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Global Biodiversity Costs of Climate Change. 

Improving the damage assessment of species loss in 

Integrated Assessment Models 

Abstract: 

Climate change will have a major impact on global biodiversity. However, these changes – and their 

economic value– is inadequately captured in the existing Integrated Assessment Models (IAMs). We 

provide improved damage cost estimates based on a recent biophysical assessment of impact on species 

loss from increased global mean temperature, and value transfer from a recent global Delphi Contingent 

Valuation (CV) study of households´ willingness-to-pay (WTP) to avoid species loss due to deforestation 

of the Amazon rainforest. This is implemented in the FUND (Climate Framework for Uncertainty, 

Negotiation and Distribution) IAM. The numerical simulations suggest that the global species loss is lower 

than the original FUND model predicted. However, the economic valuation of the species loss is larger, 

resulting in higher aggregate biodiversity damage cost. Moreover, depending on the assumed marginal 

utility of consumption in the regions and discount rate used, the global Social Cost of Carbon Dioxide (SC-

CO2) could be more than seven times higher than in the original FUND 3.9 IAM.  This indicate that IAMs 

with incomplete assessment and valuation of species loss could greatly underestimate SC-CO2; and thus 

lead to underinvestment in greenhouse gas mitigation measures.   
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1. Introduction 

In the field of economics, Integrated Assessment Models (IAMs) are among the important 

decision support tools in climate policymaking. These models estimate the global economic costs 

of climate change, often presented in terms of Social Costs of Carbon (SCC) estimates, and hence 

should be as complete as possible in terms of coverage of damages. The impact on biodiversity 

and ecosystem services are, however, not included or only partially assessed in the existing models. 

According to the fifth Assessment Report (5AR) of the Intergovernmental Panel on Climate 

Change’s (IPCC), climate change will have a large impact on global biodiversity and ecosystem 

services, and is a key reason for concern (O’Neill et al. 2017). Thus, in order for the IAMs to be 

as complete as possible, it is important to quantify and these losses and value the related global 

damage costs1. 

Brooks and Newbold (2014) propose an updated biodiversity value function for assessing 

economic damages in IAMs. They use new global estimates of species loss rates due to global 

warming to re-calibrate the species loss function, and propose a new ecosystem nonuse value 

function. The latter is calibrated from Contingent Valuation Method (CV) and other Stated 

Preference (SP) studies of household´ willingness-to-pay (WTP) to preserve tropical rainforests 

and to protect endangered species in the U.S (Kramer & Mercer 1997; Richardson & Loomis 

2009). Relying on U.S: studies only, they implicitly assume US households´ ´ WTP to be 

representative of the global population. 

Our paper extends Brooks and Newbold’s (2014) analysis from looking at the US 

households´ WTP only, to address the WTP of  households worldwide to avoid the global species 

loss due to climate change . We achieve this by applying the results from a recent Delphi CV study 

of European, North American (USA and Canada), Oceanic (Australia and New Zealand) and 

South-East Asian households´ WTP to avoid specific scenarios for future species loss in the 

Amazon Rainforest (Strand et al. 2017). For the physical loss of species, we develop and calibrate 

a new species loss function based on the meta-analysis by Urban (2015). In contrast to the original 

species loss function in FUND 3.9, our functional form captures the accelerating increase of 

species loss with rising global mean temperature. Finally, whereas Brooks and Newbold keep 

                                                           
1 In the following, we will use the words “impacts” and “loss” to describe impacts in physical terms, and 

“(economic) damage cost” to describe the economic damage costs in monetary terms. 
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everything except species constant, we fully integrate this loss function into the FUND 3.9 IAM 

(Anthoff & Tol 2014a). We then run the model to estimate the global species loss, the ecosystem 

damage costs and the resulting updated global Social Cost of Carbon Dioxide (SC-CO2).
2  

The motivation for this paper is Brooks and Newbold’s (2014, p. 348) request for further 

economic research in order to improve the IAMs in terms of  “better estimates of the nonuse of 

biodiversity values through additional research on people's willingness to pay for biodiversity 

protection is sorely needed”. By using the Delphi Contingent Valuation (CV) study of households´ 

WTP to avoid further deforestation and species loss in the Amazon rainforest (Strand et al. 2017), 

we have now covered the welfare loss of more than 60% of the world's population, and about 70% 

of the global population outside of Latin America. For the regions that are not included in the 

Delphi CV study, we estimate the WTP by unit value transfer with income adjustment from the 

regions where we have WTP estimates. With an estimated one out of ten known species on the 

planet living in the Amazon rainforest (WWF 2017), it is immensely biodiverse. Hence, 

implementing these results in an IAM would provide a better estimate of the damage cost of 

climate change to the cultural ecosystem service of non-use values of biodiversity3. 

We show by updating the species loss function that the species loss is somewhat l compared 

to the current FUND 3.9 model. However, the updated WTP estimates results in higher global 

ecosystem service damage costs as a fraction of regional income. Moreover, the ecosystem service 

damage cost as a fraction of global damage costs are higher as well. This is true for all the regions, 

but ecosystem service damages do vary across regions. The updated estimation of global damages 

results in a higher global SC-CO2 compared to FUND 3.9 model. Under realistic assumptions the 

new global SC-CO2 could be more than seven times higher than predicted by the original FUND 

3.9 model.  

