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Abstract

This paper studies the importance of demand and supply shocks in the oil market,
and tries to explain the formation of the short-run oil price by applying an extended
commodity storage model to the cyclical components of the price. First, I employ
a multivariate method to extract the cyclical component of the oil price, world oil
consumption, and global GDP. Next, I find a large and positive effect of global GDP
shock on the oil price cycles in a VAR model. Then, I estimate the commodity storage
model using a moment-matching method. All parameters are estimated significantly,
and the model shows good capability of reproducing the volatility and persistence of oil
price cycles. I find that the GDP shock generates a much more moderate effect on the oil
price cycles in the extended commodity storage model than the empirical evidence from
the VAR analysis, and the production shock plays an important role for the variance of
the cyclical component of the oil price.
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1 Introduction

Crude oil is one of the most frequently traded commodities in the global commodity market.
The real oil price features high volatilities and occasionally large spikes. For example, the
real WTI price of crude oil increased by more than 400% from 1999 to 2008. What are the
main driving forces behind the dynamic behavior of the oil price? Are changes in supply
or demand behind behind these large fluctuations? Scholars have studied factors affecting
the oil prices from different angles. On one hand, Griffin (1985), Pindyck (1994), Alhajji
and Huettner (2000), Hansen and Lindholt (2008), Lawell (2013) and others have proposed
theories where OPEC controls the supply of oil. On the other hand, Cooper (2003), Krichene
(2006), Hamilton (2009), and many others have proposed demand-driven explanations.

There is, however, a need to use dynamic structural models to evaluate the relative
importance of demand and supply factors. The first step is then to build a theoretical model
for the oil market and estimate the structural shocks. The aim of this paper is to study
what element explains the formation of oil prices in a structural model, and to quantify the
relative importance of demand shocks and supply shocks to the variance of oil price.

To this end, I put forward an extended commodity storage model to explain cyclical com-
ponents of the oil price, taking into account exogenous variation in both global income and
crude oil supply. I use a simulated method of moments (SMM) to estimate the structural
parameters of the model using data from the period 1986–2009. I show that the extended
storage model represents a major improvement over the original traditional commodity stor-
age model in Deaton and Laroque (1992; 1996). I find that GDP shocks generate very
moderate effects on the oil price, while production shocks explain a large fraction of the oil
price variance.

In this paper, I first extract the cyclical component of quarterly data on oil price, global
oil quantity, and world GDP by using a multivariate Beveridge-Nelson (BN) decomposition
method for the period from 1986, after the substantial price decrease in the oil market, to the
end of the financial crisis in 2009. In the BN decomposition, I show that there is a positive
contemporaneous correlation between the cyclical component of global oil quantity and world
gross domestic product (GDP). I also document a large and positive effect of world GDP
shock on the oil price cycles in a VAR model.

Second, to understand the dynamics of crude oil price cycles, I employ a competitive
storage model that is devised with both stochastic income and production process without
serial correlation; this is an extended version from the model in Deaton and Laroque (1992,
1996), where only production shock was considered. In this model, the risk-neutral and
profit-maximizing speculator or institutional investor holds inventories from one period to



the next when expected future prices are equal to the current price. The speculative storage
has a smoothing effect on the equilibrium price by reducing the volatility and introducing
persistence.

Third, to gain insight into the role of income shock and production shock, I investigate
two simplified commodity storage models with single stochastic production or income pro-
cess. I solve these storage models by using collocation methods that assume the same shock
volatility. I find that the production shock introduces a more intensive smoothing effect on
the equilibrium price with a lower variance and higher persistence than the income shock.

Subsequently, I apply the extended storage model to the cyclical components of oil price,
world oil consumption, and global GDP through using a SMM. I also compare the estimates
and simulated moments between the extended storage model and the storage model with only
production shocks as in Deaton and Laroque (1992). The extended storage model shows a
better fitness to the data. All the coefficients of the extended storage model are estimated
to be significant. The estimated short-run demand elasticity is –0.2, which is close to the
results garnered by Gately and Huntington (2002), Cooper (2003), and Dées et al. (2007).
By employing the estimated parameters, the extended storage model (with both stochastic
production and income processes) reproduces some important features of the oil price cycles.
In particular, it generates a high price volatility and persistence that are similar to real oil
price cycles.1 On the other hand, one of the estimates from the storage model with only
production shocks is statistically insignificant, and the model is not able to match many data
moments.

Finally, I perform a counterfactual analysis and compute impulse responses of oil prices to
exogenous income and production shocks. I find that the model generates moderate results
for the effect of income shocks on oil price cycles. The supply variation explains the largest
fraction of the variance in the oil price cycles due to the large estimated production shock
volatility.

Increasingly, scholars have been trying to explain the long-run determinants of crude oil
prices. The topic in this paper, however, relates more to short-run analyses. For example,
Cooper (2003) employed a multiple linear regression analysis and estimated short-run elas-
ticities of crude oil demand in both OECD and non-OECD countries by using ordinary least
squares (OLS), over the period 1979–2000. He found that crude oil demand displays high
price inelasticity in the short run. Furthermore, Krichene (2006) has also examined the world
oil market in a single equation estimation and has concluded that there is less elastic demand
but a high demand income elasticity for crude oil in short run. Contrary to previous schol-

1The extended storage model generates a higher autocorrelation than the canonical model in Deaton and
Laroque (1992, 1996).



arship, this paper studies the driving force of the short-run oil price in a nonlinear structural
model for the recent period of 1986–2009. Rather than the single estimation method, the
structural parameters are estimated using the SMM method.

This paper is relevant to the literature that studies the determinant of oil price in VAR
models. The seminal paper of Kilian (2009) has discussed the effects of demand shocks
and supply shocks in a three-variable structural vector autoregressive (VAR) model. Kilian
(2009) employed the Cholesky decomposition method to identify shocks; it is assumed supply
is vertical and does not respond to demand shocks and price shocks simultaneously. Later,
Kilian and Murphy (2014) extended the work by Kilian (2009) with speculation using data
on oil price, production, global activity, and inventory. The authors have shown that demand
shocks are still the main cause of fluctuations in the price of oil for the period 2003–2008.
They did not find any strong evidence for speculative shocks during the oil price surge in
2003–2008. However, they found that speculation played an important role in an earlier
period, 1986–1990. Juvenal and Petrella (2015), in revising and extending the work of Kilian
and Murphy (2014), have assessed the role of both speculative oil demand and supply shocks
in a factor-augmented vector autoregressive (FAVAR) model. They have found that specula-
tion has had significant effects on the increase of oil prices since 2004. In addition, the most
recent paper by Baumeister and Hamilton (2018) has discussed the relative importance of oil
supply and demand shocks using a VAR model incorporating uncertainties to identify shocks
using Bayesian method. They have found that the oil supply shock plays an important role
in the variation of the oil price. Similar results are also found in Caldara et al. (2016) using
an identified structural VAR model.

The empirical model presented in this paper is also connected to scholars that advocates
the use of commodity storage models to derive the implications for oil and other commod-
ity prices. The canonical commodity storage model was first developed by Williams and
Wright (1991). Deaton and Laroque (1992, 1996) made the first attempts to confront the
theoretical model with actual commodity prices. They used annual observations for thir-
teen commodities, including copper, palm oil, and other agricultural goods, for the period
1900–1987. The model in Deaton and Laroque (1992, 1996) is able to match the volatility,
skewness, and kurtosis of commodity prices. However, the model cannot explain the high
persistence that has been observed in commodity prices. In their model, the storage acts by
“leaning against the wind”, which stabilizes the production shock effect on the commodity
prices between consecutive periods. Dvir and Rogoff (2010) have augmented the model of
Deaton and Laroque (1992, 1996) by introducing stochastic growth dynamics into the income
process. The storage, in fact, amplifies the income shock on prices. Nevertheless, Dvir and
Rogoff (2010) did not apply their theoretical model to fit the empirical data on oil prices.



