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Abstract 

Minimum tillage (MT) is a key component in the promotion of conservation agriculture (CA). This 
paper asks whether MT reduces cropland expansion and thus deforestation. We develop a simple 
theoretical household model of land expansion, and test hypotheses by estimating a double hurdle 
model using household survey data from 368 smallholders in rural Zambia. We find that about 19% 
of the farmers expanded cropland into forests, clearing an average of 0.14 ha over one year. Overall, 
MT adoption does not significantly reduce deforestation among households in our sample, while 
labor availability stimulate expansion. Yield augmenting agricultural technologies (such as MT) may 
not reduce expansion unless combined with other forest conservation measures. 
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1 Introduction  

Smallholder farmers in Sub-Saharan Africa (SSA) need to raise agricultural productivity to feed a 

growing population, and – relatedly – to increase farm income to reduce own poverty.  Costly 

agricultural inputs and constrained access to credit leave area expansion as the main option for many 

smallholders. Despite its potential to improve both crop yields (Ehui and Hertel 1989) and 

production (De Janvry and Sadoulet 2010) in the short-term, cropland expansion is often 

unsustainable because farmers face diminishing land productivity and adverse environmental 

impacts of forest-loss.  

Agricultural land expansion is the main cause of tropical deforestation (Angelsen and Kaimowitz 

2001; Gibbs et al. 2010). Forest loss has contributed about one-third of the accumulated increase in 

greenhouse gases (GHG), and makes up about one-tenth of the current emissions (IPCC 2013). 

Climate change exposes smallholders to higher rainfall variability and other climate related shocks 

(Hallegatte et al. 2016). This hampers the efforts to reduce poverty in SSA, both due to the direct 

effects on crop production, and indirectly through destabilizing agricultural markets and higher risks 

making farmers reluctant to undertake investments in the sector. The dual challenge of smallholder 

farmers in SSA is, therefore, to intensify agricultural production sustainably while mitigating and 

adapting to predicted climate change.  

Several agricultural technologies have been proposed to meet this dual challenge, based on the 

assumption that intensifying agriculture would raise land productivity and spare nature. These 

technological options, exemplified by the Asian green revolution of the 20th century, altered factor 

intensities by increasing the use of labor, capital, inorganic fertilizers, improved seeds and tillage. 

Currently, there is strong political support for climate smart agriculture (CSA) as a major avenue to 

simultaneously raise smallholder agricultural productivity and enhance climate change adaptation 

and mitigation in SSA. CSA is a broad-based approach that includes policy reforms to support new 

technological solutions and farm management practices, which includes conservation agriculture 

(CA). CA has three key components: minimum tillage (MT), in-situ crop residue retention and crop 

rotation (Thierfelder et al. 2015). It aims to improve agricultural land productivity while delivering 

adaptation-mitigation co-benefits (Govaerts et al. 2009; IPCC 2014; Thierfelder and Wall 2010; 

UNEP 2013).  
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This paper focuses on household-led cropland expansion and addresses the where, why and how 

much questions. We test the effects of CA practices on cropland expansion using a consistent 

theoretical household model and an empirical analysis based on detailed survey data on farm, 

household and contextual characteristics. We focus on MT because it is the basis and main 

component of CA. Our data are from Zambia, a country which - despite a high forest cover of 

about 66% (FAO 2015; Kalinda et al. 2013) – experiences high deforestation driven by household or 

centrally planned (e.g., farm blocks) agricultural expansion, urbanization, new settlements, road 

development and mining. 

The literature suggests two major pathways through which MT may contribute to reduced GHG 

emissions. The first is through improved soil carbon sequestration resulting from reduced tillage and 

enhanced buildup of soil organic matter (UNEP 2013). However, a growing evidence base 

suggesting that MT has limited potential to sequester soil carbon challenges this view (Powlson et al. 

2014; Powlson et al. 2016; VandenBygaart 2016).  The second pathway, the focus of this paper, links 

MT to reduced deforestation via its effects on crop yield and input use.  

MT improves crop yield by facilitating early planting, buildup of soil organic matter and improved 

input use efficiency (Haggblade and Tembo 2003). On one hand, higher yield means the same 

output can be delivered from less agricultural land, and should therefore take the pressure off 

forests, sometimes referred to as the Borlaug hypothesis (Angelsen and Kaimowitz 2001). However, 

higher yield also provides an incentive to shift resources to a more profitable agricultural sector, 

including expanding the land area if feasible. Angelsen and Kaimowitz (2001) found that new 

technologies that raise agricultural productivity might in fact stimulate deforestation by making 

agriculture more profitable, sometimes referred to as the 'Jevons' paradox.  The constant output 

assumption does not hold.   

MT is also labor-intensive (Giller  et al. 2009; Thierfelder et al. 2015), especially in the initial years of 

adoption. Labor-intensive technologies absorb family labor (and possibly raise rural wages) and 

might therefore have a land-sparing effect. As such, it is not readily clear how MT affects 

deforestation. This depends on the factor intensities and yield impact of the particular MT 

technology, market conditions, and preferences and farm constraints (Angelsen 1999). The scale of 

the analysis also matter. Large-scale adoption provokes general equilibrium effects in the form of 
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lower output prices and higher wages (if labor intensive), which can partly or fully offset the effect 

of higher profitability (Angelsen and Kaimowitz 2001).  

Most studies on the link between agricultural technologies and deforestation are global or national in 

scope and apply inadequate econometric methods (Barbier and Burgess 2001; Gibbs et al. 2010; 

Phelps et al. 2013; Rudel et al. 2009; Rudel 2013), making them less informative to local contexts. 

Others lack explicit theoretical models to guide their empirical analysis, and many focus only on 

output effects (Balmford et al. 2005; Ewers et al. 2009). Except for Vinya et al. (2011) and Holden 

(1997), empirical evidence on the nexus between agricultural technologies and deforestation remains 

thin in Zambia.  

This paper adds to the literature in two ways. First, we develop a simple Chayanovian agricultural 

household model and solve it analytically to guide the empirical estimation. Second, we address data 

problems by using detailed local context-household survey data from rural Zambia for the empirical 

analysis and we account for the potential endogeneity of MT, shadow wages and yield on cropland 

expansion decisions using instrumental variables.  

The rest of the paper is organized as follows. Section 2 briefly reviews existing models of 

deforestation and presents the theoretical model. Sections 3 and 4 outline the empirical strategy and 

data sources, while section 5 presents the main results. Section 6 discusses these results, and section 

7 concludes. 

