacity 
expansion in his own house. Practices seem to vary between Norwegian DSOs, but the DSO in 
the Oslo metropolitan areas, Hafslund, will in such a case charge the household that induced the 
new investment in proportion to the added installed capacity for that household5. For example, if 
a household wants to install 20 kW extra of capacity, and the DSO replaces a 315 kW transformer 
with a 500 kW transformer, the household has to pay 20/(500-315) = 11% of the cost of the 
capacity increase. Households that expand in-house capacity in the future will also have to chip in 
on this transformer upgrade in proportion to their in-house expansion6. This would mean that less 
or none of the investment cost will be dispersed to the other consumers through increased tariffs. 

                                                 

5 https://www.hafslundnett.no/artikler/bygge-og-grave/anleggsbidrag/6l51MrL1vyaCi0WsisqAQQ 
6 Other households in the neighborhood could have reinforced their household power capacity without having to 
pay a connection charge, as the total capacity demand would still be within the transformer’s capacity. This may look 
like a set-up for a strategy game between households, where early-moving households can expand their in-house 
capacity without having to pay extra, but we expect that such games are rare 
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Instead the scheme provides a price signal to the very households that demand more capacity, thus 
informing their decision to whether or not the benefits of expanding their in-house capacity 
outweighs the cost.  

The scenario where increased EV ownership leads to higher capacity demand that eventually 
exceeds the local transformer’s capacity, without any household expanding its in-house capacity, 
is expected to be most prevalent. The reason is that most households will have the possibility of 
charging an EV at 3.6 kW power without the need for any in-house capacity expansion 
(conversation with the DSO Ringeriks-Kraft AS). Most would still have to make some adjustments 
to their in-house electric system as charging an EV is required to be on a separate fuse. 

This will lead to situations where, over time, some neighborhoods could drive up grid company 
investment costs as EV ownership increases, leading to higher tariffs for all customers. Whether 
higher EV ownership will drive up total neighborhood capacity demand will depend on the 
number of EV owners, the number that charges at the same time during times of otherwise high 
capacity demand (power peak hours), and the existing capacity on the local transformer. Such an 
outcome could be the case if EV owners charge their car right after coming home from work. 
Although people do not come home at the same time, such behavior would lead to a high degree 
of simultaneous charging during peak hours.  

At the time of writing, no individual household (except those participating in hour-by-hour pricing 
experiments) have any private incentive to postpone charging until after peak hours. Both 
electricity prices and grid tariffs are the same throughout the day. And there are many reasons why 
EV owners would want to charge the EV right away after coming home. First, it is convenient. 
You plug in, and there is no need to spend mental capacity on timing. Second, you maximize the 
probability of always having the battery charged for any activity later; planned, spontaneous or 
emergency.  

As discussed above, power tariffs could serve as an instrument to move some of the charging away 
from peak hours. The tariff difference would have to be large enough to incentivize at least some 
EV owners to postpone their charging. The needed tariff difference is driven upwards by the fact 
that Norwegian electricity prices and tariffs on average are lower than in most other European 
countries, incomes on average are higher (and average incomes of car owners are higher than those 
of non-car owners), and own-price elasticities for electricity are relatively small (see e.g., Ericson, 
2007). User-friendly smart charging systems that automatically seek to minimize charging costs for 
the EV owner would help moving charging times away from peak hours, even for small price 
differences7. It will also help that future EVs will have such long ranges that normal daily use, even 
with activities in the evening, combined with night charging, rarely will give any need to worry 
about inadequately charged batteries. There is also the possibility of introducing behavioral 
schemes, such as the one in Costa and Kahn (2013), where neighbors are kept informed of their 
own and other’s average electricity usage, thus providing some social pressure to moderate 
consumption. Grid companies would have the incentive to get EV owners to enroll into such a 
scheme, so that EV owners can put social pressure on each other not to charge during peak hours, 
knowing that high levels of EV charging would bring about new investment costs. The efficacy of 
such a scheme would be an empirical question though. 

  

                                                 

7 An example: https://evblog.org/this-ev-charger-saves-up-to-50-on-your-electric-bill/ 
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2.2 Coordination between the players in the Norwegian context 

Electrification of transport introduces new challenges and opportunities for both the transport 
sector and the electricity sector. But these sectors consist of many different players, including 
policy-makers for road transport, electricity sector regulators, electricity retailers, local grid 
companies and households. Without any coordination, the costs and benefits could be distributed 
quite unevenly.  

Policy-makers for road transport have been mandated to reduce emissions from transport. As 
shown in Wangsness, Proost, and Rødseth (2018), in order to reach the emission reduction target 
at least cost, a large share of transport users would have to switch to EVs. From their point of 
view, the fact that grid companies need to invest in local grid capacity in certain places to 
accommodate a larger EV share, is an added difficulty to their emission reduction target. The 
needed investments and the subsequent increases in tariffs drive up the cost of switching to EVs, 
meaning that policy packages would have to become more radical in order to reach the targets. 
This means higher welfare costs in the transport sector. 

Electricity retailers benefit from policies for reducing emissions, as higher demand for EVs drives 
up demand for electricity, making the sector more profitable ceteris paribus. Some of that increased 
profitability will be moderated if the increased electricity demand is curbed by higher tariffs. 

Local grid companies’ profitability is determined by their costs and their regulated revenue cap. If 
policies drive up EV ownership and subsequently capacity demand, their capital costs will increase, 
most likely without a corresponding increase in the revenue cap. Since “EV density” is not an 
external variable in the current benchmark competition, the cost norm calculation will disfavor 
grid companies that face increased capacity demand from EV users. A grid company facing such 
demand increases, will see the policies for reducing emissions as a threat to their profitability. An 
exception would be a DSO that already is among the most productive and remains among them 
in spite of the increase in capacity demand from EV owners. Such a company would set the cost 
norm, and will be able to pass the entire investment cost over to consumers. If then the cost norm 
is expanded, DSOs who are not exposed to higher capacity demand from EV owners will get a 
larger revenue cap, but no extra costs. 

Electricity sector regulators should take the new challenges into account. If capacity demand from 
EV owners becomes a major cost driver for local grid companies (which remains to be seen), there 
are at least two measures the regulator needs to take. The first is to incorporate a measure of “EV 
density” in their benchmarking model for calculating the cost norm for the sector, so that the 
relatively low costs for grid companies with low EV density are not mistaken for efficiency. The 
second is to allow for peak power tariffs and incorporate them in the revenue cap. This way, it 
becomes possible to pass on and signal the additional distribution costs of EV charging to the EV 
users.  