This paper also employs an augmented storage model for examining the effect of storage on
the oil market. In contrast to previous papers, I assume that both production and income
processes are stochastic. On account of such an assumption, I am able to evaluate the relative
importance of supply and demand shocks to variations in the oil price. Moreover, this paper
also validates the theoretical model by applying it to the empirical data pertaining to the oil
market for the period 1986–2009.

The remainder of the paper is divided in five sections. In section 2, I first introduce the
data sources. Then I explain the multivariate BN decomposition method and discuss some
stylized facts of oil cycles based on decomposed data. In section 3, I discuss the effect of a
GDP shock on the price of oil in a VAR model using cyclical components of oil series. After
that, in section 4, I describe my extended storage model incorporating stochastic production
and income shock. I also explain the role of shocks in the simplified models. In section 5,
I apply the extended storage model to the cyclical components of the oil price, world oil
consumption and global GDP by using the SMM method. On the basis of the counterfactual
analysis, I discuss the importance of income and production shocks. Employing estimated
parameters, I also compute the impulse response of the oil price to a GDP shock in the
extended storage model and compare it to the empirical evidence from the VAR model.
Finally, in section 6, I provide some concluding remarks.

2 Oil market cycles

In this section I provide some facts about the oil market cycles through using empirical
data. First, I introduce the data sources that have been employed for this analysis. Second,
I explain the multivariate decomposition method for extracting cyclical components within
the price of oil, word oil consumption, and global GDP.

2.1 Data sources

In this paper, quarterly data spanning the period 1986:Q1–2009:Q4 are used to estimate the
model and assess its validity. The price of crude oil is the West Texas Intermediate (WTI)
price2, as taken from EIA (2016). Data on oil production and the total stock of crude oil in
OECD countries were obtained from the EIA (2016). World production of crude oil minus
the change in the OECD stock of crude oil is used as a measure for total consumption of

2The quarterly observation of Brent oil price does not have large difference from the WTI price for the
sample period. It has similar volatility and persistence as the WTI price. The standard deviation of the
nominal WTI price is 20.35, and its autocorrelation is 0.96. The Brent price of crude oil has a standard
deviation as of 20.37, and a autocorrelation as of 0.97.



(demand for) crude oil. The GDP is computed by using the world GDP index, which is
collected from Fagan et al. (2001) and transformed into GDP levels by using the annual
GDPs from the World Bank (2014).3 The nominal price of oil and GDP is deflated by using
the U.S. CPI, taken from U.S. Bureau of Labor Statistics (2014).4

2.2 Extracting the cyclical component

Many studies have confirmed the comovement among oil price, global oil consumption, and
world GDP (Hansen and Lindholt, 2008; Golombek et al., 2018). Cointegration tests have
suggested that there is a long-run equilibrium among variables for different sample periods
and from diverse data sources. Thus, the standard univariate detrending methods, such as
the Hodrick-Prescott (HP) filter and the band pass filter, may not be proper and may suffer
from misspecification. Furthermore, Harvey and Jaeger (1993), Cogley and Nason (1995)
and Canova and Ferroni (2011) have criticized the fact that the Hodoric-Prescott (HP) filter
fails to remove the stochastic trend and produces “spurious cycle” phenomena.5 Cochrane
(1988) discusses BN decomposition, introduced by Beveridge and Nelson (1981), gives a
sensible definition of the trend component. The trend is the sum of the current variable
and all the future expected changes. Therefore, in this paper, I employ the multivariate BN
decomposition method, as the data transformation method for oil series. Similar method is
also used in Cochrane (1994).

2.2.1 The Beveridge-Nelson decomposition method

The BN decomposition method is a model-based method for isolating series into permanent
trend components and cyclical transitory components. Let us first assume a cointegrated
vector Xt. Then the Wold representation of 4Xt takes the form:

4Xt = � + (L) ✏t, (1)

where  (L) =

P1
k=0  kLk and  0 = 1. � is the deterministic trend growth rate and � =

E(�X),  denotes the coefficient vector, and ✏t is the residual in the Wold representation
3I first compute a factor as the ratio between the annual GDP level in 2009 and the average GDP index

using quarterly observations in that year. The quarterly GDP level is computed as the product of the
quarterly index and the constant factor.

4The U.S. CPI is commonly used as an measure of world inflation on average. Almoguera et al. (2011),
Lin (2011) and Kilian and Murphy (2014) also use the U.S. CPI as the deflator of world GDP and oil prices.

5Their discussions are mainly focused on real business cycle models.



of 4Xt. Then the trend component follows a unit root process with a drift, such as

XT
t = � +XT

t�1 + (1) ✏t.

Using the recursive substitution for the Wold representation in (1) we can write Xt as a
function of all the shocks, such that

Xt = X0 + �t+ (1)

tX

s=1

✏s + (1� L) ˜ (L)
tX

j=1

✏t, (2)

where ˜

 (L) =
P1

j=0
˜

 jLj and ˜

 j = �
P1

k=j+1  k.
By following the example of Beveridge and Nelson (1981), the trend component of a

vector Xt is defined as the limiting forecast as horizon goes to infinity, adjusted for the mean
growth rate

XT
t ⌘ lim

h!1
Xt+h|t � �h = Xt +

1X

i=1

(Et4Xt+i � �) . (3)

Equation (3) also implies that if the variable Xt is forecasted to rise, its level is below the
trend. Inserting (2) into (3), I obtain the trend component as follow,

XT
t = X0 + �t+ (1)

tX

s=1

✏s. (4)

In this equation, X0 is the initial value of Xt in period zero,  (1) measures the long-run
impact of forecast error, and �t represents deterministic trend. Furthermore, the cyclical
component at time t can be computed by employing the following equation:

XC
t = Xt �XT

t = (1� L) ˜ (L)
tX

j=1

✏t. (5)

The term (1� L) ˜ (L) is the measure of transitory impact of forecast errors.
According to equation (4) and (5), the implementation of BN decomposition on the crude

oil price, world oil consumption and global GDP indicates that oil market growth consists
of both deterministic and stochastic trends. The cyclical components of oil occur due to the
fluctuations in the structural growth of the oil market.



Table 1: Cointegration Test

(a) ADF Test of Unit Root
No.lag Test statistic 5% Critical value p-value Conclusion

World consumption: lnQ 1 -4.798 -3.459 0.001 I(0)
World GDP: lnY 0 0.777 -3.458 0.999 I(1)
Price of oil: lnP 0 -2.240 -3.458 0.472 I(1)

(b) Johansen Test for the Existence of Cointegration Vectors
Cointegrating rank 0 1 2
Trace statistics 68.592 30.142 5.854
5% critical value 35.193 20.262 9.164
p-value 0.001 0.002 0.204

Number of obs. 96
Differenced lags 1

Notes: Table (a) shows the ADF statistics with a drift and deterministic trend for the unit root process of
each variable. The number of lags used is selected by the AIC and BIC index. The critical value of rejecting
the null hypothesis at 5 percent level and the p-value of the statistics are presented. The conclusion of the
ADF test at 5 percent significance level is listed. Table (b) shows the Johansen test of vector cointegration
for different cointegration ranks. This vector includes lnQ, lnY , and lnP . is the coefficient for the lagged
vector in the VEC model. 96 observations are used in the tests.