2 Theoretical model 

2.1 Economic models of deforestation 

Theoretical economic models of deforestation can be classified in two broad categories. The first 

one applies dynamic optimization on the allocation of land between forest and competing uses 

(mainly agriculture), possibly also including different sub-sectors of agriculture, e.g., lowland and 

upland agriculture. With a national or region focus, these models assume that a social planner 

determines land allocation by comparing relative returns over time. Examples include Barbier and 

Burgess (1997) and Tachibana et al. (2001). In general, these models show that higher agricultural 

profit stimulate deforestation by favoring conversion of land to agriculture. The idea of a social 

planner determining land allocation may be far-removed in countries with partly liberalized land 
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markets like Zambia. Yet a market system can mimic some of the characteristics of the optimal 

solution, but additional features need to be added, e.g., insecure tenure and land claims strengthened 

by land clearing.  

The second category focuses on household level drivers of deforestation and apply different 

versions of the (mostly) static agricultural household model in the tradition of Singh et al. (1986). 

These models are again split between recursive and non-recursive models, i.e., based on whether 

consumption and production decisions can be separated (recursive) or must be taken 

simultaneously. The former assume that households participate in well-functioning labor, land and 

output markets, and production decisions are studied within a profit-maximizing framework. 

Missing or imperfect markets give rise to the non-recursive models, also labelled Chayanovian 

models. (See Angelsen (1999) and Angelsen (2010) for a comparison of different models of 

deforestation, and Pagiola and Holden (2001), Maertens et al. (2006) and Alix-Garcia et al. (2012) for 

other applications of agricultural household models on deforestation.)  

Our theoretical model falls within the second category of deforestation models, i.e., a static model 

assuming an imperfect labor market (non-recursive model).  

2.2 Farm level cropland expansion  

We develop a Chayanovian model of cropland expansion for a representative, smallholder farm 

household in Zambia. We extend existing models of, inter alia, Angelsen (1999) and Maertens et al. 

(2006) by adding a new technology (MT). We assume that land is homogenous, available and 

accessible at a cost  0d A A . We assume a well-behaved aggregate production function, in which 

production is a function of family labor  al , minimum tillage (M), land area (A), and inputs (X):

 , , ;aY f l M A X . We consider M a non-essential input.  The vector of inputs X is assumed fixed, 

which enables us to solve the model analytically without too much complication. Labor, minimum 

tillage and land are assumed to be complementary: , , 0;a A Ml
f f f   , , 0a a AA MMl l

f f f  ; , , 0a a MAl A l M
f f f 

and 0AM MAf f  .  Given the complementarity assumption, agricultural land expansion and MT 

adoption have implications for the demand of family labor. 
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A representative household maximizes utility ( , ; )U U c l h  by trading off consumption (c) and 

leisure time (l).  h is a vector of exogenous household demographics, which we drop in subsequent 

equations beyond Eq. (1) but retain in the empirical estimation. In addition to land access cost (d), 

we assume an additional convex labor cost of clearing, reflecting, for example, increasing costs with 

distance from the homestead as crop area expands:  0

r
t A A , 0t   and 1r  . A  is total cultivated 

land per household and 0A is the initial stock of land. The difference ( 0A A ) then gives the size of 

converted land within this period. A representative farm household solves the following problem: 

, , ,

( , ; )
ac l A M

MaxU U c l h                                                                              (1)   

 Subject to  

   , , ;a o

y o xc p f l M A vM d A A p wl E      X X                             (2) 

 
r a o

oT l t A A l l                                                                     (3)     

 
a

oc,A,l >0; M 0; r >1;t >0; A A 
 

U  is household utility, which has positive but diminishing marginal utilities of consumption and 

leisure. For simplicity, we assume zero cross partials: , 0; , 0 ; , 0.c l cc ll cl clU U U U U U    Eq. (2) is the 

budget constraint. We assume that all income earned by the household is spent on consumption in 

our single period model. py is output price, v is the farm level input and capital costs of implementing 

MT. px is the per unit input cost, which like X, is fixed. E captures all other exogenous income to the 

household. Eq. (3) is the time or labor constraint; total household time T equals leisure time l plus 

time spent working on the farm l a, clearing new agricultural land  
r

ot A A and off the farm l o.  

We assume an imperfect labor market in the sense that households can only sell a fixed amount of 

labor 
o

l at a market wage rate w . This labor market assumption leads to the Chayanovian model with 

a household specific shadow wage below the market wage (otherwise, the constraint will not be 

binding, see Angelsen (1999)). We assume that output markets are well functioning in the way that 

farmers can sell (or buy) what they want at a given market price.  
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We consider the interior solution case where 0 0A A   and M > 0, and write the Lagrangian for the 

problem as:2  

     

 

, , , ;a o

y o x

r a o

o

L U c l c p f l M A vM d A A p wl E

T l t A A l l





         
 

      
 

X X

             (4)                                                 

Solving Eq. 4 and after some manipulations, the first order conditions (FOCs) for the choice 

variables l, c, M and A are given by: 

ay l
p f z                                                       (5)     

 
1r

y A op f d zrt A A


                                     (6)     

y Mp f v                                                              (7)     

where 
 

 

,
.

,

l

c

U c l
z

U c l
                                               (8) 

Eq. (8) defines the shadow wage (z) as the marginal rate of substitution between consumption and 

leisure. Eq. (5) states that the marginal productivity of agricultural labor (or leisure) is equal to z.  

The marginal productivity condition in Eq. (6) states that a household will expand cropland (A) until 

the marginal productivity of land equals the sum of the cash and labor cost of land and expansion. 

Eq. (7) states that MT is profitable as long as its marginal benefit is equal to the cost of 

implementing it.   

Since MT (M) and cropland expansion (A) are both endogenous, assessing the impact of MT on 

expansion cannot readily be seen from the FOCs without further comparative statics. Also, since M 

is endogenous in the model, the exogenous (policy) variable to investigate in our formulation is the 

                                                 

 

2 We consider cases where M = 0 in the empirical estimation. 
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costs of implementing MT, namely v. As seems from Eq. (2), a policy lowering v will lead to higher 

adoption of MT.  

2.3 Comparative statics  

The complete comparative statistics is presented in Appendix A. We used Cramer's rule to assess 

how changes in exogenous variables affect cropland expansion (A), the key outcome variable of 

interest. This section only discusses results for the effects of the cost of implementing MT, (v) on 

cropland expansion (A): /A v  . Appendix A reports the full derivations.   

The impact of changes in (costs of) MT adoption on land expansion is the net effect of the 

substitution and income effects. The substitution effect is what a recursive model would give, i.e., by 

keeping z constant. The income effect is analyzed through changes in in z (Angelsen (1999). 

The substitution effect of a change in v on A is as follows: lower (higher) costs of MT adoption 

increases (reduces) adoption. Higher M increases the marginal productivity of land, given the 

complementarity assumption. Expansion becomes more profitable, and the substitution effect only 

gives that /A v  is negative.  