This paper focuses on the greater Oslo area, where policy makers have set ambitious climate 
goals. This area is broadly made up by the municipality of Oslo and the county of Akershus. 
Oslo aims to reduce CO2 emissions by 50% by 2020 (Oslo Municipality, 2016). The 
corresponding goal in Akershus is a 50% reduction by 2030 (Akershus County Council, 2016). 
As shown in Wangsness et al. (2018), households will face increased costs one way or another 
from ambitious emission reduction targets. The fact that grid tariffs could increase when facing 
these polices only drives up the cost further. 
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2.3 Distorted prices in transport and power consumption 

As shown in Wangsness et al. (2018), there are multiple market failures and policy parameters in 
an urban transport setting. Most of the policy parameters, be it road prices or public transport 
fares, seem to be sub-optimally assigned in the case of the Oslo metropolitan area. Acknowledging 
the transformer capacity issue means bringing another market failure into the mix. As mentioned 
above, the market failure can be viewed as a pecuniary externality in an incomplete market 
(Greenwald & Stiglitz, 1986). Since there currently is no explicit price on using more capacity 
during power peak hours, some consumers may increase their capacity demand without facing the 
true cost of inducing costly capacity expansions, because tariffs will rise for all consumers and the 
affected grid companies might face lower profits.  

Many papers look at optimal ways for regulators to handle periods with high demand and cost 
recovery for utilities (and grid companies). Recent contributions include Brown and Sappington 
(2018) that look at Maximum Demand Charges (MDCs) and Time-of-Use (TOU) pricing for 
residential consumers. They find that TOU pricing in most cases secures higher aggregate welfare 
than MDCs. This indicates that if consumers have installed smart-meters, which is the case for 
most Norwegian households in 2019, TOU pricing would most likely be preferred. It can often be 
beneficial to apply some element of fixed charges in order to induce efficient consumption and at 
the same time ensure cost recovery to suppliers (Borenstein, 2016; Brown & Sappington, 2017a, 
2017b). This is a common feature in the billing from Norwegian DSOs. It is also worth mentioning 
that pricing schemes to shift demand away from peak hours (such as TOU pricing, MDCs, Critical 
Peak Pricing or Extreme Day Pricing) can have additional benefits such as increased reliability 
(Albadi & El-Saadany, 2008).  

Before we introduce the numerical model, we give a simple illustration of how the issues of grid 
capacity affect the optimal ownership distribution between ICEVs (internal combustion engine 
vehicles) and BEVs in an urban transport setting. In Figure 1 we consider a fixed number of cars 
for a metropolitan area that can be either ICEV or BEV. The number of ICEV cars is measured 
from left to right, the number of BEV cars is the complement on the horizontal axis. We assume 
that the use of the car (mileage and congestion effects) is identical for owners of each car type, so 
the average cost of ownership curve is flat for each car type. It is assumed that the average cost of 
ownership is lower for ICEVs than for BEVs. Hence, without any government intervention, all 
car owners would choose ICEVs and none would choose BEVs, demonstrated by equilibrium A.  

When the number of ICEVs in the urban area increases, the local pollution costs (NOX, PM) also 
increase at an increasing rate (see e.g., Thune-Larsen, Veisten, Rødseth, & Klæboe, 2014), which 
gives us a rising marginal external cost curve. If there were no external effects from EV ownership, 
then the desired equilibrium would be B. However, when normal use of EVs entails some charging 
during power peak hours, each EV will add some additional cost to the capacity expansion of the 
local grid through higher costs of transformers. As costs of transformers are assumed to be linear 
in capacity for the relevant capacity interval, the marginal cost curve for charging EVs is flat. 
Taking this into account lowers the optimal BEV-share of the area’s car stock to equilibrium C. 
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Figure 2: Optimal ownership distribution between ICEVs and EVs 

The market failure of inadequately being able to make EV owners face the price of expanding local 
grid capacity will complicate the problem of maximizing welfare for the citizens in the greater Oslo 
area, and it will drive up the cost of achieving ambitious emission reduction targets. The modeling 
exercise will give an indication of how much. 

 

3 The stylized transport and electricity model 

The preferences of the modeled agents are represented by a quasi-linear utility function U . Here 
utility is derived from consumption of other (non-transport) goods and services (normalized to 

net generalized income v

netm  for a given vehicle choice v), and from consumption of transport. The 

utility is assumed to be expressed in monetary terms. The transport goods are car kilometers 

travelled for short daily trips at peak and off-peak ( p

cq and o

cq , respectively), public transport (PT) 

kilometers travelled for short daily trips and peak and off-peak ( p

bq  and o

bq , respectively) and the 

number of long car trips per year, 
lcq . The utility from transport consumption is represented by a 

sub-utility function B , which is assumed to be quadratic. U  and B , for a given representative 
individual, are represented by the following: 

(1) ( , , , , , ) ( , , , , )v o v o

net ne

p p o l p p o

c c b b c c c b bt lcU q q q q q B q q qm q qm    

The social planner’s task of maximizing social welfare can first be broken down into two sub-tasks. 
For whichever car the agent chooses, policies must be adjusted to get the most efficient transport 
equilibrium. But given efficient transport policies for given car combinations, the social planner 
also needs the agents to choose the optimal car combination. In the case of a car combination 
where EVs are chosen, the planner also needs to factor in the social cost of charging the EV.  
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C
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Costs ICEVs Costs BEVs

Average ICEV ownership cost

Average EV ownership cost

Marginal external environmental 

cost from ICEVs

Marginal cost of local grid expansion per BEV
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It is not just the price of electricity that matters, the induced cost of demanding higher local 
capacity for charging needs to be accounted for. There is a cost of expanding local capacity that 
needs to be balanced against the agents’ preference for charging during peak hours. We model this 
as a disutility function of charging during off-peak hours. 

In the stylized first-best solution, the capacity expansion per EV owner is set to strike the balance 
between incurred investment costs and the disutility of charging off-peak. This can be interpreted 
as if the EV owner commits to a charging pattern, and the incurred investment cost in optimum 
can for the agent be considered a part of the fixed cost of getting an EV. 

This incurred fixed cost is a result of cost minimization problem. Assuming a fixed charging speed 

(3.6 kWh/h) and an exogenous daily charging need of 
o pkWh kWh   , the problem boils down 

to how the agent wants to divide her charging hours h kW  between peak and off-peak. If 

she wants to peak charge more than zero during power peak hours, then she has to pay for capacity 
expansion. We introduce the following simple non-linear programming problem, where F is the 

fixed investment cost for any transformer,   is the investment cost of additional peak capacity, 

where charging in the off-peak involves some disutility ( )odisU h  as a function of off-peak hours 

charged, and where the control variable is 
pkWh . We operate with annualized investment costs, 

denoting them annF  and ann . We solve the problem for a representative day. 