The rest of the paper is structured as follows. Section 2 describes three different IAMs 

(DICE, PAGE and FUND), and how species loss and ecosystem damage costs are included in 

these models. Section 3 updates the species loss function and WTP estimates in FUND 3.9.Section 

                                                           
2 Social Cost of Carbon Dioxide (SC-CO2) is a measure, in dollars, of the long-term damage done by a ton of carbon 

dioxide (CO2) emissions in a given year. (Mastrandrea 2009). 
3 The Delphi CV survey covers mostly the non-use values, as these distant beneficiaries from countries outside of 

South America have never visited the Amazon rainforest, (and thus had no use value in terms of e.g. recreational use 

of the forest). 
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4 implements this in FUND 3.9; and projects the species loss, ecosystem damage and the SC-CO2 

under different assumptions to test the sensitivity of the SC-CO2 estimates. Finally, section 5 

concludes and outlines avenues for further research in order to improve the reliability and validity 

of ecosystem service damage costs in IAMs, and thus also of the global SC-CO2 estimates.  

 

2. Biodiversity and ecosystem damage in IAMs 

The climate response in IAMs is usually described as impacts on society with one or more 

climate damage cost functions for each specific region (Mastrandrea 2009). These damage 

functions are usually converted to monetary estimates of the impacts in terms of loss of Gross 

Domestic Product (GDP) as a function of increased mean global temperature. The main purpose 

of IAMs is to better understand the global economic costs of climate change, and thus the economic 

benefits of policy measures to mitigate these impacts on social and natural systems. Damages in 

IAMs are generally assumed to rise with increasing temperature, but the size and functional form 

of these damage functions vary across the models. The global coverage and long time horizon of 

these IAMs necessitate a set of simplified assumptions, and there is a wide variation in how climate 

change damages occur in the models. There are many IAMs, but only a subset of them try to 

estimate the global economic damage costs from climate change. The most prominent ones of 

these are FUND, DICE and PAGE (Mastrandrea 2009). In this section, we will take a closer look 

at how biodiversity and ecosystem service damage cost are treated in these three models. 

 

2.1. DICE 

In the DICE (Dynamic Integrated Climate Economy) model, a representative agent 

maximizes her expected discounted future utility by choosing the level of consumption, savings 

and investment in greenhouse gas abatement based on a global aggregated constant-return-to-scale 

Cobb-Douglas production function. The climate change damages felt by the agent is specified as 

a global aggregated function. This single global damage function is based on the climate change 

impact from a list of sectors dependent on the magnitude of temperature change. However, the 

contribution of impacts from different sectors to total damages are not clearly represented in the 

model. According to documentation, the damages are based on studies of impacts in the United 

States, which are then scaled for application to other regions. Moreover, the climate change 
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damage estimation is to a large extent based on “rough estimates” and the authors acknowledge 

that the methodology is at a speculative stage (Nordhaus & Boyer 2000, p. 86). In DICE2007 

climate change damages predicted to affect “human settlement and natural ecosystems” is 

estimated to be 5.7% of total damage costs from a 2.5 °C rise in global mean temperature (Brooks 

& Newbold 2014; Nordhaus & Boyer 2000). 

 

2.2. PAGE 

PAGE (Policy Analysis of the Greenhouse Effect) is designed to allow all the five IPCC 

reasons for concern to be included in an IAM (Hope 2006, p. 19). The five IPCC reasons for 

concern are: i) risks to unique and threatened ecosystems, ii) risks from extreme climate events, 

iii) distribution of impacts, iv) aggregate impacts, and v) risks from future large-scale 

discontinuities. The model includes mean temperature dependent damages functions separated in 

eight world regions by two main sectors, “market” and “nonmarket”. The damage function 

includes a specified adaptation in the economy due to climate change, with an increasing annual 

“tolerable” level of temperature change. Like DICE, the damages in the different world regions 

are estimated based on impact studies in United States (Mastrandrea 2009). The relationships 

between impacts in different sectors and overall damages are, however, not clearly described in 

the models documentation, and there is no detailed description available nor discussion about 

biodiversity and ecosystem damage cost or losses (Hope 2006; 2008). This makes it difficult to 

relate the proportion of total damages to ecosystem services or biodiversity impact, and thus 

challenging to assess how a modified ecosystem and biodiversity impact function would change 

the initial results. 

 

2.3. FUND 

FUND (Framework for Uncertainty, Negotiation, and Distribution) has the most 

disaggregated presentation of climate change damages among the three mentioned models. The 

damage functions are dependent on both the size and the rate of temperature increase, and the 

model includes both sector- and region-specific impacts. The different sectors’ exposure to climate 

change is assumed to be affected by socioeconomic changes, and parameters in the model are 

estimated based on either published documentation or expert judgment. We also find an explicit 

damage function for ecosystem impact of climate change. Anthoff and Tol (2014a) state that the 
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ecosystem damage assessment is based on the “warm-glow” effect, which they describe as 

“Essentially, the value, which people are assumed to place on such impacts, are independent of 

any real change in ecosystems, of the location and time of the presumed change, etcetera – 

although the probability of detection of impacts by the “general public” is increasing in the rate of 

warming” (Anthoff & Tol 2014a, p. 15) . Thus, they assume that people are not able to express 

their utility from avoiding species loss in terms of their WTP from Contingent Valuation and other 

Stated Preference surveys. This is contrary to current evidence; see e.g. Johnston et al. (2017). The 

FUND 3.9 model’s open-access availability, and the explicitly stated assumptions and 

documentation including, makes it more straightforward to examine and update the ecosystem 

damages of climate change than DICE and PAGE. Like Brooks and Newbold (2014), we will in 

the next section look closer at FUND 3.9 and its ecosystem sector4. 