The income effect is, however, positive. Lower v has several effects on z. First, all inputs remaining 

constant, lower v reduces the costs of production and raise consumption (cf. Eq. (2)). Higher 

consumption raises z, cf. Eq. (A1). Second, the substitution effect gives higher M, A and la when v is 

lowered. The household will both produce and work more, and have less leisure. This triggers a 

further increase in z, cf. again Eq. (A1). The income effect will therefore have a negative impact on 

expansion though the higher shadow wage rate, i.e. positive impact on /A v  . 

We summarize our results; cf. Eq. (A31) in the following proposition: 

Proposition: The overall effects of MT on cropland expansion are indeterminate, a priori. The 

substitution effect is positive, reflecting the higher profitability of land expansion. The income effect 

is negative, reflecting that higher consumption and less leisure raise the household shadow wage 

rate, reducing the profitability of land expansion. 

We cannot determine the net effect, but can hypothesize how different factors will affect the net 

result. Household preferences matters, i.e., responsiveness of the shadow wage to changes in 
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consumption and leisure. Angelsen (1999) shows, using a Stone Geary utility function with 

subsistence levels, that the income effect dominates for poor households (close to that subsistence 

level). The production technology also matters, e.g., to what extent MT adoption changes the 

marginal productivity of labor and land. If MT adoption leads to large increases in marginal labor 

productivity (i.e., is labor intensive), the impact on z can be large, and make the income effect 

dominate the substitution effect.  

3 Empirical strategy 

3.1 Reduced form equation 

In order to bring the theoretical framework to the data, we can write a parsimonious representation 

of the reduced form solution as: 3 

 * * , , ; , , , ,y x oA A M y z p p A ,  X h                                    (9) 

where A* is the size of expanded  cropland, M is the size of land under MT. We use the size of land 

area under MT, which also reflects the cost of implementing MT (v). The direct cost of 

implementing MT (v) was not collected during the survey. y is aggregate crop yield (used as proxy for 

expected yield), z is the shadow wage (opportunity cost of labor). py is the per kg cost of maize used 

as a proxy for output price. 

X is now a dummy = 1 if a household used inorganic fertilizers and/or hybrid seed, px is an average 

per kg input cost of inorganic fertilizer and seeds, l o is a dummy = 1 if at least one household 

member worked off farm, and Ao is the initial amount of land (farm size) controlled by the 

household (net of newly expanded area ).  h is a vector of demographics and other exogenous 

variables: value of assets, subsidies, tenure, distance from homestead to protected forest and location 

dummies. ε is the error term. Table 1 gives detailed descriptions and summary statistics for all 

variables in Eq. (9).  

                                                 

 

3 This representation relaxes some assumptions from the theoretical model for example on fixed px and X. 
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Following from the theoretical model, M, y, and z are endogenous and therefore may be correlated 

with the error term in Eq. (9). There are also reasons to suspect that MT is endogenous because 

farmers who self-select themselves into MT adoption may have unobservable characteristics, which 

may also influence their expansion decisions. Moreover, since MT affects cropland expansion 

through yield effects, then MT and yield may be interdependent, and possibly jointly determined 

with expansion decisions at household level. Subsection 3.1 elaborates how we addressed these 

concerns.  

We computed the household specific shadow wage (z) following Jacoby (1993). First, we estimated a 

Cobb Douglas production function and then used the results (Table A3, appendix B) to compute: 

prod
z

labor
                                                                             (10) 

where labor is total labor input per household, β is an estimated parameter associated with labor and 

prod is the predicted value of production (the dependent variable in the estimated production 

function).  

3.2 Estimation challenges 

A natural first step before deciding how to estimate Eq. (9) is to test for the endogeneity of M, y and 

z. We used the control function approach of Wooldridge ( 2010). This involves estimating reduced 

form equations for each endogenous variable as the dependent variable regressed on all exogenous 

variables and an additional instrumental variable(s) (IV).  

The reduced form equations were of the form: 

j j j jendog       G Z                                            (11) 

where endogj represents the jth endogenous variable (M, y and z), G is a vector of all exogenous 

variables from Eq. (9), Z is a vector of instruments for the jth   endogenous variable. εj is the equation 

specific error term and and    are model parameters. Following Wooldridge ( 2010), we include 

residues  jres  from each of the reduced form equations as additional regressors in the main 

outcome equation to both test and control for endogeneity.   
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We used the following IVs. For MT area (M), we used access to MT extension (dummy = 1) and 

distance to district center (boma). We would expect access to MT extension and distance to the 

district business center (where MT project offices and agro-dealers for inputs and MT implements 

are located) to affect farmer decisions to adopt MT, but not their cropland expansion decisions 

directly. For yield (y), we used whether the household head is polygamously married (dummy = 1), 

monogamously married (dummy = 1) and distance from homestead to main feeder road. For the 

shadow wage (z), we used whether the household head is polygamously or monogamously married 

(dummies =1).  

Suitable IVs should affect MT area, yield and shadow wages, but not expansion directly. We might 

argue that our IVs are only indirect measures of the factors that affect expansion such as labor 

availability that we controlled for  in the estimation. We formally tested for IV relevance, i.e., that 

the IVs are significantly correlated to the endogenous variable(s). 

Table B1 in appendix B shows that the IVs were relevant in each of their respective first stage 

equations (4.11 < F < 8.76). All the residues were statistically insignificant in the main outcome 

equations (Table B2). Thus, we failed to reject the null hypothesis that the (potentially endogenous) 

variables are exogenous.4 Therefore, in line with standard procedure (Ainembabazi and Angelsen 

2016; Ricker-Gilbert et al. 2011), our empirical estimation proceeded without considering prior 

endogeneity concerns. From now, M, y and z are considered exogenous in the estimation.  

The second estimation issue is the censored nature of the outcome variable; only about 19% of the 

sampled farmers expanded cropland. Although Heckman and Tobit models are potential options, 

we used the double hurdle model which relaxes the Tobit assumptions by allowing the same or 

different factors to explain the decisions on (i) whether to expand or not, and (ii) the extent of 

expansion differently (Cragg 1971; Wooldridge 2010).  

A third challenge concerns how to parcel out the effects of area under MT (our measure of MT 

effects) from those of crop yield on cropland expansion. Recall from our theoretical discussion that 

                                                 

 

4 We arrived at similar conclusions using 2SLS and IV-Tobit models. 
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MT affect cropland expansion both through its effects on yield (higher profitability of expansion), 

but that the demands of more labor also increases the shadow wage, dampening or even reversing 

the outcome. In an attempt to isolate these two effects, we included MT area and crop yield in 

separate models. Yield in this case also includes the effects of MT on yield, but the size of area 

under MT better reflects labor demand related to MT.5 

3.3 Empirical specification 

Following Wooldridge ( 2010), the first stage of the double hurdle model is a probit model of 

whether or not households expanded cropland, i.e., exp > 0:  

1(exp 0 | ( ) .P )=        G G G                                              (12)                                   

The second stage is a truncated normal regression of area expanded (A*) conditional on exp>0 and 

G, 

*

2( | exp 0, .E A )      G G                                                      (13)                                     

exp is a dummy = 1 if a household expanded cropland and A* is the amount of new cropland in the 

2013/2014 season. αi are the intercept terms. G is a vector of all exogenous variables defined as 

before; β and γ are parameters to be estimated while ε and μ are error terms from the first stage and 

second stage respectively.  The overall expected value of E (A*) is a product of the expected values 

for Eq. (12) and (13) and the first derivatives of these equations measure the marginal or average 

partial effects (APEs). Readers are referred to Wooldridge (2010) for a thorough discussion. We 

estimated the two steps of the double hurdle simultaneously with maximum likelihood, following 

Burke (2009). 