(2) min ( ) ( )
365p

p ann ann p p
p p o p

kWh

kWh F kWh h
p kWh p kWh disU

kW

 
      

when 0pkWh    

This gives us the following Kuhn-Tucker conditions: 

( ) 0
365

p ann p
p o disU kWh h

p p
kW kW




 
       

0   ( 0   if 0)pkWh   

where   is the Lagrange multiplier of the non-negativity constraint. We get three possible 

solutions, two corner solutions and one interior solution: 

1. Interior solution: Optimum is where the marginal disutility of charging time during off-peak 
hours (weighted by kW) equals the price difference between peak and off-peak electricity plus 
the share of the annuity of the marginal investment cost for expanding peak capacity. With the 

interior solution, we have that some charging is done during peak hours, 0<
pkWh < , when 

( )
365

p ann p
p odisU kWh h

p p
kW kW

 
     

2. No charging is done during peak hours, 
pkWh = 0, when 

( )
365

p ann p
p odisU kWh h

p p
kW kW

 
    

3. All charging is done during peak hours, 
pkWh =  , ( )

365

p ann p
p odisU kWh h

p p
kW kW

 
    

We denote the cost minimizing choice of the agent 
*pkWh . Having established this, we can insert 

it into the social planner’s maximization problem.  
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With our utility function consisting of transport consumption and normalized “other” 

consumption, costs are subtracted from gross generalized income 
v

grossm  in order to get net 

generalized income. We also subtract gross generalized income by the fixed costs of car ownership 

,

ann

v fixedC , cost of non-transport electricity consumption (where 
pa  and 

oa represent annual 

consumption of electricity in peak and off-peak), and annuity of the capacity-independent part of 

the grid cost ann
F  paid equally among n agents. In the case the agent owns an EV, the subtracted 

costs also include the annuity of the required investment cost of the chosen charging pattern and 
any annual disutility of charging off-peak. Since we model annual welfare, the fixed costs are 
considered as annuities. Finally, the user costs of transport (monetary costs and time costs) for 

driving car during peak hours, p p

ck ckuc q , off-peak hours, o

ck ck

ouc q , and on long car trips, 
lck lckuc q , 

and PT during peak hours, p p

bk bkuc q , and off-peak hours, o o

bk bkuc q . The user costs for car includes 

distance related costs (fossil fuels and/or electricity, repairs, lubricants), toll costs, parking costs 
and time costs. If the long car trip is done by a BEV, and the trip back and forth is longer than the 
range of the car, the agent is assumed to need to charge enough to cover the remainder of the 
round trip. This adds a disutility cost as a function of the charging time. The user cost for PT travel 
includes access time costs, fare costs, waiting costs and crowding-in-vehicle time costs. We thus 
have  

(3) 

* *

, ( )
ann p pann

p

kWhv ann p p o o kWhF
net gross v fixed el el n kWh d

p p o p p o o

c c c c

a

b b b b lc

ys

o

lcuc q uc q uc

m

q uc q

m C p a p a dis

u q

U

c

        

   

  

Consider k=1,…,n agents that are differentiated by the number of long trips they want to make 
per year, employment situation and by their mode choice preferences.  The social planner’s welfare 

maximization problem for all k  agents can then be formulated as follows:  

For all k  agents, make agents choose vehicle  ,v ICEV BEV  and number of transport trips 

with car and/or public transport so that the following social welfare function 
vW  is maximized: 

(4) 
1

,

,

cost

( , , , , )v p p o

n

n
v o

k

p p o o p p o o r ann ann v

b c c c c b b b b c lc g c c c

et k k ck ck bk b

pr

k k

i e

lc

c

k

W

C q

m B q q q q q

q q q q g q k P P E F      





 
           



 
 

 



  

The costs of operating the PT system is given by bC , which includes both the fixed and variable 

operating costs (so it depends on p

bq  and o

bq ). It is assumed to be a linear function of frequency. 

Environmental external costs from the driving of all cars are given by E  (so it depends on p

cq , 
o

cq  and 
lcq . The government gets revenue from tolls (peak, off-peak and rural), and fares (peak 

and off peak), and purchase, fossil fuel and electricity taxes. All of these revenue sources are 
denoted by   in the equation above. The component 

priceP  represents the revenue to the parking 

company (a transfer), and the component costP consists of the opportunity cost of occupied parking 

space. The term ,ann vF is the annuity of the costs required to expand local grid capacity. If the car 

chosen for at least one of the agents is BEV, and the agents in question have 
* 0pkWh  , this term 

will be greater than zero. If not, the term will be zero, and local grid capacity expansion will be 
unnecessary. We also assumed that marginal electricity production costs are constant in the peak 
and in the off-peak so setting electricity prices equal to production costs does not leave any profit 
or loss in the electricity production sector.  
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For simplicity, we assume lump-sum taxes to finance any public sector deficits. Hence, we ignore 
labor market distortions, and have a marginal cost of public funds (MCF) equal to 1. 

For each combination of v  and k , tolls and fares are optimized. Optimal tolls for cars are set 
equal to the marginal external congestion costs plus the marginal external non-congestion-costs of 
road use. The optimal fares for PT equal the marginal external crowding cost (which depends on 
frequency). This is shown in Wangsness et al. (2018). The resulting combinations of policies and 

vehicle types per agent will give us a range of welfare levels 
vW , where the social planner chooses 

the combination that leads to the highest welfare level. 

In this theoretical model we have depicted the optimal solution where the BEV owner faces the 
marginal investment cost that his charging pattern (which he commits to or is forced not to exceed) 
imposes on local grid. The fixed component of the investment costs is assumed to be financed 
through lump-sum taxation or a fixed component on the bill from the local grid company. This 
can be considered a first-best solution in this dimension. It could be interpreted as a “capacity 
subscription tariff” to all BEV owners that do not commit to only charge off-peak. This tariff will 
then optimize incentives not just for purchasing a BEV or not, but also the choice of charging 
pattern conditional on owning a BEV. The capacities chosen by the BEV owner then give the 
correct investment signal to the local grid company.  

BEV owners are not facing any capacity tariff in the current situation in Norway, but pay regular 
uniform grid tariffs, as described in section 2. In our model, this corresponds to a situation where 

p op p , leading to the corner solution where the EV-owner always charges during peak hours, 
pkWh =  . In the following section, we explore numerically the importance of pricing charging 

capacity.  