2.2.2 Implementation of multivariate BN decomposition for oil data

To evaluate the applicability of multivariate BN decomposition for the oil price, world oil con-
sumption, and global GDP, I employ a state-space approach (see Cochrane (1994) and Morley
(2002)). I perform the decomposition in two steps. First, I perform a Johansen’s unrestricted
cointegration rank test (trace test) among logarithm values of oil consumption, world GDP,
and oil price based on a VEC model of vector Xt = [lnGDPt, lnOilQuantity, lnPricet] such
that

4Xt = � + ⇧Xt�1 + A14Xt�1 + ut, (6)

where ut denotes the residual. The augmented Dickey–Fuller test (ADF) tests as shown in
Table 1 indicates that world GDP and the crude oil price are I(1). However, world oil quantity
is a stationary series. Furthermore, the cointegration test results in Table 1 show that both
the null hypothesis of rank(⇧)0 and rank(⇧)1 are rejected at 5 percent significant level.
But I can not reject the null hypothesis of rank(⇧)2. It suggests that there are at least
one cointegrating relationship within the system. Second, I decompose trend and cyclical
components by using estimates from the VEC model in equation (6), with detected numbers



Figure 1: Crude oil prices: lnP

Notes: The figure plots the real crude oil price in logarithm value, the BN trend, and the cyclical component
of the real oil price. The real price of oil is measure in 1996 USD. The left scale is for the price data. The
right scale is for the deviations from the trend and has units as percent deviations from the trend. The
shaded area indicates specific period when important events were taking place in the oil market. These
events include the Iran-Iraq war (1986:Q1–1988:Q2), the Gulf War (1990:Q3–1991:Q1), the Asian financial
crisis and oil crisis (1997:Q2–1999:Q4), the 9/11 attacks (2001:Q3), the invasion of Iraq (2003:Q2–2003:Q3),
and the global financial crisis (2008:Q1–2009: Q4).

of cointegration relationship.6 The approach in details is summarized in Appendix A.
Properties of the transformed data

After steps 1 and 2, I decompose the global GDP, oil consumption, and oil price into
trend and cyclical components. Figure 1 plots the trend and cyclical components of the
real oil price. The bold solid line in Figure 1 denotes the cyclical component in price. It
is measured in terms of its percentage deviation from the trend component. The cyclical
component varies around the zero-mean level.

The correlation between the trend and cyclical components of oil price is negative, –0.61.
Thus an increase in the price trend is associated with a decrease in the cycle component,

6The VEC in equation (6) can be rewritten into an ARIMA(2,1,0) process, such that

Xt = � +Xt�1 + (⇡ +A1)Xt�1 �A1Xt�2 + ut.



while, according to Stock and Watson (1988), the variations in the cycle component indicate
adjustments towards the shifting trend. This finding suggests that the cycle component
will decrease initially with an increase in the price trend and that this results in a lower
net increase in the oil price. The negative impact of cyclical innovations is temporary and
dissipates over time.

Furthermore, Figure 1 shows that the fluctuations in the cycle component are consistent
with the anecdotal evidence on the relative importance and timing of the fluctuations in the
global crude oil market, which helps to verify the proposed decomposition. For instance, the
price cycle became negative after Saudi Arabia changed its policy from reducing supply to
maintain the price to increasing supply to maintain market share from 1986. Then the oil
price fell substantially, while the price cycle increased sharply at the beginning of 2007 and
dropped dramatically due to the financial crisis in late 2008.

The relationship between cyclical components in the world GDP and the global oil quan-
tity is discussed next. Figure 2 exhibits the evolution of cyclical components in the global
oil consumption as measured against world GDP. The global oil consumption presents a pro-
cyclical pattern—in other words, the global oil consumption has a positive contemporaneous
correlation with world GDP. The correlation is 0.30 for the period 1986:Q1–2009:Q4 and 0.5
for the last part of this period, 1999:Q1–2009:Q1. It is apparent that during the recession
period from late 2008 to 2009, there is a tight correlation between the cyclical components
of global oil consumption and world GDP.

Furthermore, Table 2 shows the volatility, persistence, and correlation for cyclical compo-
nents of the variables. Columns 1 and 2 show that the oil price cycle is 9.8 times as volatile
as the world GDP cycle, where the cyclical component of world GDP is a 1 percent deviation
from its trend, and the price cycle is a 9.8 percent deviation from the trend of the crude oil
price. Furthermore, the world oil consumption cycle is more volatile than the world GDP
cycle, where the consumption volatility is at 2.4 percent. In addition, column 3 shows the
persistence of the series. The first order autocorrelation is 0.58 for the price cycle and 0.40
for the oil consumption cycle. Moreover, the persistence of the world GDP cycle is 0.62. The
autocorrelation of world GDP is lower than 1, which confirms the stationary feature of the
cyclical components of the world GDP.

3 VAR analysis

In this section, I discuss the features of the oil cycles by using a VAR model. The purpose of
this analysis is to investigate the effect of GDP shock to the oil price cycles using the VAR



Figure 2: Comovement of cyclical components in the oil consumption and world GDP
Notes: The figure plots the cyclical components of global oil consumption and world GDP. The cyclical
components have been estimated through using a multivariate BN decomposition method.

Table 2: Cyclical properties of the global oil market

Standard Relative standard 1st-order
Log values deviation deviation autocorrelation
World GDP cycle 0.010 1.000 0.624
Oil price cycle 0.098 9.799 0.577
Oil consumption cycle 0.024 2.365 0.404

Notes: This table is generated by using the logarithm value of cyclical components.



model as in the seminal papers of recent literature in this branch (Kilian, 2009, Baumeister
and Peersman, 2013, and Kilian and Murphy, 2014).

Let us consider a structural VAR model of the oil market for zt = [lnYt, lnQt, lnPt]. In
this formula, lnYt, lnQt and lnPt denote the logarithm values of cycle components in world
GDP, global oil quantity, and oil price (see Figure 1 and 2). In following the design of Kilian
(2009), the VAR model takes the following form:

zt = ↵ +

KX

i=1

Aizt�i + et, (7)

where e denotes the reduced form residuals, Ai is the coefficient matrix of the autoregressive
terms, and ↵ is the constant vector. I impose a Cholesky assumption of long-run restrictions
in order to identify GDP, supply, and price shocks. I denote ✏ as the structural residuals
where E✏t✏0t = I. Then the Cholesky decomposition states that

et =

0

B@
eYt
eQt
ePt

1

CA = A✏t =

2

64
a 0 0

b c 0

d e f

3

75

0

B@
✏Yt
✏Qt
✏Pt

1

CA , (8)

and AA0
= Eete0t.

According to the restriction on A�1
0 in (8), I assume an exogenous process for the GDP

cycle, where the GDP cycle is not affected by the supply shock ✏Qt and the price shock ✏Pt
in the same period. I also assume that the current production of oil has no response to
instantaneous changes to the oil price.7

I estimate the structural VAR model in (7) by using the method of least squares. The
estimated values are then employed to construct the impulse response results. Figure 3 plots
the response of the oil price cycle to one standard deviation structural shocks on GDP, supply,
and the price of oil. The structural shocks are assumed to be orthogonal. The shaded area in
Figure 3 denotes the inference generated by using a bootstrap method for 5,000 replications
of the simulation.

Figure 3 shows how a GDP shock causes a sharp and significant increase in the oil price.
Furthermore, this positive response to the GDP shock lasts at least three quarters. This
graphic depiction reveals that GDP is an essential factor that affects the oil price cycles, and
this result, moreover, is consistent with that of Golombek et al. (2018), who have concluded
that global income is the main driving force behind the oil price.

7These assumptions are different from those of Kilian (2009), who assumed a vertical short-run supply
curve, while the shift in the aggregate supply is the result of the simultaneous change in the oil supply.
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Figure 3: Impulse responses of the oil price cycle to structural innovations from a VAR
model
Notes: The figure plots the responses of the oil price cycle to structural shocks of one standard deviation.
The inference shown as the shaded area in the figure is constructed through using a bootstrap method for
5,000 replications.

The supply shock has a positive but lower effect on the oil price cycle when the positive
supply shock occurs instantaneously; however, the response of the oil price cycle becomes
negative in the ensuing periods as an effect of increasing oil supply, and then converges to
zero over the time of simulation. One possible reason for the movement of price back to
zero is that the production of oil increases in some countries (OPEC countries, for instance),
and the other countries have delayed responses and react to the lower prices by reducing
their supply, which in turn contributes to the adjustment back to zero of the oil price in the
ensuing period.