                                                 

 

5 Our data do not allow us to explicitly isolate the contributions of MT to crop yield and to household labor supply and 
demand. We also tried to use 3SLS, but we dropped it because we could not prove the normality of the error covariance 
matrix. 



13  

  
 

4 Data sources  

The data used in this study are from an extensive household survey conducted in 2014. Sampling 

proceeded at three levels. First, we selected Nyimba, Mumbwa and Mpika districts based on 

exposure to forest conservation interventions, agriculturally productive area and prevalence of 

shifting cultivation systems. Second, we randomly sampled 10 villages per district using the most 

recent village lists per district. Third, we used up-to-date village registers obtained from village 

leaders to select 12-15 households, randomly from each village for interview. This gave sub-samples 

of 120 from Mpika and Nyimba districts, 128 from Mumbwa, and 368 households in total. Figure 1 

shows the location of survey areas.  

 

Figure 1: Spatial location of survey areas in Zambia 

Data were collected using structured questionnaires and face-to-face interviews. The survey collected 

detailed information on household demographics, agricultural (including tillage methods) and off-

farm activities, yield, labor and other input use, asset holdings and sources of income. Specifically, 

the survey asked households whether they expanded their cropland in the 2013/2014 season. Those 

who expanded provided the size of the new (additional) area, reasons for expanding, the main 

crop(s) grown, where they expanded into, and who among household members made the decision. 

Similarly, those who did not expand provided reasons.  
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The main crops grown in the study areas include maize, cotton, groundnuts, sunflower, soybeans, 

mixed beans and cassava. Table 1 defines the main variables and presents summary statistics.  

Table 1: Variables used in regression models and summary statistics 

Variable description Name Mean SD Min Max 

Dependent variable 
     

Expanded cropland into 2013/2014 season (yes =1) A>A0 0.19 0.40 0.00 1.00 
Self-reported cropland expansion area  (ha) A* 0.14 0.39 0.00 4.05 
Potentially endogenous independent variables 

     

Land under MT (ha) M 0.13 0.47 0.00 5.67 
Shadow wage  z 0.48 0.21 0.19 2.27 
Aggregate crop yield (kg/ha)+ y 1874.76 1229.54 190.00 6900.00 
Exogenous Independent variables 

     

Distance to protected forest  (km) h 13.50 11.75 0.50 55.00 
 Accessed subsidy (yes = 1) h 0.30 0.46 0.00 1.00 
Adult equivalents h 4.96 2.01 0.74 10.26 
Farm size, next of expansion (ha) A0 4.29 6.93 0.11 100.00 
Age, head of household h 45.04 13.89 19.00 89.00 
Male head of household (yes = 1) h 0.77 0.42 0.00 1.00 
Education, head of household (years) h 6.37 3.23 0.00 18.00 
Value of assets (ZMW’000)* h 2.24 13.84 0.00 250.00 
Some land on title (yes = 1) h 0.04 0.20 0.00 1.00 
Used hybrid seed and/fertilizer  (yes = 1) x 0.78 0.41 0.00 1.00 
Maize (output)  price (ZMW/kg) py 1.85 0.67 0.34 4.67 
Fertilizer and seed (input) price (ZMW/kg) px 4.50 1.41 1.15 13.12 
A member earned off farm work (yes = 1) l0 0.09 0.28 0.00 1.00 
Mumbwa district (yes=1) 

 
0.37 0.48 0.00 1.00 

Nyimba district (yes=1) 
 

0.34 0.48 0.00 1.00 
Mpika district (yes=1) 

 
0.29 0.46 0.00 1.00 

Additional instruments (IVs) 
     

Distance to district center (km)  
 

29.04 24.47 1.00 95.00 
Distance to feeder road (km)  

 
2.56 7.55 0.00 90.00 

Polygamy (yes = 1) 
 

0.03 0.18 0.00 1.00 
Monogamy (yes = 1) 

 
0.71 0.45 0.00 1.00 

Accessed MT extension (yes = 1) 
 

0.59 0.49 0.00 1.00 

Notes: +For all crops, but mainly maize and used as a proxy for expected yield at the time farmers 
made the decision to expand in the 2013/2014 season. The sample reduced to 350 after dropping 18 
households who had zero harvest because they only cultivated cassava during the survey period. (1 
USD = 6.2 ZMK at the time of the survey.) 
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5 Results  

5.1 Where and why do smallholders expand cropland? 

Not all cropland expansion causes deforestation, and we asked respondents who expanded cropland 

about what land parcels were expanded, what land they expanded into, and - if fallows - how old the 

fallows were.  

Overall, about 24% of the respondents expanded cropland during the survey reference period (i.e., 

between 2012/2013 and 2013/2014 agricultural seasons). Among these, 75% and 25% expanded 

into uncultivated land (forest) and fallows, respectively. Thus, when we define deforestation as 

cropland expansion into virgin forests or fallowed land older than 15 years, about 19% of the 

sampled households are involved in deforestation (Table 1).6  We base our empirical analysis on this 

second definition of expansion. Of all fallow land brought back into cultivation, only about a quarter 

had been in fallow for more than 15 years, a sign of shortening fallow periods in the study areas.  

There is no significant difference in cropland expansion between MT adopters and non-adopters.  

Within each group, 18-19% of the households expanded their cropping area into forests during the 

last agricultural season. Among adopters, the average cropland cleared per household was 0.10 ha, 

while non-adopters cleared larger parcels on average - about 0.15 ha. 

About 79% of land-expanding households did so for maize production. This finding corroborates 

those in Babigumira et al. (2014), who found that most of the cropland expansion in Africa is for 

maize production - the staple in many sub-Saharan African countries.  

 Most households in the sample stated that they expanded to increase production to meet 

subsistence requirements (Figure 2). Other reasons included improved market access, declining land 

productivity, settling in new area (out-migration), improved access to inputs through government 

subsidies and clearing to secure title.   