 

4 Numerical modeling 

Our numerical model is constructed to capture the most important aspects of vehicle ownership 
and transport choices for the population of the greater Oslo area. This population is based on the 
Norwegian travel survey (documented in Hjorthol, Engebretsen, & Uteng, 2014). Of the 
approximately 60 000 respondents in this survey, about 10 400 (18 years or older) lived in the 
greater Oslo area, representing about 0.95 million adult inhabitants. Applying frequency weights 
constructed by travel survey experts at The Institute of Transport Economics, travel survey 
respondents are extrapolated to a synthetic adult population of the greater Oslo area.  

Based on this synthetic population, we construct and calibrate a numerical model in MATLAB 
using the steps described in in Table 1. 
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Table 1: Model calibration, step by step 

Step Description 

1 Aggregate the National Travel Survey data for the counties Oslo and 
Akershus (that approximate “the greater Oslo area”) into 3 aggregate agents. 
The selection criteria for the agent groups were whether they were employed 
or not, and whether they occasionally went on long car trips or not. The 
groups we get capture important differences in the population in terms of: 

Baseline travel pattern (PT and car). 

Employment and incomes (which determine value of time). 

Car ownership, access to parking at home, etc. 

2 Compute generalized transport costs of each agent for each mode and for 
each car type, for short and long trips. 

3 Select own-price and cross-price elasticities for each type of agent for the 
“travel products” person-km per day by car and by PT, for both peak and 
off-peak, and long car trips per year (more information in Appendix A). 

4 Calibrate each agent’s utility function using the data from steps 1, 2 and 3. 

5 Check the calibration of the utility functions by simulating the choice of each 
agent (person-km per day by car and by PT, for both peak and off-peak, and 
long car trips per year) and cross-check them with observed choices. This 
step completes the calibration of the agents’ utility functions. 

6 Construct the speed-flow function for peak car trips based on a linear 
approximation of peak and off-peak speeds in the greater Oslo area. 

7 Construct the cost functions for public transport using a linear function with 
intercept (fixed costs), and an automatic frequency “rule-of-thumb” 
optimization rule for peak and off-peak. A similar approach was used by 
Parry and Small (2009) and Kilani, Proost, and van der Loo (2014).  

8 Construct the crowding cost function of public transport (see the Appendix 
A for more information). 

9 Construct linear cost functions for the non-congestion external costs; air 
pollution, noise & accidents. Values are given in Table 6 in Appendix A 
based on Thune-Larsen et al. (2014). 

10 Construct a welfare function to represent equation (4), that consists of the 
sum of utility for each agent minus user costs for agents (including taxes, 
tolls, fares and parking charges) minus transfers to government and parking 
company minus external costs other than congestion minus the operational 
costs of PT minus the opportunity cost of parking spaces. 

 

The three aggregate agents go by the names of X, Y and Z. They are categorized by whether they 
are employed or not (agent Z is not employed), and among the employed whether they go on 
occasional long trips by car (agent Y does not go on long trips by car). Using this categorization 
on the synthetic population of the greater Oslo area, we get agents with characteristics displayed 
in Table 2. 
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Table 2: Key agent characteristics 

Characteristic Agent X Agent Y Agent Z 

Estimated number of people 267 955 468 187 210 187 

Working/ Not working Working Working Not working 

Annual gross income (NOK) 591 183 500 972 320 821 

Any long trips by car per month Yes No Yes 

Number of short car trips per day 1.9 1.38 1.0 

Number of short car trip km per day 20.9 15.6 9.8 

Average length of long car trip 191 N/A  175 

Number of long car trips per year 19.5 N/A  11.8 

Number of PT trips per day 0.4 0.7 0.4 

PT km per day 7.6 10.8 6.9 

Peak trips car per day 0.9 0.7 0.3 

Peak km car per day 10.5 7.7 2.8 

Off Peak trips car per day 1.0 0.7 0.7 

Off Peak km car per day 10.4 7.8 7.0 

Peak PT trips per day 0.29 0.43 0.14 

Peak PT km per day 4.5 6.9 2.3 

Off Peak PT trips per day 0.15 0.32 0.26 

Off Peak PT km per day 3.1 4.0 4.6 

 

Once all the agents’ utility functions have been calibrated to fit the observed data, the model is 
ready for policy analysis. This is done according to the following procedure: 

1. The model’s objective function is to maximize welfare subject to behavioral and other 
constraints. For a given scenario we specify which of the policy variables, tolls, fares and/or 
parking charges, that can vary freely to maximize the objective function. In the equilibrium 
in optimum, the policy variables have driven agents to choose the transport consumption 
that maximizes the sum of their utility from transport and other consumption, minus the 
costs of car ownership and the transport system, including crowding and congestion costs, 
se eq. (4). The combination of agents and which car type they own is fixed so that we can 
find the optimal transport market equilibrium for a given combination (in Wangsness et 
al. (2018) this is done for 20 fixed combinations) 

2. Of the combinations that yield the highest welfare, new simulations are done to ensure 
that the optimal transport equilibria are incentive compatible, i.e. that the agents would 
choose the car combination that under optimal policies yields the equilibrium with highest 
welfare. In these simulations, agents will choose the car combination that gives them the 
highest level of utility. The simulations will find the minimum differences in purchase taxes 
and VAT between the car types, so that agents choose the optimal car combination. 

3. We get the incentive-compatible optimal car ownership and transport market equilibrium 

Compared to Wangsness et al. (2018), the model is extended to include agents’ choices regarding 
home charging, in the case where they end up owning a BEV or a PHEV (hereafter EV). The 
demand for electricity from EV-owners is determined by their travel demand. In equilibrium 
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agents adapt so that private marginal transport benefit equals private marginal transport cost. 
Among these costs we have the electricity expenses (electricity costs, grid tariffs and taxes).  

In the model, the demand for capacity (kW) for charging during peak hours, transforms into a 
need for the local DSO to replace the old transformer with a new one with higher capacity. The 
added cost stemming from this increase in demand depends on how much more additional 
capacity is needed, and how prematurely the old transformer is to be replaced. If it is to be replaced 
anyway since it has reached the end of its technical life, the latter cost component would be zero. 
The cost of replacing the transformer prematurely is assumed to be equal to the foregone interest 
income for the years that are left of the transformer’s technical life. 

As mentioned in section 2.1, the consequences of more EVs will vary from neighborhood to 
neighborhood. In our stylized model we only have one representative neighborhood that we 
expect to represent the average case where more EV charging during peak hours leads to more 
investments from the DSO. The parameters for the average case can be considered fairly uncertain. 
We are forced to make at least two key assumptions about uncertain parameters in the numerical 
model.  

1. How large is the disutility parameter for an EV-owning agent to charge her car off-peak, 
i.e. how responsive will she be to peak tariffs? 