The price shock may refer to unanticipated price changes that affect the expectations of
oil availability in the market.8 Figure 3 shows an ambiguous effect of price shock. The price
shock has initial positive effect on the oil price cycle by construction, but the effect changes
direction and becomes statistically insignificant after four quarters.9

To summarize, employing data on cyclical components of world GDP, oil quantity and
8Kilian (2009) has discussed how exogenous political events can be seen as an example of the price shock.
9Due to the ambiguous nature of the evidence, I am not focusing on the effect of the price shock in this

paper.



crude oil price in a VAR model, I find a large and positive effect of world GDP shock on the
oil price cycles. In the next two sections, I will discuss the relative importance of GDP shock
in an extended storage model, as a comparison to the empirical evidence in the VAR model.

4 An extended commodity storage model

Considering the importance of world GDP shock (discussed in section 3), I introduce an
additional shock into the model of Deaton and Laroque (1992, 1996) to capture fluctuations
in the income process, while I retain the shock on production. In the following section, I start
by describing the extended commodity storage model, including both stochastic income and
production processes. Afterwards, I discuss the role of income and production shocks to the
oil prices in simplified versions of the model, that is two single-shock models. I solve these
two simplified models with fixed parameters and compare the moments of simulated data.

4.1 A storage model with income shocks and production shock

This analysis assumes a risk-neutral speculator who chooses to store crude oil by maximizing
his/her aggregate net present value of profit within a discrete time framework. This spec-
ulator can be, for instance, seen as the OPEC-core countries who decide the extraction of
crude oil or the amount of oil left under ground.10 Whereas, the rest of the world does not
have market power and their supply of oil is assumed to be exogenous in the short run for
simplicity.
Availability

I consider At as the oil availability, also defined as “amount at hand” in Deaton and
Laroque (1992, 1996), which measures the amount of oil available to be consumed in period
t. This amount of oil has been produced at time t or an earlier period, and it has not been
sold before the current period t . Accordingly, the availability of oil at period t is the sum of
any storage carried from the previous period Xt�1 and current production Zt, such that the
following equation can be formulated:

At = Xt�1 + Zt, (9)

where X � 0. An alternative interpretation of X could be OPEC core’s spare capacity.
In other words, X can be seen as the measure of the extra production the OPEC core can
produce, if the OPEC core group decides to increase supply in the short run. Following the

10Alhajji and Huettner (2000) and Golombek et al. (2018) find that OPEC or OPEC core exerts market
power.



example of Dvir and Rogoff (2010), I assume a zero depreciation rate on carrying storage
from previous periods for the sake of simplicity.11

At each point of time, the availability of oil, including the storage in earlier period, should
equal the current consumption together with the inventory stored for the next period, such
that the following equation can be formulated:

At = Qt +Xt. (10)

Demand function
Following the example of Dvir and Rogoff (2010), I assume an iso-elastic demand function

of oil such that the oil price cycle is a function of oil demand and income,

Pt =

✓
Qt

Yt

◆��

, (11)

where � > 1. According to equation (11) the price Pt is a Constant Relative Risk Aversion
(CRRA) function that provides the effective demand of oil at rate �. Accordingly, 1

� is
the price elasticity of demand. In this case, I implicitly assume a unit income elasticity
of demand where the percent change in demand is equal to the percent change in income
(@ lnQ/@ lnY = 1). This assumption is in line with empirical results from several recent
studies. For example, Gately and Huntington (2002) have found that income elasticities
are around 1 for non-OECD countries; more recently, Golombek et al. (2018) have used a
structural model to estimate an income elasticity of demand of 1.11.

Inserting equation (10) into (11), the inverse demand function can be written in terms of
availability and income:

Pt =

✓
At �Xt

Yt

◆��

. (12)

Income and production shocks
The production of oil is sensitive to the events in the producing area, which would suggest

oil production amount fluctuates over time. Similar to the work of Deaton and Laroque (1992,
1996)12, I assume that the production cycle Zt fluctuates around a constant level ¯Z, such
that

Zt =
¯Z exp (ezt ) , (13)

where ezt is a stochastic production shock that follows a normal distribution ezt ⇠ N (0, �2
z).

¯Z denotes a constant parameter. The logarithm of production is distributed at mean ln

¯Z

11Deaton and Laroque (1992, 1996) assume a non-zero depreciation rate on the storage.
12Deaton and Laroque (1992; 1996) derive the implications for different commodity prices, mostly agricul-

tural crops but also copper, i.e., a non-renewable mineral.



and the standard deviation at �z, lnZ ⇠ N
�
ln

¯Z, �2
y

�
. The production shock reflects the

disturbances from the supply side. It can be recognized as the wars, political events or
any unobserved failures of production in the crude oil producing countries. This simplified
assumption of exogenous production is standard for short run. For instance, Kilian (2009)
also assumed a vertical short-run supply of oil, where supply of oil adjusts infrequently to
changes in demand.

As a revised version of the work of Deaton and Laroque (1992; 1996), I also consider that
the income cycle follows a stochastic process, such that

Yt =
¯Y exp (eyt ) , (14)

where eyt is a normally distributed shock at mean zero and with a standard deviation at �y,
eyt ⇠ N

�
0, �2

y

�
. ¯Y is a constant of the income level. Subsequently, the logarithm of income is

distributed at mean ln

¯Y and the standard deviation at �y, lnY ⇠ N
�
ln

¯Y , �2
y

�
. A positive

income shock can be recognized as a boom in the world economy; on the contrary, a negative
income disturbance can be seen as a global recession.
Speculation equilibrium

I solve for the rational expectation model of maximizing expected profits under competi-
tive economy. The arbitrage conditions imply that when storage is positive, the current price
equals the expected price in period t + 1, apart from marginal storage cost. Otherwise, the
storage becomes zero when the current price is higher than the marginal gain from storage.
That is to say,

Pt = �Et [Pt+1]� C,Xt > 0 (15)

Pt > �Et [Pt+1]� C, Xt = 0 (16)

where C denotes the cost of storage. � denotes the discount factor.
Thus, the current price depends not only on the current quantity to income ratio as

shown in equation (11), but also on the future demand through choosing the storage level Xt

according to the future expectation, as in equation (15) and (16).

4.2 The role of income and productions shocks in the rational ex-

pectations equilibrium: the mechanism

In order to detect the role of income and production shock on the price in the commodity
storage model, in this section, I discuss the results from two simplified storage models: 1) a



storage model with a stochastic production process that assumes a constant income Yt =
¯Y ,13

2) a storage model with a stochastic income process that assumes constant production Zt =
¯Z.

The rational expectations equilibrium
The solutions from the two commodity storage models specify a rational expectations

equilibrium of storage as as function of state variables. In the first storage model with
stochastic production, availability At is the state variable. Recall that production Zt is
an element of At, the optimal storage rule is denoted as X (At). In the second model with
stochastic income, both availability At and income Yt are state variables. The optimal storage
rule is written as X (At, Yt). I solve the two nonlinear rational expectations commodity
storage model numerically. Following Miranda and Fackler (2002), I solve the dynamic
models by using a spline collocation method for function approximation. The collocation
approach in details is summarized in Appendix B.
Simulated moments

To discuss the effect of shocks on equilibrium prices, I simulate prices by employing the
optimal storage rule from the two models. The simulation is performed for 20,000 quarters in
order to obtain stationary moments. In each period, a production shock or an income shock
is drawn from a normal distribution with a mean value of 0 and a standard deviation of 0.1.
I impose the same production shock and income shock in absolute values, ✏Yt = �✏Zt , for each
period.14 Using simulated shocks and transition functions, I compute state variables in the
next period. Subsequently, the storage level can be interpolated by using the optimal storage
rule of X (At) and X (At, Yt) in each case. After this, I compute the equilibrium price by
using the demand function in equation (12).15 I perform 1,000 repetitions of the simulation
in each model.16 The first 100-period simulations are deleted in order to eliminate the effects
of initial values.

Table 3 shows the moments of simulations in the case of production shock and income
shock, respectively. The values in Table 3 are the mean value of the simulated series’ moments
over 1,000 repetitions.