                                                 

 

6 We follow FAO (2015) and define forests as land parcels larger than 0.5 hectares and not in agricultural use, with tree 
canopy cover of more than 10% and that these trees should reach a minimum height of 5 meters in situ. This definition 
includes primary and secondary forest, native or exotic, as well as closed and open forest (e.g., woodlands). 
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Figure 2: Reasons farmers expanded cropland into the 2013/2014 season 

Among households who did not expand cropland, the majority (68%) stated that they did not 

expand due to lack of resources (labor and cash) or means to do so. About 21% said there was no 

land to expand to, and 11% stated that they did not have any need to expand cropland.  

5.2 Are households that expanded cropland different from those that did not? 

We checked for systematic differences between households that expanded cropland in the 

2013/2014 season and those that did not. Table 2 shows, using t-tests, that households who 

expanded cropland had significantly larger farms (6.0 ha vs. 3.9 ha) before expansion, higher asset 

endowments and used improved inputs (a possible indicator of better market access). Among those 

that expanded, the share of male-headed households is higher (indicating the critical role of access to 

family (male) labor). At district level, Nyimba had the largest proportion of land-expanding 

households. 
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Although the differences are insignificant, results in Table 2 also show that the average crop yield 

was higher among households who expanded. A larger proportion of these households received 

input subsidies7, and they were on average more educated and had younger household heads. 

Table 2: Bivariate mean comparisons of key variables between households who expanded cropland into the 
2013/2014 season and those that did not 

 Expanded cropland into 2013/14 season  

 No 
Mean 

Yes 
Mean 

t-stat 
(no-yes) 

 
Sign. level 

Land under MT 0.14 0.13 0.01         
Distance to protected forest  13.63 12.99 0.40  
Shadow wage 0.47 0.51 -1.63  
Yield 1,862.36 1,925.27 -0.38         
Adult equivalents 4.9 5.22 -1.2         
Farm size, next of expansion (ha) 3.88 5.99 -3.01 *** 
Age, head of household 45.48 43.22 1.22         
Male head of household 0.75 0.86 -1.91 * 
Education, head of household 6.27 6.77 -1.15         
Value of assets (ZMW’000) 1.37 5.76 -2.38 ** 
Land on title 0.05 0.01 1.21         
Improved inputs 0.16 0.25 -1.76 * 
Subsidy 0.29 0.36 -1.2         
Output price 1.84 1.93 -1.01         
Input price 4.51 4.46 0.29         
Off farm work 0.09 0.1 -0.32         
Mumbwa district (yes=1) 0.37 0.35 0.34  
Nyimba district (yes=1) 0.32 0.45 -2.09 ** 
Mpika district (yes=1) 0.31 0.20 1.81 * 

Notes: ***, **, *: significant at 1%, 5% and 10%. 

We further explored the bivariate relationships between cropland expansion and key variables: area 

under MT, farm size, household wealth and yield. For each variable of interest, we estimated a 

simple bivariate quadratic regression to predict its effects on expansion.8 Figure 3 suggests a weak 

relationship between land cultivated under MT (adoption-intensity) and expansion. In line with a 

priori expectations, higher yield, farm size and household wealth are correlated positively and mostly 

                                                 

 

7 The effect of subsidies on expansion requires a separate study.  
8 We used the qfitci command in Stata. 
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significantly with expansion. However, bivariate analysis fails to control for correlations across 

explanatory variables and their possible endogeneity, which leads us to the econometric analysis of 

next section.     

 

Figure 3: Quadratic predictions of the effects minimum tillage adoption intensity (A) yield (B), farm size (C) and 
value of household assets (D) on cropland expansion. 

5.3 Econometric results 

We estimated several specifications of the double hurdle model. We report results from two models 

with the area under MT and yield variables included separately. These two models better capture and 

isolate the different channels through which MT may affect expansion, namely through yield and 

labor effects. Because the results are similar, we will focus mainly on model 1 and only refer briefly 

to model 2. The estimation was done with standard errors clustered at the village level.   

As we could not reject exogeneity, estimation proceeded without correcting for endogeneity. Table 3 

presents the average partial effects (APEs) for the probability of expansion, extent of expansion 

conditional on expansion (i.e., among households who expanded), and the overall effects for the 
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model with area under MT (model 1) in columns 1-3. The APEs for the model with yield (model 2) 

are given in columns 4-6. 

Model 1 shows that the size of area under MT is negatively correlated to the probability and extent 

of cropland expansion, although these results are only significant among households who already 

expanded (column 2). However, the overall effect is insignificant (columns 3).   

This is in line with our descriptive results in Table 2 and Figure 3, where the size of land under MT 

did not seem to be correlated with cropland expansion overall, but it was weakly correlated among 

adopters. Adopters cleared less cropland than non-adopters did. Further, this result is qualitatively in 

agreement with our theoretical results, which suggest that the overall effects of MT on expansion are 

indeterminate a priori, as labor and yield effects pull in different directions.    

Using improved inputs (inorganic fertilizers and hybrid seed) increases the likelihood of expansion 

by 16 percentage points (columns 1, Table 3), while an additional year in the age of the household 

head and a unit increase in input prices reduce the likelihood of expansion by 0.3 and 4.0 percentage 

points, respectively. These results are statistically significant at the 5% level.  

Higher crop yield (model 2), shadow wage, education of the household head and adult equivalents 

are positively correlated with expansion among households who already expanded, and these results 

are significant at 1-10% levels (columns 2 and 5). For example, all else equal, doubling yield is 

predicted to increase expansion by about 80m2. Secure land tenure reduces the extent of expansion 

(Models 1 and 2, columns 2 and 5).  

The overall effects suggest that labor availability (adult equivalents) and shadow wage stimulate 

expansion while age of the household head and having some land on secure tenure could reduce 

expansion. There are significant location effects: farmers in the more densely populated Mumbwa 

and Nyimba districts (relative to those in Mpika district) were more likely to expand cropland. 
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 Table 3: Double hurdle average partial effects of factors influencing cropland expansion. 