2. Given the need for new grid capacity, how many years has the investment been moved 
ahead, i.e., how much of the fixed investment cost can be attributed to the rise in peak 
power demand from EV charging? 

In order to illustrate the uncertainty and give an idea of the variation in how costly the grid 
enhancements for accommodating EV home charging can be, we will provide sensitivity analysis 
for how the results change with changes in these key parameters. The table below shows our 
baseline assumptions for the model extensions regarding EV-charging: 

Parameter Value Comment/Source 

Cost of new transformer, fixed component (NOK) 190 000 Sidelnikova et al. (2015) 

Cost of new transformer, per kW capacity (NOK) 79 Sidelnikova et al. (2015) 

Return on capital applied for regulation (%) 6 NVE (2018) 

Expected years of technical lifetime for transformer 
station 

30 Sneve, Stene, and Brekke (2005) 

No. of years premature the average transformer 
needs to be replaced due to home charging 

0.5 Discussion meetings with DSOs8 

Marginal disutility parameter  of charging off-peak 

(NOK per hour), from 
oh  (i.e. quadratic disutility 

function) 

0.15 Calibrated from a cross-price 
elasticity of 0.2, which is applied 
in the LIBEMOD model9 

Charging capacity at home (kW) 3.6 Standard for home charging wall 
box, see e.g., Figenbaum (2018) 

Table 3: Parameter values for baseline assumptions regarding EV-charging and grid costs 

                                                 

8 We have had discussion meetings with representatives from the DSOs Ringeriks Kraft AS and Hafslund Nett. 
They state that unless households install more in-house capacity, they have not experienced having to replace 
transformers before schedule even with neighborhoods with high EV-shares. The choice of applying 6 months as 
our base case is a bit arbitrary, but illustrates the low occurrence of early replacement. We decide to dramatically 
stress test this number to see what happens if replacements happen 10 years ahead of schedule on average. 
9 The cross-price-elasticity parameters are a result of the model calibration. For more information, see 
https://www.frisch.uio.no/ressurser/LIBEMOD/ 

https://www.frisch.uio.no/ressurser/LIBEMOD/
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The investment cost is transformed to an annuity over the new transformer’s life time. This annuity 
is what the DSO needs to recover through its tariffs. We will model different pricing schemes for 
the DSO. As shown in the solutions for eq. (2), the consumer adapts so that marginal disutility of 
charging off-peak equals the difference in electricity price (including taxes and tariffs). With 
uniform prices between peak and off-peak, the consumer will cover all charging needs during peak 
hours. If the DSO applies peak tariffs, the consumers will shift some of her charging to off-peak. 
We end up with an equilibrium with tariffs and quantities charged at peak and off-peak, and 
transport costs and amounts travelled. 

 

5 Scenario description 

We use the model for analyzing different scenarios with different policies. The policies can be 
either fixed or be determined endogenously as a way to achieve a policy objective at least cost. The 
starting point for the scenarios is the reference situation of 2014. This can be considered an 
equilibrium before EVs were made available on a large scale. In the travel survey, on which the 
model agents are based, 98% of the cars are conventional. The policies will take us from the 
reference equilibrium to a new equilibrium in each policy scenario.  

The main policy scenarios are the “Business-As-Usual”-scenario and the “CO2-cap”-scenario. The 
former scenario is where there is a continuation of the 2014-policies (which were already very 
friendly towards the purchase and use of EVs), while the latter is where the 50% CO2 target in the 
Oslo area is binding. These scenarios were analyzed in Wangsness et al. (2018) without any regard 
for the impact EV charging may have on the local grid. We will briefly repeat the key insights from 
those scenarios. In the BAU-scenario Agent X (who works and makes occasional long trips) 
adapted by switching to a PHEV, Agent Y (who works, but makes no long trips) to a short range 
EV, while Agent Z (who does not work, and makes occasional long trips) stuck with the small 
ICEV. In sum, this gave us large emissions reductions (64% reduction), but higher transport 
volumes (2.1% for a constant population). Compared to the reference situation there is a welfare 
loss due to higher resource costs for cars and more congestion. In the CO2-cap-scenario policies 
are determined so that the target is reached at least cost leading to Agent X switching to a PHEV, 
Agent Y sticking to a small ICEV, and Agent Z switching to a small EV. The policies are 
characterized by; 1) higher tolls for all cars, in particular during peak traffic, 2) higher peak fares 
and lower off-peak fares for PT, 3) higher purchase taxes for ICEVs and 4) no tolls for BEVs 
driving in rural areas. These policies achieve the CO2-target, but the equilibrium has a lower welfare 
level than the reference equilibrium. The welfare cost of reaching the CO2-target amounts to 6690 
NOK per tCO2. 

We revisit these scenarios, but now the impact of EV charging on the local grid is part of the 
modelling. We run the model for two different pricing schemes the Distribution System Operator 
(DSO) can apply to respond to increased demand for power for EV charging. 

 No ability for DSOs to peak price, i.e. the DSO continues with uniform tariffs 

 DSOs apply peak tariffs determined by the marginal increase in capacity stemming from 
charging EVs during peak hours, and covers the rest of the costs by a fixed component 
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6 Results 

We now present the results from the numerical modeling in a way that answers the previously 
stated research questions. We will also briefly describe the results from the sensitivity analysis, 
which is documented in Appendix B. 

When we factor in the current uniform grid tariff system, what are the welfare impacts of today’s EV policies and 
polices for reaching CO2-targets at least cost? 

This research question focuses on the pecuniary external cost of EV charging with BAU EV 
policies when there is an incomplete market for using grid capacity, in this case uniform tariffs 
between peak and off-peak hours. As was shown in Wangsness et al. (2018), the model simulations 
conclude that Agent X (working, long trips) switches to PHEV and Agent Y (working, no long 
trips) to small EV in the BAU-scenario without any concern of grid costs. These agents would 
then start home-charging their vehicles to cover their daily transport needs by car. Their choice of 
when to charge is reflected by the relative prices between charging during power peak and off-
peak hours, and their disutility of charging during off-peak hours. We test the impact of adding 
this charging behavior under the three different pricing schemes the DSO can respond with, 
described in the section above.  