 

3. Updating the ecosystem damages in FUND 3.9 

The ecosystem damage function in FUND 3.9 is based on two components. The first 

component is the biodiversity component and it consists of a species loss function related to 

temperature change over time. The other is the impact biodiversity with an economic value 

function linked to the species loss function. We will in the following section present both these 

components and suggest a modified and updated versions of them, while keeping the same 

structure of the overall model. 

 

3.1 Biodiversity component 

The species loss function in FUND 3.9 is specified as 

 

𝐵𝑡 = 𝐵(𝑡−1)(1 − 𝜃 − 𝜑∆𝑇(𝑡−1)
2 ),    (1) 

 

where 𝐵𝑡 is the number of species in time 𝑡 on a global scale, 𝜃 and 𝜑 are parameters estimated to 

respectively 0.003 and 1.6 (𝜑 with a range from 0 to 3.2), and ∆𝑇 is the temperature change from 

year (𝑡 − 1) to 𝑡 (in degrees Celsius). These parameters are described as expert guesses in FUND 

                                                           
4 FUND 3.9 is written in Julia and is publically available at http://www.fund-model.org/versions 

http://www.fund-model.org/versions
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(Anthoff & Tol 2014a, p. 16), and the number of species is assumed to be constant at 14 000 000 

species until the year 2000. Hence, we can describe the species richness in FUND 3.9 as a function 

of an initial constant species loss rate 𝜃 over time (which occurs independent of climate change 

damages), multiplied by the square of the year-to-year temperature change. As Brooks and 

Newbold (2014) argues, the simplicity of the function has both its limitation and advantages. It 

does not represent the heterogeneity of biodiversity in all its forms, but the function can be 

calibrated using available quantitative studies. Further, Brooks and Newbold suggest a new species 

loss function based on studies of potential impacts of climate change on species and extinction 

rates; see equation (2) below: 

 

1 − 𝐿𝑡 = (
1−𝜃−𝜑∆𝑇2

1−𝜃
)

𝑡

,     (2) 

 

where 1 − 𝐿(𝑡) is the fraction of remaining species by some future year t, ∆𝑇 is the hypothesized 

constant annual temperature increase up to year t, and φ is a parameter based on existing studies 

of species loss under different climate change scenario (Malcom et al. 2006; May et al. 1995; 

Thomas et al. 2004; Warren et al. 2011). The shortcomings with equation (2) is that it is not 

flexible, and can handle only one scenario for species loss at a time. Furthermore, existing 

literature suggests an accelerating increase in species loss with future temperature rise (Urban 

2015), while equation (1) and (2) does not project that. Hence, to better capture the species loss 

projected by Urban, we present equation (3) for the species loss as a function of global mean 

temperature in year t: 

1 − 𝐿𝑡 = (1 + 𝜃 + 𝜅𝑇𝑡 + 𝜑𝑇𝑡
2).    (3) 

 

In addition to parameters above, we also introduce a parameter κ which we also calibrate 

according to new estimations. The prediction of species response to future climate change are 

highly uncertain, and several attempts have been made to estimate the species response, but with 

mixed results. We will therefor re-estimate the species loss function based on Urban (2015), who 

performed a meta-analysis of 131 published estimates of the number of species threatened by 

extinction. Among the studies in this meta analyses, we also find those Brooks and Newbold 
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(2014) base their estimates on. Urban (2015) reports the results from the meta-analysis of species 

extinction risk from climate change under four different scenarios, listed in table 1. The numbers 

are on a global scale, meaning that some regions will have higher extinctions risk than others. The 

meta-analysis estimates, in general, show a lower fraction of species threatened by extinction than 

models in Brooks and Newbold (2014) and FUND 3.9 do. 

 

Table 1: Predicted species loss from climate change under four different global mean temperature increment scenarios; 0.8, 2. 3 

and 4.3 °C (Urban 2015). 

Global mean temperature rise: 0.8°C  2 °C 3 °C 4.3 °C 

Species extinction: 2.8 % 5.2% 8.5 % 16% 

 

Natural rates of species extinction (or the probability/risk of extinction), denominated as 𝜃 

in FUND 3.9 and estimated from fossil records, are believed to be between 10-7 and 10-6 per species 

per year, and are typically assumed to be constant over geologic time (May et al. 1995). The current 

background extinction rate is estimated by May et al. (1995) to be approximately 10-3. Pimm et al. 

(1995) estimates the value to be in the range of 2 x 10-4 to 2 x 10-5. However, this value could also 

be close to 1.5 x 10-3 depending on the number of threatened species that were to become extinct 

in the next 100 years. If we assume the lower estimates in Urban (2015) to be our current rate of 

species loss, then 𝜃 = 2.8 x 10-4 which is not unreasonable compared to estimates from Pimm et 

al. (1995). 

The unknown parameters φ and κ, are calibrated according to the results from Urban (2015), 

with suggested values of κ = 1.73 x 10-2 and φ = 4.4 x 10-3. Additionally, we investigate the 

robustness of our findings by assuming different extreme values for the predicted species loss.  