 Model 1 Model 2 

 (1) (2) (3) (4) (5) (6) 
 Participation

APEs 
Participati
on APEs 

Overall 
APEs 

Participati
on APEs 

Participati
on APEs 

Overall 
APEs 

MT area (ha) -0.027 -0.494** -0.113 - - - 
 (0.057) (0.201) (0.081) - - - 
Yield (kg/ha) /100 - - - 2.20E-04 0.008* 0.002 
 - - - (0.002) (0.004) (0.002) 
Shadow wage 0.154 1.347** 0.357** 0.139 0.188 0.122 
 (0.112) (0.575) (0.164) (0.112) (0.387) (0.165) 
Adult equivalents 0.007 0.124*** 0.028*** 0.006 0.102*** 0.023* 
 (0.010) (0.028) (0.011) (0.010) (0.036) (0.013) 
Land size, net of expansion 0.002 -0.022 -0.003 0.002 -0.023 -0.003 
 (0.007) (0.014) (0.007) (0.007) (0.015) (0.008) 
Age household head -0.003* -0.011*** -0.004** -0.003* -0.012** -0.004** 
 (0.001) (0.004) (0.001) (0.001) (0.005) (0.002) 
Male household head (yes = 1) 0.059 0.016 0.040 0.058 -0.030 0.030 
 (0.041) (0.135) (0.046) (0.041) (0.168) (0.048) 
Education household head 0.010 0.020 0.010* 0.010 0.028* 0.012* 
 (0.007) (0.014) (0.006) (0.007) (0.014) (0.007) 
Asset value (ZMW) /1000 0.004 0.012 0.005 0.004 0.012 0.005 
 (0.005) (0.021) (0.007) (0.005) (0.020) (0.007) 
Some land on title (yes=1) -0.095 -1.046*** -0.262** -0.097 -1.135*** -0.276* 
 (0.104) (0.310) (0.120) (0.105) (0.390) (0.155) 
Improved inputs (yes = 1) 0.160** -0.177 0.067 0.161** -0.169 0.068 
 (0.074) (0.195) (0.054) (0.079) (0.201) (0.060) 
Govt. input subsidy (yes = 1) 0.039 -0.030 0.019 0.037 0.018 0.026 
 (0.053) (0.117) (0.042) (0.053) (0.115) (0.044) 
Output price per kg -0.016 0.027 -0.005 -0.016 0.084 0.006 
 (0.032) (0.084) (0.026) (0.036) (0.096) (0.031) 
Input price per kg -0.036** 0.003 -0.022 -0.037** -0.033 -0.029 
 (0.017) (0.061) (0.017) (0.017) (0.071) (0.018) 
Off farm income (yes=1) 0.019 -0.020 0.008 0.016 -0.279 -0.043 
 (0.070) (0.146) (0.064) (0.072) (0.192) (0.077) 
Dist. to protected forest (Km) 0.001 0.003 0.001 0.001 0.007 0.002 
 (0.004) (0.004) (0.002) (0.004) (0.006) (0.002) 
Mumbwa district (yes=1) 0.057 0.503** 0.133** 0.053 0.884** 0.201** 
 (0.091) (0.220) (0.063) (0.091) (0.363) (0.082) 
Nyimba district (yes=1) 0.209** 0.530** 0.234*** 0.209** 0.837** 0.289*** 
 (0.097) (0.234) (0.062) (0.098) (0.339) (0.079) 
Sigma (σ) 0.60*** 0.73*** 
Log pseudo likelihood  -173.91 -179.87 
Observations 350 69 350 350 69 350 
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Notes: ***, **, * significant at 1%, 5% and 10% respectively. Bootstrapped standard errors in 
parenthesis (300 replications). APEs refer to average partial effects.  

6 Discussion  

6.1 Minimum tillage and deforestation  

The main result of this paper is that higher MT adoption intensity does not significantly affect 

cropland expansion. An adoption intensity of MT averaging 0.13 ha or about 8% of cultivated land 

per farm household shows that MT is not the dominant tillage method at household level, and this 

could at least partly explain our results.  

The overall results are in agreement with Byerlee et al. (2014), who conclude that technology-driven 

intensification alone is unlikely to reduce cropland expansion without improved governance and 

incentives to preserve nature. They also echo earlier synthesis of case studies on the impacts of 

improved agricultural technologies on deforestation (Angelsen and Kaimowitz 2001).  

However, MT adoption intensity is negatively correlated with expansion among households who 

already expanded. We can use our theoretical results and surmise that this captures the effects of MT 

on labor allocation. MT is labor intensive, at least in the short run, and labor scarcity may reduce 

expansion due to the higher demand for (family) labor among MT adopters. The net effects of MT 

on cropland expansion will depend on whether its yield or labor effects dominate - an issue that 

would require further investigation. (Note that the yield and labor effects are not equivalent to the 

substitution and income effects discussed in the theory section.) Because we are not able to 

investigate fully the labor intensity of MT in our data, this result should be interpreted with caution. 

6.2 Other drivers of deforestation 

Our finding that a higher opportunity cost of labor stimulates expansion runs counter to economic 

intuition and to our theoretical results. One explanation might, however, be found in the way the 

shadow wages are calculated, although the model is commonly used. The formula of Eq. (10) 

includes total agricultural production; a high shadow wage may therefore reflect that the household 

has certain characteristics (including unobservables) that increase productivity – also from recently 

cleared land. Additionally, this finding reflects that labor markets are missing and imperfect in the 

study areas. It also suggests that household labor is crucial for agricultural production – including 
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land expansion – and that households employ more labor on-farm than supplying off-farm. This 

result also renders support to the inverse farm size – productivity relationships owing to the high 

labor/land ratio on small farms (Ainembabazi and Angelsen 2016). 

The positive and significant effect of adult equivalents on expansion is in line with our a priori 

expectations about the role of access to family labor to facilitate expansion. This result is also in line 

with Babigumira et al. (2014) who found that households with more male labor were also more likely 

to expand cropland. The negative correlation between age of the household head and the likelihood, 

and extent of expansion is line with the life cycle theory and also corroborates findings in 

Babigumira et al. (2014). Households headed by younger household heads were more likely to 

expand, both due to higher physical strength and due to the need to invest in more land at early 

stages in the life of the household.   

Results showing that higher yield stimulates cropland expansion (among households who already 

expanded) support long-standing arguments suggesting that higher crop productivity may stimulate 

deforestation (Angelsen and Kaimowitz 2001; Balmford et al. 2005; Rudel et al. 2009). Thus, 

technological-driven intensification on its own  may stimulate expansion if market conditions are 

favorable (Byerlee et al. (2014).  

The negative effect of seed and fertilizer prices on the probability of cropland expansion highlight 

the importance of market factors as suggested in Babigumira et al. (2014). Our result that proximity 

to protected forests does not influence expansion decisions reinforces the need to improve local 

forest management institutions, which are generally weak in Zambia (Mulenga et al. 2015). 

Tenure security may have contradictory effects on cropland expansion. It can make investments in 

existing land more secure, and help making intensification more attractive relative to expansion. If, 

however, farmers clear forests to claim tenure rights and titles, more secure tenure can spur forest 

clearing (Angelsen 1999). We find that secure land tenure reduce cropland expansion, suggesting 

that the first effect is stronger. This is in line with our findings that only 1% of respondents reported 

that they cleared forests to secure title. It is also in line with other studies suggesting that secure 

tenure facilitates farm level investments in land improvements in Ethiopia (Deininger and Jin 2006), 

Kenya (Kabubo-Mariara 2007),  Zambia (Smith 2004) and Africa, in general (Place 2009) - which in 

turn would reduce the need for expansion -  at least in the short run. Place and Otsuka (2000) found 
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that conversion of forested land to agriculture was highest under customary (insecure) tenure in 

Uganda. However, because we measure tenure as a dummy, and we do not investigate further its 

potential endogeneity, caution is needed when interpreting the tenure results. 