We find that the main features of the BAU-equilibrium remain the same even though the charging 
issues have been added. Nevertheless, the added grid costs are tangible costs, and not including 
them overestimates the welfare in the equilibrium. Without any form of peak pricing, there will be 
no incentive for the model agents to shift any of their charging to off-peak hours. This spurs 
investment in transformer capacity that amounts to a welfare cost of 18 mill. NOK (approx. € 2 
mill.) per year in the new BAU-equilibrium, compared to an equilibrium where these are not taken 
into account (as in Wangsness et al., 2018). All agents see a reduction in their general disposable 
income as tariffs increase. Those who drive EVs and PHEVs get somewhat higher transport costs, 
and all agents get higher household expenses on their non-car consumption of electricity. The 
model finds an increase in ca. 18 NOK per agent per year in increased household expenses in non-
car electricity due to the increase in uniform tariffs. This is the cost we expect todays EV policies 
to impose on electricity user is the Oslo area. 

We show in Wangsness et al. (2018) that reaching a 50% CO2 reduction target at least cost implies 
that Agent X switches to a PHEV and Agent Z switches to a small EV. Before considering any 
charging issues, we find a welfare cost of 6690 NOK (approx. € 700 or USD 850) per tCO2 for 
reaching this CO2-target. 

Adding the issues of charging in the CO2-target scenario does not change which car combination 
that is optimal under policies for reaching the target at least cost. Like in the BAU-scenario, the 
changes in tariffs amount to so small changes in generalized costs that changes in travel patterns 
hardly change at all. Consequently, the policy variables in the CO2-target scenario are hardly 
affected by introducing charging issues.  

With uniform tariffs the welfare cost increases by 16 mill NOK per year (approx. € 1.75 mill.), 
translating into an increase of 27 NOK per tCO2 (i.e., from 6690 to 6717) in order to reach the 
ambitious targets. The main results are summarized in the figure below.  
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Figure 3: Main results from simulations with uniform tariffs 

How can these welfare costs be affected by a better pricing of electricity distribution? 

The welfare cost can be reduced by allowing the DSO to apply peak tariffs. This will cause some 
shifting of EV charging to off-peak hours. While this reduces investment costs, it also increases 
the disutility cost of postponing some charging to off-peak hours. Consider the scheme where the 
added peak tariff is only determined by the marginal increase in capacity stemming from charging 
EVs during peak hours, and covering the rest of the costs by a fixed component. In this case the 
added welfare cost amounts to 12 mill. NOK pear year in the new equilibrium (approx. € 1.3 mill.), 
which reduced the increase by a third compared to the uniform pricing scheme. Here agents pay 
ca. 12 NOK more per year in non-car electricity expenses, with a fixed component of about 9 
NOK and a 3 NOK increase in expenses due to higher peak tariffs.  

We also see welfare improvements from applying a better pricing scheme in the CO2-target 
scenario. When applying peak tariffs only to the marginal capacity expansion induced by EVs and 
covering the rest with a fixed component, the added welfare cost is 17 NOK per tCO2. This 
increase is about 37% smaller than under uniform pricing. The main results are summarized in the 
figure below. 

 

Figure 4: Main results from simulations with optimal peak tariff 

Under both pricing regimes, the agents’ car choices are unaffected, and the changes in tariffs never 
cause more than minor changes (less than 0.1%) in generalized transport costs and subsequently 
in transport use.  

Sensitivity analysis 

These added welfare costs do not seem so large for an area with a population of 1.2 mill. people. 
In discussion meetings with DSOs we were told that regular home charging has not spurred many 
new investments that would not have occurred otherwise, corroborating this story. With regards 
to home charging, they have not experienced having to move forward investments in higher 

0.0004

0.0005

0.0006

0.0007

0.0008

0.0009

BAU-scenario CO2-cap-scenario

Change in uniform tariffs 

(NOK/kWh)

0

2

4

6

8

10

12

14

16

18

BAU-scenario

Added welfare cost BAU-scenario 

(mill. NOK)

0

5

10

15

20

25

30

CO2-cap-scenario

Added abatement cost 

CO2-cap-scenario 
(NOK/tCO2)

0.0000

0.0001

0.0002

0.0003

0.0004

BAU-scenario CO2-cap-scenario

Added peak tariff 

(NOK/kWh)

0

2

4

6

8

10

BAU-scenario CO2-cap-scenario

Added fixed component 

(NOK/year)

0.0 %

0.1 %

0.2 %

0.3 %

0.4 %

0.5 %

0.6 %

0.7 %

0.8 %

0.9 %

BAU-scenario CO2-cap-scenario

Loading shifted to off-peak 

(%)

0

2

4

6

8

10

12

14

16

18

BAU-scenario

Added welfare cost BAU-

scenario (mill. NOK)

0

5

10

15

20

25

30

CO2-cap-scenario

Added abatement 

cost CO2-cap-
scenario (NOK/tCO2)



 

 19 

capacity that is not co-founded by households wanting to increase their own capacity. Our base 
assumption is that DSOs need to replace the transformer on average 6 months ahead of its 
expected life span of 30 years (a shortening of less than 2%). We conduct sensitivity analysis where 
we assume the replacement of transformers on average has to be done 10 years ahead of its 
expected life span and additional 100 000 NOK (approx. € 11 000) needs to be spent on digging 
and replacing cables between the transformer and the household. This assumption entails far larger 
investment costs due to EV charging, and subsequent changes in tariffs and welfare. With the 10-
year assumption, the additional welfare cost to the BAU-equilibrium is 304 mill. NOK per year 
(approx. € 34 mill.) under uniform pricing, compared to an equilibrium where grid costs are not 
taken into account (as in Wangsness et al., 2018). Further, the added cost is limited to only 193 
mill. NOK (approx. € 22 mill.) with peak tariffs for the marginal capacity increase and the rest of 
the cost covered by a fixed component. 

The disutility function is a highly uncertain part of the model, so we test the impact of doubling 
the marginal disutility parameter. This will only make a difference where peak tariffs are allowed. 
Higher marginal disutility from off-peak charging leads to less load shifting under the two relevant 
pricing schemes, thus driving up investment costs in transformer capacity. On the other hand, due 
to the assumption of a quadratic disutility function from charging in off-peak hours, the low levels 
of load shifting imply lower absolute disutility costs for EV and PHEV owners. The differences 
in investment costs and disutility costs seem to balance out, so there is hardly any difference in 
added welfare costs (less than 1 mill NOK per year) compared to the equilibrium under baseline 
assumptions. 

We also tested the implications of having to replace transformers longer before their life span runs 
out and of higher marginal disutility of off-peak charging. This is documented in appendix B. In 
the case where transformers on average need to be replaced 10 years ahead of their technical life 
and additional costs for cables incur, the added welfare cost of achieving the CO2-target increases 
manifold. In the case with higher marginal disutility of charging off-peak we get less load shifting, 
which leads to higher investment costs, but it also lower absolute disutility costs, and these costs 
roughly balance each other out in the simulations. 