From Table 3, I find that the storage model with a stochastic production process has a
stronger and more intensive smoothing effect than the model with a stochastic income pro-
cess.17 To be specific, the simulated price in the production-shock model has lower standard

13This model is similar to the case assuming a strictly convex price function in Deaton and Laroque (1992).
14For comparison, I impose reversed income shocks and production shocks in order to have similar (positive

or negative) effects on the price in both models.
15Other parameters used for simulation are set as � = 5, � = 0.97 and C = 0
16The standard error of simulated moments are very robust to changes of larger numbers of repetition in

the simulation.
17In Table 3, the 95 percent confidence intervals of simulate moments in two models do not overlapped.

Thus, the differences are significant.



Table 3: Simulated price moments in the storage model with production shock and income shock

Models Production (Z) shock Income (Y) shock
�z 0.1 0
�y 0 0.1

(1) (2)
% of stock outs 3.511 1.186
Moments of P
mean(P) 0.997 1.039
std(P) 0.226 0.252
1st-order a.c.(P) 0.529 0.513
Moments of A
mean(A) 1.222 1.192
std(A) 0.176 0.125
1st-order a.c.(A) 0.816
Moments of X
mean(X ) 0.217 0.192
std(X ) 0.144 0.125

Notes: Column (1) shows the moments of price and demand by using the simulated data from the storage
model with stochastic production shock. Column (2) shows the moments of simulated data from the storage
model with stochastic income shock. The simulations are performed through using estimated parameters for
20,000 periods and 1,000 repetitions. The first 100 periods of simulations are deleted in order to eliminate
the effects from the initial values. The measures shown in the table are the average over 1,000 repetitions.



deviation with a value of 0.23 (versus 0.25 in the income-shock model) and a higher persistence
with a value of 0.53 (versus 0.51 in the income-shock model), although the production-shock
model generates a higher percentage of stock-out with a value of 3.5 percent (versus 1.2
percent in the income-shock model).
Impulse responses

The reason for the stronger smoothing effect in the production-shock model is mainly due
to the higher inventory level. As represented in Table 3, I find that the mean level of storage
has a value of 0.22 in the production-shock model and 0.19 in the income-shock model.

To support this point, I illustrate the impulse responses of availability, storage, and prices
of the two models in Figure 4 using the same initial values in period zero.18 I impose one
standard deviation of positive production shock and negative income shock, respectively, in
period one, with �Y = �Z = 0.1. The shocks are simulated for 20,000 repetitions in period
one. The simulation in the subsequent 13 periods assume zero shock on production and
income in both cases; thus, ✏Zt = ✏Yt = 0 for t > 1. The series in Figure 4 shows the average
over 20,000 repetitions of the simulation across 14 periods.

As represented in the panel (a) of Figure 4, there is an immediate response of availability to
the positive production shock in period one in the production-shock model. It simultaneously
determines a high storage level in period 1 through the policy function (as shown in the panel
(b)). On the other hand, in the income-shock model, the income shock does not have a direct
effect on the availability. The availability remains at the same level in period 1.19 It results
in a relatively lower level of storage than in the production-shock case in the shock period in
panel (b), although the storage increases due to the negative income shock and thus lower
expected price. In the production-shock model with a higher storage level, panel (c) shows
a limited drop of price in the shock period and a fast recovery toward a steady state after
period 2. Thus, the storage level is more sensitive to the production shock than to the income
shock, which introduces a stronger smoothing effect in the production-shock model. This is
mainly because income shock is a multiplicative shock on availability, whereas supply shock
is an additive shock.

To summarize, the storage model is more sensitive to the production shock than to the
income shock. The production shock introduces a more intensive smoothing effect on the
equilibrium price, with a low variance and high persistence. In the next section, I will go back
to my extended storage model with both production and income shocks, and fit the model to
the data. I will also discuss the relative importance of income shock and production shock.

18The initial values of state variables for the simulation are A0 = 1.1 and Y0 = 1.
19This is consistent with the moments of simulated availability shown in Table 3. In the income-shock

model, the availability has a lower mean with a value of 1.19 and with a standard deviation of 0.125, whereas,
in the production-shock model, the mean is 1.22 and the standard deviation is 0.18.
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Figure 4: Impulse responses in storage model: The Income-shock and production-shock
case
Notes: The initial values of state variables for the simulation are set as A0 = 1.1 and Y0 = 1. One-standard
deviation production shock and income shock are imposed in period 1 with �Y = �Z = 0.1, and let ✏Z1 = �✏Y1 .
The shocks are simulated for 20,000 repetitions in period 1, and then the series are simulated for the next 13
periods. The series shown in the figure are the average values over 20,000 repetitions.



5 Matching the extended storage model and the data

In this section, I apply the extended storage model with both a stochastic production and
income process to the cyclical components of oil prices, world oil consumption, and global
GDP. I employ a moment-matching method for estimation. To discuss the relative fitness to
the data, I also compare the estimates and simulated moments from the extended storage
model and the model with production shocks. Later, using estimated parameters from the
extended storage model, I explain the dynamic behavior of oil prices. Later, I discuss the
relative importance of income and production shock through counterfactual analysis. Finally,
I compare the impulse response of oil price to the income shock in the extended storage model
and the VAR analysis.

5.1 Estimation

Calibrated parameters
By assuming an exogenous process on income and production in equation (13) and (14),

some parameters can be calibrated independently from the storage model. Through the
construction of BN decomposition, the logarithm values of oil cycles fluctuate around 0. It
is reasonable then to have ¯Y = 1 and ¯Z = 1. Moreover, knowing the log-normal distribution
of income with lnY ⇠ N

�
ln

¯Y , �2
Y

�
, I calibrate the standard deviation of income shock at

�Y = 0.02 through using an observed GDP cycle.20

SMM
Subsequently, I employ a SMM estimation method introduced by Lee and Ingram (1991),

which estimates structural coefficients – the demand elasticity parameter �, production
volatility �z, and discount rate �. The SMM estimation is implemented by first solving
the extended storage model (with a stochastic production and income process) through us-
ing a collocation method for a set of parameters, and then simulating series of price ˜Pt, oil
demand ˜Qt, and income ˜Yt by using the policy function of storage.21 The optimal coefficients
are determined when they minimize the weighted sum squares of the difference between
empirical and simulated data moments, such that the following equation can be formulated:

ˆ✓ = argmin

✓
M (✓)0 WM (✓) . (17)

✓ ⌘ [�, �, �Z ] is the structural coefficient vector of interest, which is a l ⇥ 1 (l = 3) vector.
M (✓) is a k ⇥ 1 moment condition which is the difference between empirical and simulated

20Since the production of oil is unobserved, the standard deviation of production shock �z can not be
calibrated and is estimated using the moment-matching method.

21I assign Z̄ = 1 and calibrated parameters of Ȳ = 1 and �Y = 0.02 using world GDP data.



data moments, such that

M (✓) =
1

T

TX

t=1

m (Pt, Qt, Yt)�
1

N

NX

t=1

m
⇣
˜Pt (✓) , ˜Qt (✓) , ˜Yt (✓)

⌘
, (18)

where T denotes the number of observation; N denotes the sample size of simulated data,
and N = T ⇥ H where H � 1.22 I employ H = 50 in the estimation.23 m (Pt, Qt, Yt)

and m
⇣
˜Pt (✓) , ˜Qt (✓) , ˜Yt (✓)

⌘
are moments computed by using observed data and simulated

data.24 In equation (17), W denotes the optimal weighting matrix evaluated as the inverse
of the covariance matrix of empirical data moment m (Pt, Qt, Yt); accordingly, the following
equation applies:

W =

1

T

⇥
m (Pt, Qt, Yt)

0 m (Pt, Qt, Yt)
⇤�1

. (19)

In the SMM estimation, the moment function includes the mean, variance, auto-covariance
of price and quantity demand, and income-quantity covariance, such that the following equa-
tion applies:

m (✓) =

2

64

�
Pt � ¯P

�2
,
�
Qt � ¯Q

�2
,
�
Yt � ¯Y

� �
Qt � ¯Q

�
,

�
Pt � ¯P

� �
Pt�1 � ¯P

�
�
Qt � ¯Q

� �
Qt�1 � ¯Q

�

3

75 . (20)

Furthermore, the asymptotic distribution of ✓ is given by

p
T
⇣
ˆ✓ � ✓0

⌘
!d N (0,⌦) ,

where ⌦ denotes the k ⇥ k covariance matrix, such that

⌦ ⌘
✓
1 +

1

H

◆
@M (✓)

@✓
W
@M (✓)

@✓0

��1

.