 

3.2 Impact biodiversity component 

In the impact biodiversity component, Anthoff and Tol (2014a) defines the impact of climate 

change on ecosystems, biodiversity, species, landscape etc. as followed 
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𝐸𝑡,𝑟 = 𝛼𝑃𝑡,𝑟

𝑦𝑡,𝑟

𝑦𝑡,𝑟
𝑏⁄

1+
𝑦𝑡,𝑟

𝑦𝑡,𝑟
𝑏⁄

∆𝑇𝑡
𝜏⁄

1+
∆𝑇𝑡

𝜏⁄
[1 + 𝜎 (

𝐵0−𝐵𝑡

𝐵𝑡
)],   (4) 

where E is the value of loss of ecosystems at time t in region r, α is a parameter value of US $50 

per person if per capita income equals the OECD average in 1990, 𝑦 denotes per capita income, yb 

is a parameter set to US $30 000,5 P denotes population size, τ a parameter equal to 0.025, ΔTt 

denotes the change in temperature (in degree Celsius), 𝜎 is 0.05, 𝐵0 is the initial number of species 

set to 14 million, and 𝐵𝑡 is the number of species in year t. E can also be interpreted as the WTP 

to avoid the loss of global species to climate change (Brooks & Newbold 2014). As Brooks and 

Newbold (2014) point out, there are some fundamental difficulties with equation (4). The damages 

mainly depends on the annual temperature change and not the fraction of remaining species. 

Moreover, there are no damages if the year-to-year temperature change is zero, even if the species 

loss is positive. We will later show that the impact on the biodiversity component accounts for a 

large share of the damage cost in FUND 3.9. Hence, updating equation (4) would have a significant 

impact on the overall damage cost in the model. 

A new valuation function is introduced by Brooks and Newbold (2014) with a very similar 

functional form to Sterner and Persson (2008) and Weitzman (2010) 

 

𝑊𝑇𝑃𝑡 = 𝑦𝑡 − [𝑦𝑡
1−𝜂

+ 𝛽(𝜂 − 1)𝑙𝑛 (1 +
Δ𝐵𝑡

𝐵𝑡
⁄ )]

1
(1−𝜂)⁄

.   (5) 

 

We make a few but important changes to this function, in order to make it a better fit with 

the 16 world regions in FUND 3.9; listed in table 2. We estimate the WTP per capita for all of the 

world regions in FUND 3.9 based on Strand et al. (2017) 

 

𝑊𝑇𝑃𝑡,𝑟 = 𝑦𝑡,𝑟 − [𝑦𝑡,𝑟
(1−𝜂𝑟)

+ 𝛽𝑟(𝜂𝑟 − 1)𝑙𝑛 (1 +
Δ𝐵𝑡

𝐵𝑡
⁄ )]

1
(1−𝜂𝑟)⁄

.  (6) 

 

                                                           
5 Which is the OECD average per capita income in year 1990. 
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y denotes per capita income in year t in region r, ∆𝐵𝑡 is the difference between projected 

biodiversity level without climate-change in year t and the projected biodiversity level under 

business-as-usual (BAU) scenario, (𝐵𝑡), 6 and βr is a calibrated parameter in each region. Hence, 

equation (6) expresses the households’ consumption of market goods and services proportional to 

income in every period, and biodiversity is characterized as goods for the consumers. ηr is 

interpreted as the elasticity of marginal utility of consumption in region r, the higher the value of 

η is the less we value a dollar more of consumption (Sterner & Persson 2008; Weitzman 2010). 

We set η= 2 for all the regions as a base value, which seems to be a  reasonable value as it is 

frequently used assumed in climate change modeling (Scarborough 2010; Sterner & Persson 2008; 

Weitzman 2010). Moreover, we later look at different combination of η, since this value may vary 

a cross the different regions. Table 2 lists all the regions in FUND 3.9 (Anthoff & Tol 2014b). 

 
Table 2: The 16 geographical regions in FUND 3.9 (Anthoff & Tol 2014b). 

1. USA 

2. Canada 

3. Western Europe 

4. Japan and South Korea 

5. Australia and New Zealand 

6. Eastern and Central Europe 

7. Former Soviet Union 

8. Middle East 

USA 

CAN 

WEU 

JPK 

ANZ 

EEU 

FSU 

MDE 

9. Central America 

10. South America 

11. South Asia 

12. Southeast Asia 

13. China plus 

14. North Africa 

15. Sub Saharan Africa 

16. Small Island States 

CAM 

SAM 

SAS 

SEA 

CHI 

NAF 

SSA 

SIS 

 

In Strand et al. (2017) they ask over 200 environmental valuation experts from 37 countries 

on four continents to predict their own country´s WTP per household for Amazon forest protection, 

using the Delphi Contingent Valuation (CV) method. Their survey is based on results on Soares-

Filho et al. (2006), which project that roughly 30% of the forest area and 23% of the mammal 

species may face extinction in 2050 under the business as usual scenario. The WTP estimates to 

avoid this species loss are presented in table 3. 

  

                                                           
6 ∆𝐵𝑡 = (𝐵𝑡

0 − 𝐵𝑡), where 𝐵𝑡
0 is projected biodiversity level without climate change in year t. 
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Table 3: Table contains list of: (i) geographical regions in FUND 3.9 (see table 2 for explanation of the abbreviations); (ii) weighted 

average of GDP per capita in each geographical region; (iii) weighted average of household size in each geographical region; (iv) 

the weighted average of annual WTP per household in the geographical region; (v) calibrated parameter (βr) based on the data 

collected; and (vi) weighted average of WTP per household in the geographical regions by Anthoff and Tol (2014a). Data for (i)-

(vi) are collected from Strand et al. (2017); Eurostat (2016); Nakono (2012); World World Bank (2017); and UN (2012). All US$ 

values are reported in 2012$ (see appendix A for inflation adjustment according to IMF).  