 

7 Discussion and conclusion 

We find that as today’s EV-policies drive up the EV-share of the car fleet, they also drive up 
investment costs in the local distribution grid as old transformers need to be replaced prematurely 
with transformers with higher capacity. Our model finds an equilibrium where the increased cost 
of transformers leads to between 12 and 18 NOK (approx. € 1.3 - € 2) in added non-car electricity 
costs per agent, depending on the DSO’s pricing scheme.  

Are these numbers large or small? We argue that such an increase in expenses is small, and would 
probably go unnoticed by most households as it represents less than a 0.1% increase in annual 
electricity costs (including tariffs and taxes) for households with normal consumption between 
10 000 and 20 000 kWh per year.  

Our sensitivity analysis shows that the cost can get substantially higher if the old transformers have 
to be replaced sooner than in the baseline. If the transformers need to be replaced 10 years ahead 
of their technical life and additional costs for cables incur, non-car electricity costs per agent 
increases to between 205 and 310 NOK per year. While this may be a more noticeable expense 
for consumers, it is still a small number relative to overall electricity expenses, and well within 
fluctuations in such expenses due to normal year-to-year price fluctuations. 

The shift to EVs and PHEVs is an integral part of reaching the ambitious goals of reducing CO2-
emissions by 50% in the greater Oslo area at least cost. We find that adding the charging issues 



 

 20 

leads to 17-27 NOK in additional costs per tCO2e under baseline assumptions. Before adding grid 
costs the welfare cost of reaching the emissions target amounted to 6690 NOK (about 700 Euro) 
per tCO2 (Wangsness et al., 2018), so adding the grid costs means 0.3%-0.4% in extra cost per 
tCO2. If the policy makers have committed to the CO2-target and are willing to pay the cost of 
reaching it, adding the grid costs is not going to be very discouraging. 

Caveats 

There are several caveats that are worth mentioning. As discussed in Wangsness et al. (2018) the 
transport model we use is very stylized with some major simplifications, such as having only five 
stylized car types and three stylized agent groups. It gives more nuance and insight than single 
representative cars and agents, but there are still many issues of heterogeneity that go uncaptured. 
For example, if more heterogeneity is introduced in the users’ profiles, the penetration of electric 
vehicles could be affected more strongly. The added model features in this paper are also quite 
stylized, with identical neighborhoods with identical investment cost functions for transformers, 
and with the simplifying assumption of clean-cut differences between peak and off-peak periods.  

The model contains many parameters of which many can be considered fairly uncertain, which is 
also discussed in Wangsness et al. (2018). The model extensions also introduce new uncertain 
parameters, such as the investment cost function for transformers, the average number of years of 
premature replacement of transformers when EVs get a large share of the car fleet. The model is 
static, so it ignores the dynamics of DSOs over years continuously replacing old infrastructure 
according to schedule, along with the year-by-year growth in the number of EVs. While the model 
is consistent with experiences over the last few years and expectations for the next few years, the 
future developments contain a lot of uncertainty. We do sensitivity analysis to address some of 
this uncertainty.  

Given these caveats we advise that the exact numbers should be interpreted with some caution. 
However, we believe that this analysis helps understanding the mechanisms within and between 
the transport and electricity market as transport gets electrified. We also think it provides insights 
into what can be considered major issues and minor issues when designing optimal transport policy 
moving forward.  

Putting the findings in context 

This paper gives some new insights into some of the ways the transport market and electricity 
market may affect each other when a large part of the car fleet is electrified. We find that the 
increase in demand for electricity and power from EV owners lead to some increase in grid 
investment costs and tariffs, but not so much that it brings any significant change to the transport 
market equilibrium. For example, the conclusion that larger differentiation between peak and off-
peak tolls and fares are necessary to improve transport market efficiency, remains the same. This 
was also part of the conclusion from Börjesson, Fung, and Proost (2017) which the model in 
Wangsness et al. (2018) is an extension of. 

Furthermore, the paper finds that allowing for peak pricing in the electricity sector can improve 
efficiency, a common finding in the extensive literature on peak-load pricing (see e.g. Decker, 2014, 
pp. 83-85 for an overview). As the transport sector gets increasingly electrified, and EV owners 
have a preference for charging after coming home from work, i.e., during evening peak hours, 
peak tariffs can help efficient allocation of grid investments. With user-friendly solutions for smart-
charging that automatically adjust charging to minimize charging, the differences in peak and off-
peak tariffs would not need to be very large in order to get load shifting from EV charging. In our 
model, this could be interpreted as a drastic reduction in the disutility of charging off-peak. 
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Conclusion 

We find that imposed cost on the grid from EV home charging amounts to relatively small extra 
costs on other electricity users, and relatively small additions to the cost necessary to reach 
ambitious CO2 targets in the greater Oslo area. Optimized policies for both the transport market 
and the local grid in order to reach the CO2-target at least cost, still entails a large shift to BEVs 
and PHEVs. Even though we find that the added grid costs are relatively small, we also find that 
they can be reduced by applying peak tariffs instead of uniform tariffs. This is because it provides 
a better balance between investment costs and the EV owners’ disutility of charging during off-
peak hours. Agents optimally adjust by shifting the time of charging their car, and the amount of 
transport consumed is hardly affected at all. 

As the literature shows, there are good reasons to consider peak tariffs even in the absence of EV-
charging, but EV-charging provides additional reasons. With the possibility of smart charging, load 
shifting could be done quite effortlessly for EV owners, even with only minor differences in peak 
and off-peak tariffs. 

The overall picture is that the costs of adjusting local grid capacity to meet the demand for charging 
EVs at home are relatively small. However, it should be possible to empirically test this with cost 
data from local grid companies and EV ownership data. This is an interesting venue for further 
research. 
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Appendix A: Model details 

The cost parameters applied for replacing transformers are taken from the NVE report Sidelnikova 
et al. (2015). The table below reports the parameter values from that report: 

Rated supply 
voltage (kV) 

Cost for new transformer, capacity 
independent component (NOK) 

Cost for new transformer, capacity 
dependent component (NOK/kW) 

5-24 190 000 79 

66 1 125 000 91 

132 2 125 000 80 

300 6 250 000 90 

420 8 750 000 58 

Table 4: Cost parameters for new transformer. Taken from Table 9-4 in Sidelnikova et al. (2015) 

For calibration we need quantities for each agent, generalized prices, and elasticities. The 
quantities used are kilometers travelled on short trips per day, in peak and off-peak, by car and 
public transportation (PT), and long trips (100 km+) by car per year. For short trips agents can 
substitute between PT and car, and peak and off-peak. For long trips, the agents can only choose 
the number of long trips per year. 