Estimation results
Following equation (17)–(20), I obtain the SMM estimates as shown in Table 4. The

first column in Table 4 shows the estimated coefficient, and the second column presents the
standard error of the estimates.

The coefficient �, which measures the relative changes of price with respect to the change
22Following Michaelides and Ng (2000), the data are simulated for T ⇥H ⇥ 1.1 periods, and the first 10

percent-period simulated data is trimmed.
23Michaelides and Ng (2000) found a good sample performance when the simulated sample is approximately

10 times as large as the actual data. I also find that the estimates are robust to different numbers of H,
when H � 10.

24In the SMM estimation, I assign the same random values for the production shock and income shock in
each iteration. This is in order to satisfy the property of “stochastic equicontinuity” for simulation estimators
as shown in McFadden and Ruud (1994).



Table 4: SMM estimates of parameters for the extended storage model

Extended storage model Z-shock storage model
coeff. s.e. coeff. s.e.

� 5.215 (1.343) 3.156 (0.197)
� 0.989 (0.006) 0.975 (0.196)
�Z 0.055 (0.016) 0.006 (0.021)
J -statistics 1.064 12.605
p-value 58.8% 0.6%
Degree of freedom 2 3

Notes: The heteroskedasticity and autocorrelation consistent (HAC) standard errors are shown in parentheses.

in the Q to Y ratio, is estimated at 5.22, which is statistically significant with a 95 percent
confidence interval. This implies a price elasticity of oil demand of � 1

� = � 1
5.22 = �0.19.25

This estimate is close to the results of other scholars who have studied the oil price elasticity
of demand. Dahl (1993), Gately and Huntington (2002), Cooper (2003), and Dées et al.
(2007), among others, estimated single-equation models of oil demand, and obtained demand
elasticities for crude oil between �0.2 and �0.6. Alhajji and Huettner (2000) estimated a
structural model of crude oil market and arrived at a price elasticity of demand of �0.25.

The quarterly discount factor is estimated to be 0.99 (with a standard error of 0.01). It
implies a quarterly interest rate at 0.01, and a annual interest rate at 0.04.26 This estimated
interest rate is close to the results in Deaton and Laroque(1992; 1996), in which the annual
interest rate, for example, is estimated to be 0.05 for copper. Furthermore, I obtain a statis-
tically significant production volatility of 0.06, which is five times larger than the volatility
of income shock.

In addition, an overidentifying test is implemented to test the model specification. The
Sargan-Hansen’s J -statistic is computed as the fraction of the optimal value of the SMM
objective function. The J -statistic follows a Chi-square distribution at k � l degrees of
freedom, as shown in the following equation:

T

✓
1 +

1

H

◆
M
⇣
ˆ✓
⌘0
WM

⇣
ˆ✓
⌘�

d! �2
(k � l) .

In the case of this analysis, I have k = 5 and l = 3, and thus k � l = 2. Table 4 shows
a J -statistic of 1.064. This suggests that we can not reject the null hypothesis that model

25The standard error for the price elasticity of demand is 0.014, which is computed through the delta
method.

26The discount factor is function of interest rate r, such that � = 1
1+r .



moments match data moments, H0 : E [M (✓)] = 0, at a significance level of 5 percent. Thus I
conclude that the model is correctly specified and the parameters are estimated consistently.

As a comparison, I also estimate the storage model with only production shock as in
Deaton and Laroque (1992) using SMM.27 The estimates are shown in the last column in
Table 4. I find that � is estimated significantly at 3.16 with standard error 0.20. I employ
a Z-test to investigate the equality of estimate � from the extended storage model and the
production-shock model.28 Using the estimates of � from these two models, I compute a
Z-statistic at 1.52 which implies a p-value at 12.9 percent. Thus I can not reject the null
hypothesis of equal � estimated from the two models at 10 percent significance level. Next,
the estimated discount rate � in the production-shock model is 0.98, which is very close to
the result from the extended storage model. However, in the production-shock model, the
production shock volatility is estimated statistically insignificant (0.006 with standard error
0.02). Meanwhile, the Sargan-Hansen’s J test is computed 12.61 with p-value at 0.6 percent,
which suggests a rejection of the null hypothesis of model moments matching data moments
at 5 percent significance level. The last two results reveal that the commodity storage model
with only production shock may be misspecified. The empirical results also show that the
extended commodity storage model represents a major improvement over the original Deaton
and Laroque (1992)’s model for the crude oil market.

5.2 Fitness of the storage model

Using the estimated parameters from the extended storage model in Table 4, I discuss in
this section the applicability of the extended storage model to the data by comparing the
moments of empirical data and the simulated data from the model. I also compare the
moment of simulated data from the extended storage model and the storage model with
production shock only to discuss which model has better fitness to the data. The results are
presented in Table 5.

The simulations are performed by using estimated parameters for 20,000 periods and
1,000 repetitions. The first 100 periods of simulations are deleted in order to eliminate the
effects from initial values. Column 1 in Table 5 shows the data moments of oil price cycles and
oil consumption cycles. Column 2 shows the moments of simulated series from the extended
storage model that allow for positive storage. Column 3 shows the moments of simulated
series that impose zero storage in all periods. Column 2 and 3 show the mean value of

27The moment function includes the mean, variance, and auto-covariance of price and quantity demand.
28The Z-statistic is compute as Z = �1��2p

(SE�1)
2+(SE�2)

2
, where �1 and �2 denote the estimates from the

extended storage model and from the production-shock model respectively, and SE� denotes the standard
error of �.



Table 5: Moments of oil price and simulated prices in the extended storage model and the
storage model with production shock only

Data Extended storage model Z-shock storage model
X � 0 X = 0 X � 0

(1) (2) (3) (4)
% of stock outs 3.191 100 0.229
mean(P) 1.005 1.000 1.043 1.000
std(P) 0.113 0.124 0.308 0.011
1st-order a.c. 0.591 0.536 -0.001 0.514
skewness 3.547 3.422 0.911 0.364
kurtosis 21.191 23.046 4.506 3.630
mean(Q) 1.001 1.002 1.002 1.000
std(Q) 0.024 0.021 0.055 0.003
1st-order a.c. 0.402 0.515 -0.001 0.515
skewness 0.097 -1.511 0.165 -0.311
kurtosis 3.437 7.969 3.049 3.557
corr(Q,Y) 0.301 0.367 3.049 –

Notes: Column 1 presents data moments by using cyclical components of the oil price and the world oil
consumption. Column 2 shows the moments of price and demand by using the simulated data from the
extended storage model. Column 3 shows the moments of simulated data assuming storage is zero in all
periods. Column 4 shows the moments of price and demand by using the simulated data from the storage
model with production shock only. The simulations are performed using estimated parameters for 20,000
periods and 1,000 repetitions. The first 100 periods of simulations are deleted in order to eliminate the effects
from initial values.

moments over 1,000 repetitions.
In Table 5, column 1 and 2 reveal a good fit between the model and the data. The

columns show that the storage model generates a price with a mean value of 1.00 and with a
standard deviation of 0.12, which is close to the data moments with a mean value of 1.01 and
a standard deviation of 0.11. Furthermore, the extended storage model is able to capture the
persistence in the oil price. The persistence is 0.54 for the simulated price and 0.59 for the
price cycle data.

Although the skewness and kurtosis are not included in the moments condition in equa-
tion (20) for the SMM estimation, the extended storage model reveals a good capability to
reproduce the higher moments as in the data. As Table 5 shows, the skewness is 3.42 for the
simulated price and 3.55 for the data. Similarly, the kurtosis is 23.05 for the simulated price,
and 21.19 for the data. The close match to the data skewness and kurtosis also confirms the
good fit of the model to the data.