The 

geographical 

regions in 

FUND 3.9 

(See table 2) 

Weighted average 

of GDP per capita 

in the regions 

(in 2012 US$) 

Weighted average 

of the household 

size in the regions 

(in year 2012) 

Weighted average 

of the annual WTP 

per household in 

the regions given 

eq. (6)  

(In 2012 US$) 

Calibration 

of the region 

specific 

parameter 

(βr) from eq. 

(6) 

Weighted 

average of the 

annual WTP per 

household given 

eq. (4) 

(In 2012 US$) 

USA 50 900 2.59 67.70 3.18x10-8 71.29 

CAN 52 200 2.55 90.20 4.42x10-8 65.21 

WEU 43 211 2.22 48.65 3.97x10-8 53.15 

JPK 40 436 2.43 45.52 3.96x10-8 55.37 

ANZ 62 240 2.43 41.62 1.37x10-8 72.68 

EEU 12 721 2.55 25.09 5.65x10-8 2.24 

FSU 10 094 2.72 19.91 1.98x10-8 6.83 

MDE 12 637 5.64 24.92 3.69x10-8 3.44 

CAM   8 300 3.94 30.41 1.83x10-7 1.43 

SAM 10 890 3.44 39.91 1.46x10-7 1.68 

SAS   1 404 4.13 20.95 3.76x10-6 0.35 

SEA   3 885 3.97   9.05 2.35x10-7 0.80 

CHI   6 386 3.04 23.40 6.21x10-7 0.45 

NAF   4 095 5.06 15.01 3.62x10-7 0.81 

SSA   1 766 4.59   7.00 3.65x10-7 0.94 

SIS   7 227 3.50 26.48 1.51x10-7 1.79 

 

The USD values in table 3 are listed in nominal units7, and the regions are represented by a 

weighted average of the population in each country of their respective regions. GDP per capita, 

household size and WTP are collected and calculated using a combination of sources (Eurostat 

2016; Nakono 2012; Strand et al. 2017; UN 2012; World Bank 2017), while βr is calibrated 

according to equation (6). 8 Some of the regions where not represented in Strand et al. (2017), for 

example, FSU, MDE, CAM, SAM, NAF, SSA and SIS. These regions’ WTP are unit value 

transferred with income adjustment from other regions with similar characteristics, using equation 

(7) (Navrud & Ready 2007). 

                                                           
7 Before using the dollar values in FUND 3.9, we adjust all values to 1995 US $ according to the geographical regions, 

see appendix A. 
8 The damage cost are accumulated from per capita damages in FUND, so we adjust the values from per household to 

per capita. 
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𝑉𝑝 = 𝑉𝑠 (
𝑌𝑝

𝑌𝑠
⁄ )

𝜀

,     (7) 

where 𝑉𝑝 is the unknown WTP in a region p, 𝑉𝑠 is the known WTP in region s, 𝑌𝑝 and 𝑌𝑠 are the 

income levels per capita, in region p and s, respectively; and 𝜀 is the income elasticity of WTP. 

We have used 𝜀 =1 in this unit value transfer; based on the results from Strand et al. (2017). In the 

far right column in table 3, we use equation (4) to estimate the WTP per household to be used in 

FUND 3.9. Here we insert the values from table 3, and use the temperature change in year 2050 

from FUND 3.9’s own forecast, ∆𝑇2050 = 0.033. As table 3 shows, FUND 3.9 frequently estimates 

a different WTP compared to the results from Strand et al. (2017). Especially, the estimates for 

non-OECD countries seems to be significantly lower than Strand et al. (2017). The likely reason 

is: i) that there is only one parameter α which differentiates the geographical regions in FUND 3.9 

into two groups (OECD and non-OECD), while in equation (6) there is one unique parameter βr 

for every geographical region; and ii) that the WTP in the regions are mainly expressed as per 

capita income as a fraction of OECD average (given all other values are fixed). We also find that 

for OECD countries (𝑦𝑡,𝑟 ≥  𝑦𝑏) in equation (4), the WTP as a fraction of GDP per capita decreases 

with higher income. While for non-OECD countries (𝑦𝑡,𝑟 ≤  𝑦𝑏 ), the WTP as a fraction of GDP 

per capita increases with lower income. 

 

4. Model simulation 

In the following section we implement the revised and updated species loss and ecosystem 

damage cost function and values presented in chapter 3 in FUND 3.9. We compare the different 

species loss projections, and run sensitivity analyses to check for robustness. 
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4.1 Predicted extinction risk from climate change 

 
Figure 1: Projection of threatened species with rising global mean temperature, re-calibrated and the original FUND 3.9.  