A way to visualize this stylized world is a greater Oslo where agents travel by car and PT every 
day, and a couple of times a month/year, some of them take a longer drive to their cabin, 
relatives etc.  

Generalized prices are described in Section 4.3. The own-price elasticities for short car trips are 
taken from the newest version of the regional transport model RTM23 (documented in Rekdal 
and Larsen (2008)). Own-price elasticities for PT and the cross-price elasticities between car 
transport and PT are taken from the transport model for the greater Oslo area MPMM23 
(documented in Flügel and Jordbakke (2017)). The cross-price elasticities for shifting between 
peak and off-peak, and cross-price elasticities for shifting between both modes and travel time, 
are the same as those applied in Börjesson, Fung, and Proost (2017). We apply the aggregate 
elasticity from the National Transport Model (documented in Rekdal et al. (2014)) for long car 
trips. The elasticity values are given in Table 5Table 5. 

Table 5: Elasticity values 

Elasticity Parameter Value 

Own money price elasticity, peak car trips -0.152 

Own money price elasticity, off-peak car trips -0.152 

Own money price elasticity, peak PT trips -0.255 

Own money price elasticity, off-peak PT trips -0.284 

Cross money price elasticity between peak and off-peak car trips 0.100 

Cross money price elasticity between peak car trips and peak PT trips 0.100 

Cross money price elasticity between off-peak car trips and off-peak PT trips 0.086 

Cross money price elasticity between off-peak car trips and peak PT trips 0.096 

Cross money price elasticity between off-peak car trips and off-peak PT trips 0.050 

Cross money price elasticity between peak and off-peak PT trips 0.050 

Own money price elasticity, long car trips -0.172 
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Table 6: Car specific parameters for technology, user costs, and externalities, baseline 

  
ICEV 
small 

ICEV 
large 

PHEV 
EV 
short 

EV 
long 

Purchase price 273 058 503 614 456 036 263 049 720 468 

VPT cost 59 977 158 219 44 143     

VAT cost 42 616 69 079 82 379     

Producer price 170 464 276 316 329 514     

            

Annual tax 2 820 2 820 2 820 455 455 

Range (km on full battery)     47.8 190 528 

Fuel usage (liters per 100 km) 7.99 9.50 6.15     

Share of city trips in e-mode10 0 0 72.7% 100% 100% 

kWh-usage per km, summer       0.15 0.17 

kWh-usage per km, winter       0.20 0.22 

kWh-usage per km, average      0.28 0.17 0.20 

Non-fuel costs per km (including taxes, not tolls) 2.05 2.05 2.05 1.98 1.98 

Non-congestion external cost per km in city (NOK) 0.70 0.70 0.36 0.36 0.36 

Non-congestion external cost per km far from 
densely populated areas (NOK) 0.16 0.16 0.16 0.15 0.15 

 

With all these values, MATLAB solves a system of 16 equations with 16 unknowns to complete 
the calibration of the utility function for each agent. This means we obtain the various parameter 

values of  ,   and i  (cf. Eq. 2) for the various agents.  

The generalized prices for short car trips are the distance-based costs (fuel, repair, lubricants 
etc.), toll and time costs. Distance-based costs are the same as those applied in the National 
Public Road Administration’s (NPRA) tool for Cost-Benefit Analysis, documented in Cowi 
(2014). Toll costs are based on reporting from the toll companies to NPRA. The value of time is 
based on the Norwegian valuation study, documented in Samstad et al. (2010). For long car trips, 
the generalized prices are distance and time costs for the average long car trip, for a given agent. 
For BEVs there is an added cost to the trip related to charging the car to fill the gap between the 
range and the length of the average trip times two (assuming back and forth). The time cost of 
charging is assumed to be VOT for long leisure trips, weighted by the same disutility weights as 
applied for waiting time for PT on long trips (0.6). 

The generalized prices for PT is given by ticket costs and time costs (on board time, access time 
and waiting time). Samstad et al. (2010) also provide the basis for VOT for PT trips, waiting time 
and access time. In the presence of a large share of PT users having either 30-day tickets or 12-
month tickets, and different price zones, we apply the method for calculating average ridership 
payment used in Dovre Group and Institute of Transport Economics (2016). 

Additional costs: If agents were to buy EVs, a fixed cost is also added for charging equipment, 
and for renting parking close to home for the share of agents who do not have easy access to 
parking at or close to their home. Charging cost equipment is assumed to have an up-front cost 
10 000 NOK (Norwegian Environment Agency, 2016). Parking rental is assumed to cost 1 400 
NOK per month (median rent for parking space in Oslo in October 2017 on website finn.no).  

                                                 

10 For PHEVs we assume that they run on electricity 73% of the time on short trips in the city area, and on fossil 
fuel when going on long trips. 



 

 27 

With regards to the rest of the transport system, we have cost functions for PT and speed-flow 
functions for car transport. The cost function for PT is simply the annual aggregated operating 
costs for Ruter, the public transport company for Oslo and Akershus, as a linear function of 
annual frequency. In addition, there is a crowding cost function, where the travel time cost is 
weighted by a crowding factor. The crowding factor has been calibrated to be a piecewise linear 
function where the current peak ridership per hour gives a crowding factor of 1.3, same as in 
Minken (2017), and current average off-peak ridership gives a crowding factor of 1. The 
crowding factor will not get smaller if ridership falls below this level, so 1 serves as a lower 
bound for the crowding factor. 

The speed-flow functions are based on model simulations from RTM23 on aggregate car travel 
and travel speed in Oslo and Akershus for a range of scenarios, but with constant road capacity. 
The result is an aggregate linear speed-flow function. The linearity simplifies the model 
calculation, but as shown in Arnott, De Palma, and Lindsey (1993), it also serves as a good 
approximation for a traffic bottleneck model. 
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Sensitivty analysis Pricing scheme Change peak Change off-peak Change fixed 
component 
(NOK) 

EV-charging 
during peak 

Added 
abatement cost 
(NOK/tCO2) 

Double disutility 
parameter 

Uniform tariffs 0.0008 0.0008 0 100 % 27 

Marginal peak tariff 
and fixed component 

0.0002 0.0000 9 99.8 % 17 

Replace 10 years 
prematurely 

Uniform tariffs 0.0154 0.0154 0 100 % 512 

Marginal peak tariff 
and fixed component 

0.0002 0.0000 200 99.6 % 320 

Double disutility 
parameter and Replace 
10 years prematurely 

Uniform tariffs 0.0154 0.0154 0 100 % 512 

Marginal peak tariff 
and fixed component 

0.0002 0.0000 200 99.8 % 320 

Table 7: Main results from sensitivity analysis 
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