Column 4 in Table 5 also shows the simulated moments of the storage model with single



production shock using estimates from Table 4. Comparing to column 2, I find that the
production-shock model is not able to match many moments in the data, especially the
standard deviation, skewness and kurtosis of the oil price and consumption. This also reveals
that the production-shock model does not fit well to the data, whereas the extended storage
model with both production and income shocks has better fit.

Furthermore, a comparison between column 2 and 3 in Table 5 reveals the effect of
speculative behavior, wherein column 3 presents the moments of simulated prices that impose
zero storage for all simulation periods. I use the same parameters for simulation in column
2 and 3.

The extended storage model behaves similar to that of Deaton and Laroque (1996), such
that the storage dampens shocks by means of lowering the price volatility and introducing
persistence. As Table 5 illustrates, the volatility of simulated prices is 0.12 with possible
storage and 0.31 without storage. The persistence of the simulated price is 0.54 with possible
storage and close to zero when storage is impossible.

These results reveal that the storage has a smoothing effect that mitigates shocks. Intu-
itively, when the current price is high, caused by a high (low) GDP (production), it is most
likely that the future GDP (production) shock is low (high) due to the zero shock persistence.
Since the income (and production) process is mean reverting, speculators expect a lower fu-
ture price, and thus have incentives to reduce storage in the current period. This leads to
a decrease of oil availability in the market in the subsequent period. It then implies a high
future price following the high price in the current period. Therefore, speculative behavior
smoothens the price cycles.

In Figure 5, I also show a simulated price of oil from the storage model as an instructive
illustration, (see Deaton and Laroque (1992)). The series is simulated by using estimated
parameters. The simulation is implemented for 300 periods. The first 100-period simulations
are deleted in order to eliminate the effects from initial values.29 Figure 5 shows marked
resemblances in the features of the simulated price to the price cycle data that are shown in
Figure 1. From Figure 5, one can observe that the model generates occasionally large upward
spikes (see plot in Figure 1). Moreover, the model is able to produce the low-variance phase
more often when the oil price cycle is low.

5.3 The importance of income and production shocks

Using estimated parameters of the extended storage model, I perform a counterfactual anal-
ysis to discuss the relative importance of the income and production shocks as a means of

29While simulating the price of oil, I use world GDP cycle data as the income process.
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Figure 5: Simulated price of oil from the extended storage model
Notes: The price of oil cycle is simulated for 300 periods. The first 100-period simulations are deleted in order
to eliminate the effects from initial values. In the simulation, the global GDP data is used as the exogenous
process of income.



Table 6: Moments of simulated prices with zero production and income shock

✏z, ✏y 6= 0 ✏z = 0, ✏y 6= 0 ✏z 6= 0, ✏y = 0
(1) (2) (3)

mean(P) 1.000 1.000 0.999
std(P) 0.124 0.055 0.118
var(P) 0.015 0.003 0.013
corr(Pt,Pt�1) 0.536 0.495 0.539
cov(Pt,Pt�1) 0.008 0.001 0.007

Notes: This table shows the moments of simulated prices in different scenarios. Column 1 presents the
moments of simulated price in the extended storage model with both income and production shocks. Column
2 refers to the case that assumes zero production shock in the simulation. Column 3 refers to the case that
assumes zero income shock in the simulation. For the simulation, in column 2 and 3 I use the same policy
function of storage as in column 1. The simulations are performed through using estimated parameters in
Table 4 for 20,000 periods and 1,000 repetitions. The first 100 periods of simulations are deleted in order to
eliminate the effects of initial values.

explaining the variance and autocovariance of the oil price cycle for the period 1986–2009.
I also employ the impulse responses so as to illustrate the response of the oil price cycle to
income shock, and so as to compare it with the evidence from the data in the VAR analysis
in Section 3.
Counterfactual analysis

Table 6 presents a counterfactual analysis in three different cases of price simulation. The
first column presents the moments of simulated price cycles in the benchmark model with
a stochastic production and income process. Estimated parameters in Table 4 are used for
simulation. The values are consistent with those in column 2 in Table 5.

I derive two counterfactual exercises. First, I impose zero production shock over the
simulation period (✏Z = 0), and I use identical estimated parameters, as in the benchmark
model. Moreover, I employ the policy function of storage derived from the benchmark model
for interpolation and simulation. The moments of the simulated price with zero production
shock is shown in column 2 in Table 6. Second, I let the income remain constant at its
mean value over time (thus ✏Y = 0), and similarly I use the same parameters and the policy
function as in the benchmark model. The moments of the simulated price with zero income
shock are shown in column 3 in Table 6.

As column 2 illustrates, setting a zero production shock strongly impacts the volatility and
persistence of the oil price cycle. With a similar mean of 1.00, the variance of the simulated
price is 0.003 with zero production shocks–much lower than the 0.015 in the benchmark case.
These results indicate that the production shocks contribute 80 percent of the price variance
in the benchmark case. At the same time, the autocovariance of the simulated price with



a zero production shock is 0.001, versus 0.008 in the benchmark case. Thus the production
shock accounts for 87.5 percent of the autocovariance of price in the benchmark case.

However, the income shock moderately impacts the volatility and persistence of the price
cycles. The variance and autocovariance of the simulated price with zero GDP shock are 0.013
and 0.007, which, respectively, account for 13 percent and 12 percent of the corresponding
moments in the benchmark case.30

The higher importance of production shock to the oil price cycle is mainly because of
the large estimated production volatility (see Table 5). Due to the unobservable crude oil
production in the data, the SMM estimation method searches for the proper production
shock volatility (and other system parameters) in order to match model-implied moments
to the data moments. On account of the GDP volatility of 0.01 through the calibration,
the estimated production volatility is obtained when the simulated price have the closest
persistence (together with other moments) to that of the data (0.59). As I explained in Section
4.2, the production shock motivates storage and increases the smoothing effect. Subsequently,
the SMM estimates a production-shock volatility of 0.06—five times as large as the volatility
of GDP shock; in other words, the large estimated volatility of production shock reveals the
importance of the production shock to the oil price cycles.

5.4 Comparison with the VAR model

In order to observe whether the extended storage model is in line with the empirical evidence
in the VAR analysis, I compute impulse responses of the oil price cycle to income shocks (in
the extended storage model), and I compare them with the data of oil cycles from the VAR
model in Section 3. Figure 6 depicts the impulse responses of income shocks on the cyclical
components of world GDP and oil price in the storage model and VAR model. The impulse
responses in the VAR model are identical to those in Figure 3. I impose the same positive
income shock in period 0 in both the storage model and the VAR model, and I assume the
shock will return a value of 0 in the subsequent 14 periods. The production shock is set to
be 0 for all the periods. Panel (a) illustrates identical response of initial world GDP at 0.67
percent in period 0, and panel (b) plots the impulse responses of price.

In the storage model, as in equation (14), the income process is assumed to have 0
persistence. Thus, the impulse response on world GDP, as shown in panel (a), returns to 0
percent right after the period with positive income shock. Due to the autoregressive feature
of the VAR model, the impulse response of income shock on GDP process gradually fades

30The sum of the contribution to the overall price variance and autocovariance in the two counterfactual
cases does not equal 100 percent. This is mainly because the simulations of price vary in each case of the
1,000 repetitions, and I compute the fraction using a mean value of the 1,000 repetitions of simulations.



(a) IR of GDP to a demand shock

G
D

P
 (

%
)

 

 

0 2 4 6 8 10 12 14
−0.2

0

0.2

0.4

0.6

0.8

1
Storage model
VAR

(b) IR of Oil price to a demand shock
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Figure 6: Impulse responses of GDP and oil price cycle with respect to income shock in the
storage model and VAR model
Notes: Panel (a) plots the impulse responses of GDP with respect to the same positive income shocks in
period 0 in the storage model and VAR model. Panel (b) shows the impulse responses of price cycles with
respect to positive demand shocks (as shown in the panel (a)) in the storage model and VAR model. The
income shocks are simulated for 5,000 repetitions in period 0. The shocks returns to 0 in the subsequent 14
periods. The production shock is assumed to be 0 for all the periods. Figures plot the median value for the
5,000 repetitions of the simulations.

out after 12 periods.
By imposing the same income shocks in period 0 in both the storage model and VAR

model, I find that the oil price cycle has limited impulse response to world GDP shock in
the storage model. Panel (b) shows that facing the same positive demand shocks and zero
supply shock, the oil price cycle increase only 1 percent in the storage model, compared to
6.30 percent in the VAR model.