 

Existing literature suggests that species loss due to future climate change will not only 

increase but to accelerate as global temperatures rise (Urban 2015). In figure 1 we show the 

projected fraction of species threatened by global mean temperature rise, comparing the original 

FUND 3.9 with our re-calibrated model. Here we only look at the relative rise in global mean 

temperature and not at the time horizon, which we will come back to later in figure 2. The new 

projected loss is lower than what FUND 3.9 projects given temperature rise. The main reason is 

that the meta-analysis by Urban (2015) finds a lower projection of species loss with rising global 

mean temperature than what FUND 3.9 projects with equation (1). A central assumption when the 

time frame is presented, and was also pointed out earlier, is that the number of species is assumed 

to be constant until the year 2000 in FUND 3.9 (Anthoff & Tol 2014a, p. 16). So if the global mean 

temperature rises by 2°C, the global species loss increases to 5.3% in the re-calibrated model and 

27.3% in FUND 3.9. This would happen in year 2074, or 74 years after the models assumes that 

the number of species are constant. If the Earth continues to warm up to 3°C, the extinction risk 

rises to 9.3% in our estimates compared to 36.7% according to FUND 3.9. Which is in 2097 
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according to the simulation. With 5°C global mean temperature rise, we estimate risk of losing 

19.9% compared to 52.3% according to FUND 3.9, in year 2142. The new estimates are 

approximately the same as Urban (2015) finds in the meta-analysis. If we, however, in figure 1 

assumes the preindustrial global mean temperature rather than year 2000 as our starting point, then 

we can see that we have already passed the 1°C mark in year 2015 (NASA 2016). So with this 

assumption, in year 2015 the predicted global species loss increased to 2.3% in our estimates 

compared to 16% according FUND 3.9. Thus, this underlines how important the assumptions are 

when projecting the global species loss. 

 

Figure 2: Projection of global species loss over time comparing scenario no climate change, re-calibrated model and FUND 3.9. 

 

If we measure the number of species left in year t, figure 2 shows the comparison of our re-

calibrated model with FUND 3.9 and assumption of no climate change. Here, the parameter 

assumption of no climate change is the same from our section 3 in equation (3), 𝜃 = 2.8 x 10-4 each 

year. In year t =200, our estimated model projects approximately 70% remaining species compared 

to 37% according to FUND 3.9. Assuming that there are some species projected to go extinct with 

no climate change, these numbers are corrected to 74% and 40%, respectively. It is important to 
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point out that the annual temperature change in FUND is not constant. This is why our curves in 

figure 2 are not linear like Brooks and Newbold (2014), who assumed a constant annual 

temperature change. 

 

4.2 Projected ecosystem damages and the social cost of carbon dioxide 

Figure 3: Projection of ecosystem damage cost as a fraction of income in different regions, using FUND 3.9 and re-calibrated 

model, with using the new loss function in equation (3). With f in the description, we combine equation (3) with the old valuation 

function in equation (4). With n in the description, we combine in equation (3) with the new valuation function in equation (6) 

 

Figure 3 above shows the projection of ecosystem damage cost as a fraction of income, in 

selected regions. An f in the region description indicates that we have combined the new species 

loss function in equation (3), with the original damage function in FUND 3.9 in equation (4). With 

indicator n in the region description, we have combined the new species loss function in equation 

(3) with the new damage function in equation (6). The loss of species in the new valuation function 

are estimated using η=2, and the income is measured in GDP per capita. The new ecosystem 

valuation function in equation (6), projects the fraction of income to increase over time at an 

increasing rate. FUND 3.9 on the other hand projects that this fraction will increase with a 

decreasing rate over time. As stated in section 3, the original damage cost function in equation (4) 

is more dependent on the yearly temperature change rather than actually species loss. So with 
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global mean temperature rise declining over time, the valuation in equation (4) predicts lower 

damages as a fraction of income. Thus, the concave form of FUND 3.9’s prediction.  

Figure 4: Projection of ecosystem damage cost as a fraction of income in different regions, using FUND 3.9 and re-calibrated 

model, with the old species loss function in (1). With f in the description, we combine equation (1) with the old damage cost 

function in equation (4). With n in the description, we combine the loss function in (1) with the new damage cost function in 

equation (6) 

 

In figure 4, we show the projection of ecosystem damages as fraction of income given the 

old species loss function, according to equation (1). Hence, an f in the region description in figure 

4 indicates that we have combined the old species loss function in equation (1), with the original 

damage cost function in FUND 3.9 in equation (4). With indicator n in the region description, we 

now have combined the old species loss function in equation (1) with the new damage cost function 

in equation (6). By comparing figures 3 and 4, we see that as the damages as a fraction of income 

increases more rapidly in figure 4 than in figure 3 with the new species loss function (3). FUND 

3.9’s damage cost on the other hand, does not seem to be very different even with higher species 

loss in equation (1). This yet again underlines the temperature change dependency rather than 

actual losses for the species loss function in (1). 
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Figure 5: Projection of total damage cost and ecosystem damage cost over time, comparing FUND 3.9 and re-calibrated model. 

In 1995 US $. 
 

The total global damage costs in FUND 3.9 is divided into economic damage cost and non-

economic damage cost. 9 If we compare the global ecosystem damage cost with the total damage 

cost, figure 5 shows how our re-calibrated model compare with FUND 3.9. The ecosystem damage 

cost in FUND 3.9 is relatively flat over time, while in the re-calibrated model the damage cost 

increases with an accelerating speed. This affects the total damage costs, which increase more than 

in the original model. Compared with FUND 3.9, the re-calibrated ecosystem damage cost 

represents a bigger share of the total damage cost, and hence also the non-economic damage cost10. 