Finally, our findings suggesting that farmers in Mumbwa and Nyimba districts were more likely to 

expand relative to those in Mpika district highlight differing land pressures across the districts: the 

population density in Mpika is 5 persons/km2 compared to 10 and 8 in Mumbwa and Nyimba, 

respectively. Only 19% of the respondents expanded cropland, highlighting that increasing land 

scarcity in Zambia is setting constraints to farmers’ options (Chamberlin et al. 2014).   

7 Conclusion 

This paper assessed the effects of minimum tillage and other proximate factors on cropland 

expansion. We developed a theoretical non-separable household model with limited off farm work 

opportunities and tested hypotheses using household survey data for the 2013/2014 agricultural 

season in Zambia. Future research should assess the effects of the full conservation agriculture 

package on deforestation, and develop long-term panel data sets to assess its effects on labor 

allocation and productivity, and cropland expansion.  About one-fifth of smallholder households in 

our sample expanded cropland into forests clearing an average of 0.14 ha over one year. Its low 

adoption intensity, averaging 0.13 ha or 8% of cultivated land per farm household, however, 

suggests that it is not the dominant tillage method.  

Minimum tillage is both yield augmenting and labor intensive, thus its net effects on expansion are 

ambiguous, a priori. In our dataset, we do not find evidence of lower expansion due to the adoption 

of minimum tillage practices overall, but among households who already expanded. The yield 

enhancing effect might, under the “right” conditions lead to more forest encroachment. Thus, we 

conclude in line with Byerlee et al. (2014) that policies aimed to improve agricultural yields such as 

minimum tillage may exacerbate deforestation without concomitant forest conservation measures 

such as direct control of cropland expansion into forests or payments for environmental services to 

prevent and possibly reduce cropland expansion. Given the dual challenge facing African agriculture 

of both raising yield and farm incomes, while adapting to and mitigating climate change, 
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conservation agriculture practices such as minimum tillage could be part of the overall policy 

package.  
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Appendices 

A. Proof of proposition 

Appendix A provides proofs for the proposition using the first order conditions (FOCs) in Eq. (5) - 
(7). Because household behavior in our theoretical model is reflected through changes in the shadow 
wage (z) as given by Eq. (8), we first define the marginal effects of changes in leisure (l) and 
consumption (c) on z and then move on to show the full derivations for the first and second order 
derivations used in the comparative statics. The final step applies Cramer's rule. 

Define the marginal effects of l and c on z as: 
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                                                 (A1) 

since , 0; , 0lc cl ll ccU U U U   . Thus, z   decreases with more leisure but increases with more 

consumption due to diminishing marginal utility, (cf. Eq. (8)). 

The Langrage for the problem in Eq. (1) – (3) can be written as  
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            (A2)                                                 

The first order conditions (FOCs) for the choice variables l, c, M and A are given by: 

   1/ ( ) 0r

y A oL A p f d rt A A                                          (A3)     
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L l p f                                                                   (A4)                    
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 / 0y ML M p f v                                                                  (A5) 

 / , 0cL c U c l                                                                        (A6)     

 / , 0.lL l U c l                                                                         (A7)   

Using Eq. (A6) and (A7) to eliminate the shadow values of consumption (μ) and labor (λ), the FOCs 
for the choice variables, la, A and M in Eq. (5) – (7) can be written in their complete form as:9  
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: ( , , ) 0a

M y ML p f l A M v                                                                                     (A10) 

where 
1( )r a o

ol T t A A l l      . 

 

To simplify notation in the following derivations, we drop the a superscript in al  and use m instead 
of M from henceforth. We implement the derivations using one FOC at a time for the variables of 

interest , , , ,y ol A M p A  and v . Similar results can be obtained by total differentiation. 

Differentiating Eq. (A8) with respect to , , , , ,y ol A M p A v  and using results in (A1) to simplify yields: 

                                                 

 

9 Note that the FOCs can also be obtained by substituting Eq. (2) and (3) into Eq. (1). 
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Since    0y mp f v    by Eq. (A10). 
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where ( , , )y f l A M  . 
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Differentiating Eq. (A9) with respect to , , , , ,y ol A M p A v    and using results in (A1) to simplify yields: 
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  since 0y mp f v   by Eq. (7) 
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Differentiating Eq. (A10) with respect to , , , , ,y ol A M p A v   and using results in (A1) to simplify yields: 
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Eq. (A11) - (A28) can be combined and arranged into matrix form as: 
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On the LHS is the coefficient matrix and the parameter matrix is on the RHS.  Replacing the actual 
derivations into Eq. (A29) and rearranging yields: 
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Expanding the coefficient matrix on the LHS of Eq. (A30) using column 3, working through the 
resulting algebra and using earlier definitions for 

AZ ,   and   to simplify gives the following 

determinant: 
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Following earlier definitions in the production function and the differentiation results and using 
standard math rules for a maximum, it can be determined that the determinant in Eq. (A31) is 
negative. 

Since the main interest is to determine the effects of the cost of implementing MT on cropland 

expansion, the outcome of interest is /A v   , which can be evaluated using Cramer's rule: 
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Stating with the substitution effect where z  is held constant so that , 0l cz z   (Angelsen 1999):  

0
vHA

v H


 


 ; because | | 0vH   after dropping all terms with 

lz  and 
cz   in Eq. (A32), but  | | 0H   

from Eq. (A31).  

 
The income effect is always the opposite to the substitution effect (for normal goods) so that 

/ 0A v   .10  Analytical results for the effects of other variables used in the empirical model can be 
obtained following similar procedures. 

B. Endogeneity tests, robustness checks and production function 

estimates 
Appendix B reports the endogeneity and instrument relevance test results in Table B1. Table B2 
reports the full double hurdle model results with the IV-control function and Table B3 report results 
for the Cobb-Douglas production function.  