In summary, the revised commodity storage model, extended with both stochastic pro-
duction and income processes, is capable of capturing the large volatility and persistence in
the cyclical component of the oil price. The autocorrelation of the oil price cycle can be
fully attributed to the speculation effect. However, the model generates a moderate response
towards income shocks.



6 Conclusions

In this paper I employ a multivariate method to extract the cyclical component of the oil
price. I find a large and positive effect of global GDP shock on the oil price cycles in a
VAR model. I apply an extended commodity storage model with both income shock and
production shock to the cyclical component of oil prices, after all long-term trends have been
removed. This model is estimated using SMM for the period 1986–2009.

I obtain encouraging results in several respects. First, I find significant and meaningful
coefficients that are estimated from the commodity storage model. Second, through em-
ploying estimated parameters, the model is capable of replicating some stylized features of
oil cycles—in particular, the volatility and persistence of the oil price cycle. Comparing to
the model with only production shock, the extended storage model has better fitness to the
data. Furthermore, in the extended storage model, income shocks explain 13 percent of the
variance in oil prices, whereas production shocks explain 87 percent. This is due to the large
volatility of production and the intensive smoothing effect on the equilibrium price that is
triggered by the production shock. A comparison of impulse responses between the extended
storage model and the VAR model shows that the GDP shock generates more moderate effect
of the oil price cycles in the extended storage model than in the VAR analysis.

The limitations of this paper are mainly related to the simplified assumption of a station-
ary stochastic income process. The world GDP as a measure of world income is concluded as
a non-stationary series. For further extension of my model, it would be advisable to assume
an income process with both transitory and permanent components in an empirical storage
model. I can then assess the income effect on the price of crude oil and compare with the
results in the current paper. Through such an estimation, I will be able to evaluate the
fraction of transitory and permanent components in the income process.

Furthermore, this paper does not have a detailed setup for a speculator, such as the
OPEC core, with market power on controlling the oil price through production. Therefore,
possible research can be extended to an endogenous production process in the commodity
storage model. From the estimation of such a model, I may be able to show the importance
of having the endogenised production process. The estimates will also give an indication of
the market power of the speculator.
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Appendix

A The Implementation of the Beverage-Nelson decompo-

sition: a state-space approach

This appendix summarizes the state-space approach for the BN decomposition with detected
number of cointegrating relationship as discussed in Cochrane (1994) and Morley (2002).

I decompose the cyclical components using estimates from the VEC model as equation
(6) with one cointegration relationship. Due to the existence of one cointegration relationship
among variables, it is possible to identify speed of adjustment coefficients, denoted as �, and
cointegration vector, denoted as ↵, using maximum likelihood, such that

ˆ

⇧ = �̂↵̂,

where ˆ

⇧ denotes the estimates of ⇧ in the VEC model in equation (6). �̂ is a 3⇥1 coefficient
matrix. ↵̂ is a 1⇥3 structure coefficient matrix for the long-run stationary relationship

↵̂Xt = ↵̂y lnYt + ↵̂q lnQt + ↵̂p lnPt ⇠ I (0) ,

where ↵̂ =

h
↵̂y ↵̂q ↵̂p

i
.

Cochrane (1994) suggests a stylized method by transforming the VEC model into an
AR(1) format when computing the trend and cyclical components. Following Cochrane
(1994) I transform the VEC in (6) into an AR(1) format such that

"
4Xt

↵̂Xt

#
� µ̂ = B̂

 "
4Xt�1

↵̂Xt�1

#
� µ̂

!
+

"
ut

↵̂ut

#
, (21)

where

µ̂ =

⇣
I� ˆB

⌘�1
"

ˆ�

↵̂ ˆ�

#

ˆB =

"
ˆA1 �̂

↵̂ ˆA1
ˆ

⇧+ 1

#
.

↵̂, ˆ�, �̂, ˆA1 and ˆ

⇧ are the estimates of coefficient in the VEC model (6).
Beveridge and Nelson (1981)define the trend component of Xt as the expectation of the

h-step ahead forecast where h ! 1. Following Cochrane (1994), the trend component is



computed as

XT
t = Xt +

h
I3⇥3 03⇥1

i
B̂
⇣
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⌘�1
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!
,

and the cyclical component is computed as

XC
t = Xt �XT

t

= �
h
I3⇥3 03⇥1

i
B̂
⇣
I� ˆB

⌘�1
 "

4Xt

↵̂Xt

#
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!
.

B Solving the Nonlinear Rational Expectations Commod-

ity Market Model

This appendix summaries the collocation method of solving a simplified rational expectations
commodity market model with one state variable and one control variable following Miranda
and Fackler (2002). The extended model in this paper is solved in the same logic.

The simplified model
Let us consider a simple commodity storage model with a stochastic production process,

where at beginning of period t, the availability of the commodity is At. Meanwhile, suppose
that an amount Qt is sold to consumers at a market clearing price Pt = P

�
Q

t

Ȳ

�
. At each time

the producer can either produce or store the product, therefore I have that in each period
the availability equals the sum of storage and consumption, At = Xt + Qt. Speculators
observe the availability and make decisions on the storage amount Xt following an arbitrage
equilibrium condition, as shown in equation (15) and (16), derived from maximization of
expected profit. Then I can write the complementarity problem as follow:

ft = �Et


P

✓
At+1 �Xt+1

¯Y

◆�
� P

✓
At �Xt

¯Y

◆
� C (22)

Xt � 0, ft  0,

Xt > 0 =) ft = 0

Xt = 0 =) ft < 0.

Finally, the storage in the next period Xt+1 depends on the current states At and Yt, the
control variable Xt and the exogenous production shocks et+1 which is realized after time t.



Then the transition function of the state variable can be written as follow

At+1 = g (At, Xt, et+1) = Xt +
¯Z exp (et+1)

In this problem, the state space is A ✓ Rd
a , and the response space is X ✓ Rd

x . The
production shock e is normally distributed with mean 0 and variance �2.

Collocation method
To solve this rational expectation model with non-smooth policy function, I first specify

the state variable with N number of nodes, such that Ai for i = 1, 2, ..., N . After that, I
approximate the equilibrium price function P () in (22) as follow

P (A,X (A)) =
NX

j=1

cj�j (A) , (23)

where the equilibrium price function is a linear combination of known basis function �j with
coefficients cj for j = 1, 2, ..., N .31

Then I can rewrite the original complementary problem into to the form

f (Ai) = �
KX

k=1

NX

j=1

wk

⇥
cj�j

�
X (Ai) +

¯Z exp (e0)
�⇤

� P (Ai �X (Ai))� C (24)

X (Ai) � 0, f (Ai)  0,

X (Ai) > 0 =) f (Ai) = 0

for each i = 1, 2, ..., N . In equation (24), the random production shock e in the tran-
sition function is substituted with discrete approximation of ek and probabilities wk for
k = 1, 2, ..., K. This method transfers the model into N nonlinear equations and N unknown
coefficients cj for j = 1, 2, ..., N .

I use a two-layer-iteration-loop method to solve equation (24). First, I give an initial
guess of coefficient cj for j = 1, ...N . In the inner loop, with given initial guess of coefficients,
I find the optimal solution of the control variable X at each state nodes Ai in equation
(24).32 Second, using optimal solution of the control variable from the inner loop, I am able
to compute the updated coefficient cj using equation (23) in the outer loop. After that, the
newly updated coefficient enters the inner loop to compute optimal control variable at each
state variable again. The iteration carries on until the coefficients convergence.

31I employ cubic spline method for the basis function.
32Following Miranda and Fackler (2002), I solve the complementarity problem using min-max root-finding

method.
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