 

FUND also reports the global Social Cost of Carbon (SCC), which according to Anthoff et 

al. (2011) in FUND is defined as follows: 

𝑆𝐶𝐶𝑟 =
∑

𝐷𝑡,𝑟(𝐸1950 + 𝛿1950, … , 𝐸𝑡 + 𝛿𝑡) − 𝐷𝑡,𝑟(𝐸1950, … , 𝐸𝑡)

∏ 1 + 𝜌𝑡
𝑠=2010

3000
𝑡=2010

∑ 𝛿𝑡
3000
𝑡=1950

⁄
 

                                                           
9 In Appendix A, we show a detailed list of economic and non-economic damage cost in FUND 3.9. 
10 The ecosystem damage cost as a fraction of non-economic damage cost is illustrated in figure A1, in appendix A. 
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(8) 

 

where SCCr is the social cost of greenhouse gas in region r (in 1995 US $ per ton), t and s denotes 

time (in years), D are impacts in US dollars per year, E are emissions of carbon, δ are incremental 

emissions11 and ρ is the discount rate (Anthoff et al. 2011). From equation (8) we use the base case 

of global social cost of carbon: 

 

𝑔𝑆𝐶𝐶 = ∑
𝑌2010,𝑟𝑒𝑓

𝑌2010,𝑟

16
𝑟=1 𝑆𝐶𝐶𝑟.     (9) 

 

where gSCC is the global social cost of carbon, Y2010,ref is the average per capita consumption in 

the reference region12 in year 2010, and Y2010,r is the regional average per capita consumption in 

year 2010. The estimated global SCC in 2010 are reported in table 4 using FUND 3.9 and the new 

estimations. FUND 3.9 reports SCC in metric tons of carbon, while in this paper we use metric 

tons of carbon dioxide CO2, i.e., Social Cost of Carbon Dioxide (SC-CO2).
13 

 
Table 4: Estimated global Social Cost of Carbon Dioxide (SC-CO2) in 2010. New lists the SC-CO2 assuming new species loss (3) 

and damage cost function (6). FUND 3.9 lists the original SC-CO2 prediction by FUND 3.9. New w/ (1) lists the SC-CO2 with old 

species loss (1) and new damage cost function (6). FUND 3.9 w/ (3) lists the SC-CO2 assuming new species loss function (3) and 

old damage cost function (4). Discount rate (ρ) is assumed 2% and 3%. All values listed in 1995 US $. 

 New FUND 3.9 New w/ (1) FUND 3.9 w/ (3) 

Global SC-CO2 (ρ ≈ 2%)  $62.91  $27.80 $-7.84  $27.82 

Global SC-CO2 (ρ ≈ 3%) $6.78 $6.55 $6.23 $6.55 

 

Table 4 shows that the estimated global SC-CO2 with ρ ≈ 2% is US $62.91, with our re-

calibrated model14. These projections are more than twice the size of what FUND 3.9 reports. 

Moreover, FUND 3.9’s estimated global social cost of carbon is roughly the same even with less 

species loss. This is shown in the table with original FUND 3.9 and FUND 3.9 with re-calibrated 

species loss function (3). When we use the updated ecosystem damage cost and old species loss 

                                                           
11 SCCr, E, and δ are reported in metric tons per year. 
12 The reference region in FUND 3.9 is the world (Waldhoff et al. 2014) 
13 To convert from metric ton of CO2 to metric ton of carbon, multiply by 

12

44
 (Carbon Trust 2008) 

14 Roughly US $ 89.20; USA-inflation-adjusted to 2010 US $ 
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function (New w/ (1)), table 5 shows a negative global SC-CO2. The intuitive explanation is that 

the possibility for adaption is more difficult the more we value the ecosystem, thus leading to lower 

SC-CO2 while the ecosystem damages are far greater. Evidently, the values are lower with ρ ≈ 3%, 

and the difference between FUND 3.9 and the updated model is not so large anymore. This is due 

to the fact that the growing ecosystem damages are greater in the far future, as shown in figure 3 

and 4. A low discount rate, in particular, gives a greater weight to the longer-term impacts. 

 

 
Figure 6: Projection of ecosystem damages as a fraction of income in USA, using different η and species loss functions. Numbers 

in description indicates the assumed marginal utility of consumption η values (2, 2.5 and 3). N is the new loss function (3) and f is 

the old loss function (1) 

 

The correct value of elasticities of marginal utility of consumption η, is a topic for discussion. 

The value of 2 is not unreasonable, but it may vary across regions. Figure 6 underlines the 

importance of using a reasonable value for η by looking at the results in USA. n is the new species 

loss according to equation (3), f for species loss according to equation (1), and the numbers indicate 

the value of η. As figure 6 shows, a low (higher) η leads to a lower (higher) ecosystem damage 

cost as a fraction of income over time. 
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Table 5: Estimated global Social Cost of Carbon Dioxide (SC-CO2 under different assumption of marginal utility of consumption 

η, in 1995 US $.  

 η=2 η=3 ηOECD = 2 

ηNON-OECD =3 
FUND 3.9 

Global SC-CO2 (ρ ≈ 2%)  $62.91 $201.22 $73.76  $27.82 

Global SC-CO2 (ρ ≈ 3%) $6.78 $10.69 $9.64 $6.55 

 

Table 5 lists the sensitivity of global SC-CO2 with different η. With η =3 and ρ ≈ 2%, the 

global SC-CO2 is more than three times the size of η =2, in our updated model. Moreover, if we 

assume a lower η in OECD countries than non-OECD, the estimated global SC-CO2 is 

approximately $73.76. All of these values are higher than what FUND 3.9 originally estimates 

with ρ ≈ 2% or ρ ≈ 3%. 