Table B1: First stage - reduced form OLS estimates for the endogenous variables 

 (1) (2) (3) 

 MT area Yield Shadow wage 

Polygamy (yes = 1) - 5.845* 0.231** 

 - (1.765) (2.177) 

Monogamy (yes = 1) - - 0.103*** 

 - - (3.600) 

Distance feeder road - -0.139*** - 

 - (-3.038) - 

Distance district center -0.003* -0.074** - 

                                                 

 

10 As discussed in section 2.3, the results for /A M   will have the opposite signs to those of /A v   
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 (-1.890) (-2.188) - 

Accessed MT extension (yes = 1) 0.088** - - 

 (2.230) - - 

Adult equivalents 0.011 0.129 -0.008 

 (0.828) (0.314) (-1.243) 

Land size, net of expansion 0.022 -0.237* 0.001 

 (1.194) (-1.965) (0.290) 

Age household head 0.001 -0.029 -0.000 

 (0.838) (-0.689) (-0.209) 

Male household head (yes = 1) 0.050 -1.125 -0.086** 

 (1.098) (-0.783) (-2.232) 

Education household head -0.004 0.516** 0.002 

 (-0.377) (2.533) (0.637) 

Asset value (ZMW) /1000 -0.009 0.217*** -0.001 

 (-1.276) (3.956) (-0.410) 

Some land on title (yes=1) -0.038 5.578*** 0.054* 

 (-0.919) (3.100) (1.843) 

Improved inputs (yes = 1) 0.064 0.045 0.034 

 (1.237) (0.028) (1.681) 

Govt. input subsidy (yes = 1) 0.011 -6.560*** -0.030 

 (0.552) (-6.505) (-1.543) 

Output price per kg 0.003 0.412 -0.013 

 (0.289) (0.670) (-1.031) 

Input price per kg 0.048 3.891 0.017 

 (0.617) (1.447) (0.552) 

Off farm income (yes=1) 0.002 -0.016 -0.001 

 (0.527) (-0.223) (-1.150) 

Dist. to protected forest (Km) 0.214*** 0.584 0.152*** 
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 (3.399) (0.265) (4.611) 

Mumbwa district (yes=1) -0.016 -1.012 0.036 

 (-0.285) (-0.502) (1.167) 

Constant -0.173 25.760*** 0.501*** 

 (-1.274) (5.678) (5.066) 

    

Observations 350 350 350 

R-squared 0.147 0.276 0.137 

Notes: t-statistics in parenthesis; ***, **, * significant at 1%, 5% and 10% respectively; combined IV 
relevance test results – MT area F=4.12, p=0.03; Yield – F=5.26, p=0.01; shadow wage, F=8.75, 
p=0.00. 

 

Table B2: Coefficient estimates from double hurdle models with control function-IV approaches 

 Model 1 (MT area) Model 2 (yield)  

 (1) (2) (4) (5) 

 Probit Truncreg Probit Truncreg 

MT area (ha) -0.733 -0.078 - - 

 (1.643) (1.692) - - 

MT residues 0.631 -0.895 - - 

 (1.671) (1.963) - - 

Yield (kg/ha) /100 - - -0.082 0.064 

 - - (0.067) (0.126) 

Yield residues - - 0.085 -0.044 

 - - (0.067) (0.124) 

Shadow wage 1.232 1.028 2.320 -8.393 

 (2.960) (5.407) (2.988) (6.568) 

Shadow wage residues -0.660 1.751 -1.865 9.555 

 (3.083) (5.868) (3.118) (6.945) 

Adult equivalents 0.038 0.230*** 0.040 0.186** 

 (0.049) (0.072) (0.047) (0.094) 

Land size, net of expansion 0.021 -0.058 -0.013 -0.021 

 (0.045) (0.046) (0.044) (0.057) 

Age household head -0.008 -0.026** -0.010* -0.036** 

 (0.006) (0.013) (0.006) (0.015) 
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Male household head (yes = 1) 0.268 -0.072 0.173 -0.311 

 (0.167) (0.232) (0.197) (0.453) 

Education household head 0.040 0.042 0.077* 0.060 

 (0.028) (0.034) (0.039) (0.064) 

Asset value (ZMW) /1000 0.009 0.030 0.033 0.013 

 (0.027) (0.038) (0.023) (0.054) 

Some land on title (yes=1) -0.343 -2.264*** -0.264 -3.038** 

 (0.434) (0.835) (0.384) (1.367) 

Improved inputs (yes = 1) 0.596 -0.268 1.028 -0.265 

 (0.406) (0.509) (0.626) (1.006) 

Govt. input subsidy (yes = 1) 0.190 -0.047 0.146 0.357 

 (0.238) (0.309) (0.199) (0.351) 

Output price per kg -0.031 -0.004 -0.515 0.201 

 (0.160) (0.300) (0.493) (0.859) 

Input price per kg -0.134* -0.015 -0.087 -0.202 

 (0.079) (0.168) (0.071) (0.218) 

Off farm income (yes=1) 0.092 -0.042 0.347 -0.668 

 (0.294) (0.324) (0.382) (0.814) 

Dist. to protected forest (Km) 0.005 0.004 0.000 0.008 

 (0.015) (0.010) (0.016) (0.020) 

Mumbwa district (yes=1) 0.288 1.079 -0.032 3.307** 

 (0.803) (1.311) (0.611) (1.644) 

Nyimba district (yes=1) 0.832* 1.120* 0.706 2.200** 

 (0.479) (0.618) (0.456) (0.957) 

Constant -2.129 -1.117 -0.662 1.687 

 (1.720) (3.233) (2.537) (5.032) 

Sigma (σ) 0.584***  0.689***  

Observations 350 350 350 350 

Notes: Dependent variables- stage 1, expanded (yes/no), stage 2- area expanded (ha); robust 
standard errors in parenthesis; ***, **, * significant at 1%, 5% and 10% respectively; the non-
significance of residues suggest that exogeneity  of MT area, yield and shadow wage in the cropland 
expansion equation cannot be rejected. We arrived at similar conclusion even in a model which 
includes both MT area and yield (for brevity, we do not report these results here). 

 
Estimation of shadow wages 
We estimated household specific shadow wages following Jacoby (1993) and used a Cobb Douglas 

production function. The dependent variable is aggregate value of crop production for all crops 

grown by households in the sample. The main crops included maize, cotton, sunflower, groundnuts, 

dry beans, sorghum, millet and cassava. The value of production was computed using crop prices 



38  

  
 

obtained during the survey. The explanatory variables were aggregated across crops per household, 

all transformed into logs. We also included as additional regressors, average household age, 

education and size to control for household specific factors that may influence agricultural 

production. 

Homogeneity was imposed by normalizing the explanatory variables using the quantity of seed. 

Alternative estimations with trans-log did not yield better results.  

The household specific shadow wage (z) was estimated using Eq. (10). 

Table B3: Cobb Douglas production function estimates 

 Coefficient SE t-statistic 

Log cultivated land (ha) 0.432*** 0.139 3.105 

Log fertilizer quantity 0.385*** 0.053 7.221 

Log labor hours 0.303*** 0.054 5.595 

Log number oxen 1.029 0.985 1.045 

Average household age -0.001 0.004 -0.165 

Average household education 0.071*** 0.020 3.548 

Average household size 4.6E-04 0.019 0.024 

Village fixed effects yes yes yes 

Constant 2.307*** 0.340 6.780 

    

Observations 350   

R-squared 0.659   

Notes: ***, **, * significant at 1%, 5% and 10% respectively, (Dependent variable, value of 
production). 
 
 