 

5. Concluding remarks 

We update and extend both the climate change induced species loss function and the 

economic valuation of this species loss in the Integrated Assessment Model (IAM) FUND 3.9, in 

order to better account for spatial heterogeneity in both species loss and households´ willingness-

to-pay (WTP) to avoid this loss. We use results from a global Delphi Contingent Valuation (CV) 

study together with value transfer techniques to increase the global coverage and reliability of the 

damage cost estimates for species loss. Thus, we get a more comprehensive estimate of the social 

costs of carbon in terms of SC-CO2. SC-CO2 estimates are used as decision support and input to 

Benefit-Cost Analyses of climate change mitigation and adaptation measures; see e.g. Greenstone 

et al. (2013) 

The new species loss function projects lower species loss than FUND 3.9. However, the 

improved economic valuation of the species loss results in higher damage costs for all geographical 

regions. Thus, the damage costs now increase more with rising global mean temperature, resulting 

in higher global damage costs. This in turn gives higher overall global SC-CO2 estimates than in 

FUND 3.9. When testing for robustness in sensitivity analyses, the global SC-CO2 estimates were 

consistently higher with the updated species loss and economic value functions. 

Sensitivity analyses were also conducted in order to illustrate the uncertainty in the estimates 

at different stages of the damage cost function approach used here to calculate the SC-CO2 
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estimate. The growing biodiversity damage costs are greater in the far future, and the magnitude 

of global SC-CO2 is very sensitive to the assumptions used for the social discount rate and the 

elasticities of the marginal utility of consumption. Therefore, future analyses should look into these 

two factors, but also evaluate the current practice in FUND 3.9 (and other IAMs) of updating 

economic damages to current prices using US dollars and the US Consumer Price Index. Ideally, 

Purchase Power Parity (PPP) adjusted exchange rates should be used to convert damages in 

different regions to PPP-USD, and the regional CPIs (see Appendix A) should be used to update 

regional damage estimates to current values. For species loss this implies that households´ 

valuation of public goods like biodiversity increase at the same rate as the market prices of the 

basket of goods that underlies the CPI. However, people’s valuation of species loss could deviate 

from the CPI, due to increased preferences for biodiversity preservation and increased scarcity due 

to the continued loss of species from climate change and other causes. 

With the baseline assumptions, the estimated SC-CO2 more than doubles compared to the 

original FUND 3.9 model, and the sensitivity analysis  showed that  SC-CO2 could be more than 

seven times higher than reported in the original FUND 3.9. As SC-CO2 estimates are used as 

decision support and input to Benefit-Cost Analyses of climate change mitigation and adaptation 

measures (e.g. Greenstone et al. (2013)), our results should be used in the continuous update of 

these estimates in order to achieve the global economic optimal solution to climate change 

mitigation and adaptation measures. 

  



22 
 

Appendix A, tables and figures 

A1: Inflation adjustment 
 
Table A1: Weighted average inflation adjustment for each geographical region from 2012 US $ to 2010 US $ and from 2012 US 

$ to 1995US $, Source: IMF 

Region 2012 dollar 2010 dollar 1995 dollar 

USA 1.00 0.95 0.67 

CAN 1.00 0.95 0.72 

WEU 1.00 0.96 0.71 

JPK 1.00 0.98 0.73 

ANZ 1.00 0.95 0.65 

EEU 1.00 0.94 0.20 

FSU 1.00 0.92 0.06 

MDE 1.00 0.82 0.28 

CAM 1.00 0.91 0.34 

SAM 1.00 0.91 0.32 

SAS 1.00 0.83 0.31 

SEA 1.00 0.92 0.33 

CHI 1.00 0.94 0.69 

NAF 1.00 0.87 0.43 

SSA 1.00 0.84 0.16 

SIS 1.00 0.88 0.22 

World 1.00 0.92 0.46 

 

 

A2: Total damage in FUND 3.9 
 
Table A2: In FUND 3.9, the total global damage cost is divided into economic damage cost and non-economic damage cost. 

Total damage cost in FUND 3.9 

 Economic damage cost 

 Water 

 Forests 

 Heating 

 Cooling 

 Agricultural 

 Costs and costal protection 

 Tropical and extra tropical storms 

 Income (GDP) 

 Other economic damage cost 

 Non-economic damage cost: 

 Species 

 Human health: Diarrhea, Vector-borne diseases, Cardiovascular and respiratory mortality 

 Wetland 

 Other non-economic damage cost 
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Figure A1: Projection of ecosystem damage cost as a fraction of global non-economic damages cost over time, comparing FUND 

3.9 and re-calibrated model. In 1995 US $. 

 

Figure A1 shows the ecosystem damage cost as a fraction of non-economic damage cost, for 

FUND 3.9 and the re-calibrated model. In FUND 3.9, this fraction starts at a higher share than in 

our re-calibrated model. Moreover, the share of ecosystem damage costs decreases after 

approximately 100 years run in FUND 3.9. The re-calibrated ecosystem damage on the other hand 

starts well below FUND 3.9, but rapidly increases over time. This increment continues beyond the 

time horizon in figure A1, reaching almost a share of 100%. 
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